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Abstract

The nuclear factor-kappa B (NF-κB) is a transcription factor with important roles in inflamma-

tion, immune response, and oncogenesis. Dysregulation of NF-κB signaling is associated

with inflammation and certain cancers. We developed a gene expression biomarker predic-

tive of NF-κB modulation and used the biomarker to screen a large compendia of gene

expression data. The biomarker consists of 108 genes responsive to tumor necrosis factor α
in the absence but not the presence of IκB, an inhibitor of NF-κB. Using a set of 450 profiles

from cells treated with immunomodulatory factors with known NF-κB activity, the balanced

accuracy for prediction of NF-κB activation was > 90%. The biomarker was used to screen a

microarray compendium consisting of 12,061 microarray comparisons from human cells

exposed to 2,672 individual chemicals to identify chemicals that could cause toxic effects

through NF-κB. There were 215 and 49 chemicals that were identified as putative or known

NF-κB activators or suppressors, respectively. NF-κB activators were also identified using

two high-throughput screening assays; 165 out of the ~3,800 chemicals (ToxCast assay)

and 55 out of ~7,500 unique compounds (Tox21 assay) were identified as potential activa-

tors. A set of 32 chemicals not previously associated with NF-κB activation and which par-

tially overlapped between the different screens were selected for validation in wild-type and

NFKB1-null HeLa cells. Using RT-qPCR and targeted RNA-Seq, 31 of the 32 chemicals

were confirmed to be NF-κB activators. These results comprehensively identify a set of

chemicals that could cause toxic effects through NF-κB.

Introduction

The transcription factor NF-κB controls the expression of a battery of genes involved in

diverse processes including inflammation, immunity, development, and apoptosis [1–5]. NF-
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κB-mediated pathogenesis has led to interest in understanding the pathogens, stressors, cyto-

kines, and environmental chemicals that affect the NF-κB pathway [6–9]. Because of the rele-

vance of NF-κB dysregulation in human disease, several high-throughput screens (HTSs) have

been carried out to identify NF-κB modulators that could be linked to effects on immunomo-

dulation and cancer [10, 11]. The biological significance of these findings has yet to be fully

understood for their potential impacts on human health.

There are five known NF-κB family members: NF-κB1 (p50/p105), NF-κB2 (p52/p100,

RelA (p65), RelB and c-Rel [12]. NF-κB is present in the cytoplasm of cells in an inactive state

as either a homodimer or heterodimer complexed with an inhibitory molecule of the κB fam-

ily, most commonly IκBα [5]. NF-κB activation through inactivation of IκB can occur through

canonical or noncanonical pathways [12]. In the canonical pathway, stimuli activate IκB kinase

(IKK) complexes to phosphorylate IκB family members triggering their ubiquitination and

subsequent degradation. The degradation of IκB then allows the release and nuclear transloca-

tion of active NF-κB leading to alteration of gene expression. Inducers of the canonical path-

way include inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukins,

and bacterial products. TNFα binding to the TNF receptor (TNFR) represents one of the most

well-studied IKK induction pathways. Toll-like receptor (TLR) agonists, such as lipopolysac-

charide (LPS), can also lead to the activation of NF-κB. LPS acts through TLR4 which in turn

acts through both adaptor MyD88-dependent and -independent pathways to activate NF-κB.

In the MyD88-dependent pathway, interleukin-1 receptor-associated kinase 1 (IRAK1) and

IRAK4 phosphorylate TNF receptor-associated factor 6 (TRAF6), which activates IKK. For the

MyD88-independent pathway, IKK activation downstream of RIPs and TRAFs is largely medi-

ated by transforming growth beta-activated kinase 1 (TAK1) [13, 14]. In the non-canonical

NF-κB pathway, there is selective activation of p100-sequestered NF-κB members, predomi-

nantly NF-κB2 p52 and RELB (also referred to as non-canonical NF-κB family members) [4].

In the present study, we focus on identification of chemicals that modulate the canonical NF-

κB pathway mediated by NF-κB1, RelA, and c-Rel.

Dysfunction of NF-κB plays a role in oncogenesis by inhibiting apoptosis, stimulating cell

proliferation, and affecting inflammation and immunity in ways that create favorable environ-

ments for cancer [1]. Misregulation of the NF-κB pathway is also linked to inflammatory dis-

eases such as rheumatoid arthritis and asthma [2–4]. Known environmental factors that are

linked to NF-κB activation include cigarette smoke, nanoparticles, asbestos, and lead [6–9]. A

high-throughput screen for NF-κB chemical activators was carried out as part of the Environ-

mental Protection Agency (EPA) ToxCast screening program (https://www.epa.gov/chemical-

research/toxicity-forecasting) which encompasses ~700 HTS Tier 1 assays representing ~350

molecular targets that have been used to screen more than 3800 chemicals [10, 15]. Another

HTS for NF-κB activators was carried out by the National Center for Advancing Translational

Sciences (NCATS) as part of the Tox21 screening program (https://tripod.nih.gov/tox21/

assays/), an ongoing effort to test the effects of over 10,000 compounds on nuclear receptors,

stress response pathways, developmental pathways, and other cellular processes [16]. These

high-throughput screens pave the way for understanding the effects of environmentally rele-

vant chemicals on NF-κB. In addition, a screen for NF-κB inhibitors was carried out on ~2800

clinically approved drugs and bioactive compounds from the NIH Chemical Genomics Center

Pharmaceutical Collection (NPC) [17] in a NF-κB mediated beta-lactamase reporter gene

assay [11] and demonstrated that many currently approved pharmaceuticals have previously

unappreciated NF-κB signaling suppression activity.

High-throughput transcriptomic (HTTr) technologies are being increasingly used to screen

chemicals in human cell lines. In the EPA ToxCast screening program, HTTr strategies are

now being used to replace the battery of individual ToxCast screening assays with targeted
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sequencing techniques [18] such as TempO-Seq [19]. Compared to individual assays, HTTr

technologies have the advantage of examining the effects of environmental chemicals on essen-

tially all pathways operating in cell models, many of which are not examined by the current

battery of ToxCast assays. A major challenge is how to interpret the gene expression profiles to

identify the molecular targets of chemicals. A number of approaches have been used to inter-

pret the HTTr profiles and these include pathway analysis and comparison to archived profiles

of reference chemicals with known bioactivity [20]. Gene expression biomarkers have emerged

as an alternative approach to accurately predict specific targets of chemicals. Biomarkers con-

sist of sets of genes known or predicted to be regulated by a particular factor [21]. The bio-

marker gene expression pattern is compared to gene expression profiles derived from human

cells exposed to chemicals using a number of computational techniques that include correla-

tion analysis [22].

Gene expression biomarkers have recently been developed to predict the modulation of a

number of transcription factors in human cell lines. Biomarkers for estrogen receptor [1, 23]

(Ryan, Chorley et al. 2016) [1] (Ryan, Chorley et al. 2016), androgen receptor [24], metal-

induced transcription factor 1 [25], and the oxidant-induced transcription factor Nrf2 [26]

have been described. In addition, a biomarker that identifies chemical exposure conditions

that lead to DNA damage has been extensively characterized [27, 28] and is currently undergo-

ing review by the Food and Drug Administration to be used as a tool to identify potential

DNA damaging agents in human cells. These studies indicate that a methodical analysis of

gene expression profiles of reference chemicals and appropriate genetic perturbations will

eventually lead to a battery of highly predictive biomarkers that can be used to interpret HTTr

data streams [21]. The large quantity of gene expression data that already exists in commercial

and public repositories will provide in silico high-throughput identification of chemical agents

that activate or suppress human molecular targets including NF-κB. Approaches to assess NF-

κB modulation using HTTr data have not been previously described.

In the present study, we developed procedures for predicting NF-κB perturbation in HTTr

data. We constructed a gene expression biomarker that accurately predicts NF-κB modulation

after exposure to immunomodulatory factors and chemicals. We used the biomarker to screen

a library of microarray profiles from cells treated with ~2600 organic chemicals to identify

modulators of NF-κB. There were 215 and 49 chemicals that were identified as putative or

known NF-κB activators or suppressors, respectively using our gene expression biomarker

approach. NF-κB activators were also identified using two high-throughput screening assays;

165 out of the ~3,800 chemicals screened in the ToxCast assay and 55 out of ~7,500 unique

compounds screened in the Tox21 program were identified as potential activators. We exam-

ined a set of 32 putative activating chemicals not previously recognized as NF-κB activators by

comparing expression patterns of NF-κB-regulated genes in wild-type and NFKB1-null cells.

We validated 31 out of the 32 chemicals as NF-κB activators, providing a set of chemicals that

could potentially activate NF-κB-associated effects in animals and humans. Overall, our

approach greatly expands the number of environmentally relevant chemicals that putatively

activate NF-κB.

Results

Identification of NF-κB biomarker genes

A set of biomarker genes was identified that could be potentially used to predict modulation of

NF-κB activity in transcript profiles. We utilized a previously published study in which wild-

type HeLa cells and HeLa cells which overexpressed the NF-κB inhibitor IκB were treated with

TNFα for 1h, 3h, and 6h [29]. The expression of statistically filtered and clustered genes in
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each treatment group is shown in Fig 1A (left). A straightforward weight of evidence approach

was used to identify genes which exhibited consistent expression changes after TNFα exposure

at the different time points in the wild-type but not the IκB-expressing cells (specific criteria

described in Methods). The behavior of the resulting 108 genes across the 6 treatment groups

is shown in Fig 1A (middle). The resulting biomarker consisted of 63 upregulated genes and

45 downregulated genes with fold-change values derived from the average fold-change across

the three time points in wild-type cells (Fig 1A (right)). The full list of biomarker genes is

Fig 1. Building and characterizing the NF-κB biomarker. (A) Gene expression profiles of the six biosets used to

construct the NF-κB biomarker. (Left) The fold-changes of the statistically significant genes from the Tian et al. (2005)

study are shown after one-dimensional clustering of genes. (Center) Expression of the genes that make up the

biomarker after TNFα treatment in wild-type and IκB-expressing cell lines are shown. (Right) The fold-change values

averaged across treatments in wild-type cells yielded the 108 gene NF-κB biomarker, with the names of the top 10

genes shown. (B) Ingenuity Pathway Analysis of biomarker genes. (Top) Transcription factors predicted to regulate the

biomarker genes using the upstream regulator analysis. (Bottom) Canonical pathways that significantly overlap with

the biomarker genes. Biomarker genes were compared to the genes in the canonical pathway lists from IPA. (C)

Comparison of the biomarker to the biosets used to construct the biomarker. The -log(p-value)s of the pairwise

correlations are in the same order as those in A (middle).

https://doi.org/10.1371/journal.pone.0261854.g001
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found in S1 Table in S1 File. Notably, many of the highest ranking genes in the biomarker are

known direct targets of NF-κB including IL6 [30], ICAM1 [31], and IRF1 [32] and have well-

characterized functions within the NF-κB regulatory network.

Analysis of pathways overlapping with biomarker genes

We identified pathways enriched in biomarker genes using the canonical pathway and

upstream analysis functions in Ingenuity Pathway Analysis (IPA) (Fig 1B). Several of the top

upstream regulators predicted by the analysis were transcription factors and included RELA,

NFKB1A, and NFKB1. The analysis identified the TNFR2 and TWEAK signaling pathways as

the top canonical pathways, with 26.7% (p = 1.36 x 10−12) and 22.9% (p = 5.37 x 10−12) of the

genes overlapping, respectively. The complete set of IPA results are found in S2 and S3 Tables

in S1 File.

Comparison of the biomarker to individual biosets used to create the

biomarker

The rank-based Running Fisher algorithm was used to determine the pair-wise correlations

between the biomarker and the biosets used to construct the biomarker. Statistically significant

correlations were defined as those with a |-log(p-value)|� 4 [25, 26] where positive values

indicated a condition that led to activation of NF-κB, while negatively correlated biosets were

predicted to be conditions that led to inhibition of NF-κB. The three biosets from TNFα-

treated wild-type cells were positively correlated with the biomarker with very high -Log(p-

value)s, as expected (Fig 1C). In contrast, the biosets from the TNFα-treated IκB-expressing

cells did not exhibit significant correlation with the biomarker due to the fact that only 0–3

genes overlapped between the biosets and the biomarker. This observation was preliminary

evidence that the biomarker correlations with biosets are driven by NF-κB-dependent activity,

as discussed in detail below.

Predictive accuracy of the biomarker

In the human gene expression compendium, there were 46, 107, and 88 biosets in which inter-

leukin 1α/β (IL1α/β), lipopolysaccharide (LPS), or TNFα, respectively were used to treat vari-

ous human cell lines under conditions expected to activate NF-κB. We tested the sensitivity of

predicting NF-κB activation by determining how many of the biosets exhibited a -log(p-value)

� 4. The sensitivities for IL1α/β, LPS, and TNFα were 93.5%, 85%, and 89.8%, respectively

indicating the biomarker is very predictive in identifying treatments that lead to NF-κB activa-

tion. This consistency was despite the fact that the biosets were derived from a heterogeneous

set of experiments generated in different labs on different microarray platforms. There was no

consistent basis for why some of the treatments lacked significant correlation. However, we

did note that for some of the studies evaluated, NF-κB activation was observed only during a

narrow window of exposure times which varied between studies. With this in mind, we reeval-

uated the sensitivity predictions for each study by grouping the biosets within that study. If

any bioset from that study examining the same factor was positive for NF-κB activation, then

the study was counted as a positive. Performing the analysis in this manner slightly improved

the sensitivities to 91.5% in 26 studies using IL1α/β, 64 studies using LPS, and 51 studies using

TNFα (Fig 2). Overall, our methods were very accurate at identifying true positives from a

range of treatments from heterogeneous studies that led to activation of NF-κB.

The specificity of the biomarker was also determined using the biosets derived from cells

treated with factors not expected to activate NF-κB. These included IL2, IL3, IL4, IL6, IL12,

interferon (IFN)α, and IFNβ. There were 208 biosets evaluated. Exposure to cytokines IL2,
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IL3, IL4, IL6, and IL12 did not lead to consistent activation or inhibition of NF-κB; only 12 of

the 208 biosets were positive for NF-κB activation (S1A Fig in S2 File). Likewise, treatment

with IFNα or IFNβ did not lead to consistent effects on NF-κB (S1B Fig in S2 File). Four of

the six IFN positives from cells treated with IFNβ came from the same study using hepatoma

HuH-7 cells (GSE48400). There are reports that IFNγ treatment activates NF-κB through both

the canonical and noncanonical pathways that may be dependent on cellular context [33, 34].

Eighteen of the 47 biosets from cells treated with IFNγ led to activation. (S1C Fig in S2 File).

Using the data from all cytokines except IFNγ, our approach resulted in a specificity of 94.2%.

Performing the analysis on a study basis similar to that described above gave a specificity of

89.1%. Combining the predictions from the sensitivity and specificity calculations gave a bal-

anced accuracy of 91.3% for individual comparisons and 90.3% on a study level. Thus, the bio-

marker is a reliable predictor of activation through the canonical pathway but not necessarily

through other immunomodulatory pathways. The biosets used in the analysis are found in S4

Table in S1 File.

The biomarker identifies diverse conditions that activate NF-κB

We determined if the biomarker would respond in a predictable manner to a diverse array of

Toll-like and Interleukin 1 receptor agonists. Whole blood from normal,MyD88-defective, or

IRAK4-defective patients was stimulated for 2 hrs in vitro with agonists encompassing most

TLRs (PAM3 (TLR1/2), PAM2 (TLR2/6), LPS (TLR4), Flagellin (TLR5), 3M2 (TLR7), 3M13

(TLR8), R848 (TLR7/8), and IL-1 receptors (IL-1β, IL-18) along with the positive control,

TNFα (data from [35]; GSE25742). Comparison of the microarray profiles from each of the 33

comparisons to the biomarker is shown in Fig 3 (biosets are listed in S5 Table in S1 File).

TNFα and LPS showed significant activation (-log(p-value)� 4) in wild-type cells and both

appeared to be partially dependent onMyD88 and IRAK4 evidence by the decrease in the sig-

nificance in the correlation. LPS activates NF-κB through bothMyD88/IRAK4 and TRAF6,

another component of the IRAK4 complex [36]. It is thought that TNFα can activate NF-κB

throughMyD88- and IRAK4-independent pathways [37]. Activation of NF-κB by IL18, IL1β,

PAM3, PAM2, flagellin, 3M2, R848, and 3M13 was dependent on bothMyD88 and IRAK4
consistent with previously characterized signaling networks. Thus, our biomarker approach

identified treatments that are known to activate NF-κB in a manner that reflects well-charac-

terized dependencies onMyD88 and IRAK4.

We examined the effects of other factors known to affect NF-κB signaling. The cytokine

tumor necrosis factor-like weak inducer of apoptosis (TWEAK) which binds the receptor

FN14 leads to activation of NF-κB through both canonical and noncanonical pathways [38].

Fig 2. Assessment of the accuracy of the biomarker in predicting NF-κB activation. The sensitivity of the biomarker

was determined using studies from cells expected to exhibit NF-κB activation after exposure to (A) interleukin 1α/β,

(B) lipopolysaccharides, and (C) tumor necrosis factor α. For each factor, the -log(p-values) for the studies were rank-

ordered. The red line shows the cutoff for statistical significance (-log(p-value) = 4).

https://doi.org/10.1371/journal.pone.0261854.g002
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All 11 of the biosets in which three cell types were exposed to TWEAK exhibited NF-κB activa-

tion (S1D Fig in S2 File). Treatment with antibodies against CD3 and CD28 which activate

resting T-cells activate NF-κB through a noncanonical pathway [39]. More than half of the 33

biosets derived from cells treated with anti-CD3/anti-CD28 exhibited NF-κB activation (S1E

Fig in S2 File).

Screen for chemical modulators of NF-κB

We performed an in silico screen to identify novel organic chemicals that modulate NF-κB.

We compared the biomarker against a human expression compendium [22] consisting of

12,061 biosets representing human cell lines exposed to 2,672 chemicals. The ranked -log(p-

value)s for individual biosets are shown in Fig 4A. The statistically filtered fold-change values

of the biomarker genes for the corresponding biosets are shown in Fig 4B. For those biosets

that were positively correlated with the biomarker, the expression of the biomarker genes was

remarkably similar to the biomarker itself in terms of direction of change as well as relative

gene rankings especially for those genes that were positively regulated. For those biosets that

were negatively correlated, the expression of the biomarker genes generally exhibited opposite

expression compared to the biomarker genes. The analysis identified 351 biosets representing

215 chemicals that were positively correlated and 83 biosets representing 49 chemicals that

were negatively correlated with the NF-κB biomarker (S6 Table in S1 File). The remaining

11,627 biosets were not significantly correlated with the biomarker in either direction.

Characterization of chemicals predicted to activate NF-κB

The top 20 ranking biosets that resulted in NF-κB activation are shown in Table 1. The biosets

included five from one study examining the effects of sphingosine-1-phosphate (S1P) on der-

mal fibroblasts. NF-κB is known to be activated by extracellular S1P via S1P2 receptors and Gi

protein signaling [2, 40] (Blom, Bergelin et al. 2010) [2]. There is evidence that NF-κB is acti-

vated by chemicals in the top 20 biosets including crocidolite asbestos [3, 41] (Janssen, Driscoll

et al. 1997) [3] (Janssen, Driscoll et al. 1997), nickel chloride [42], and curdlan [4, 43] (Rand,

Robbins et al. 2013) [4]. Silicon dioxide and particulate matter are discussed below. R848 is a

Fig 3. The biomarker predicts activation by Toll-like receptor and interleukin receptor agonists. Significance of

the pairwise comparisons between microarray profiles and the biomarker are shown for experiments in which whole

blood from normal,MyD88-defective, or IRAK4-defective patients was stimulated for 2 hours with the indicated

agonists (data from GSE25742 [35].

https://doi.org/10.1371/journal.pone.0261854.g003
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TLR7 agonist that activates NF-κB [44]. A number of datasets were examined in detail to

determine if the biomarker detects time- and concentration-dependent NF-κB activation. Fig

5A shows the time-dependent changes in NF-κB activation after exposure to particulate matter

with diameters of 10um or smaller (PM10) isolated from either indoor air from classroom set-

tings (indoor) or outdoor air examined in bronchial epithelial BEAS-2B cells (from

GSE34607). The authors noted that indoor PM10, compared to outdoor PM10, induced more

inflammatory and allergenic reactions, and accelerated blood coagulation. Outdoor PM10

induced a different pattern of gene expression that included detoxifying enzymes [45]. Fig 5B

shows the time-dependent changes in activation of NF-κB by 3uM S1P in primary normal

human dermal fibroblasts (normal) or patient C18 dermal fibroblasts (C18) (data from

GSE56308). The authors of the study noted a strong correlation between S1P exposure and a

subset of genes involved in inflammation indicating a role for S1P in immune activation in sys-

temic sclerosis, a progressive fibrotic disease of unknown etiology [46]. Fig 5C shows the con-

centration-dependent increase in NF-κB activity after exposure to silica from two companion

Fig 4. Screening a human microarray compendium for NF-κB chemical modulators. (A) The -log(p-values) for

correlations between the NF-κB biomarker and each of the biosets representing cells exposed to individual chemicals.

Biosets were rank ordered by -log(p-value) of the correlation between the biomarker and the bioset. The cutoffs for

statistical significance are shown with dashed lines. The biosets with -log(p-value)� 4 were considered positively

correlated while the biosets with -log(p-value)� -4 were considered negatively correlated with the biomarker. The top

five biosets predicted to be activators or inhibitors are shown with the chemical names. (B) Gene expression changes

for NF-κB biomarker genes across the biosets evaluating chemical-induced changes in gene expression. The NF-κB

biomarker fold-change values are shown on the left.

https://doi.org/10.1371/journal.pone.0261854.g004
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studies (left; from GSE30213 (50 ug/mL) and GSE30200 (100, 200, 400 ug/mL)) and silica

nanoparticles (right; from GSE63806) in lung epithelial A549 cells. While the authors noted

that silica exposure leads to inflammation, they did not characterize NF-κB activation [47, 48].

The full list of biosets describing chemicals with significant hits from the biomarker screen is

found in S6 Table in S1 File.

Characterization of chemicals predicted to suppress NF-κB

The chemicals predicted to suppress NF-κB fell into a number of groups based on their known

molecular target (Table 2). There were six compounds that act as inhibitors of three

Table 1. The 20 biosets with the highest correlation to the NF-κB biomarker.

Bioset Name Chemical Cell type Public ID Time of

exposure

(hrs)

Conc (in uM unless

otherwise

indicated)

NF-κB biomarker

(-Log(p-value))

Dermal fibroblasts (C18)—3uM sphingosine-

1-phosphate treated 4hr _vs_ untreated_GPL6480

Sphingosine

1-phosphate

Dermal fibroblasts GSE56308 4 3 15.9

Dermal fibroblasts (NHDF)—3uM sphingosine-

1-phosphate treated 4hr _vs_ untreated_GPL6480

Sphingosine

1-phosphate

Dermal fibroblasts GSE56308 4 3 15.7

Lung cancer A549 cell line + Nilotinib 30000nM

for 4hr _vs_ control

Nilotinib A549 E-TABM-

585

4 30 15.6

Primary mesothelial HPM3 cells, pleural + 5ug/

cm2 crocidolite asbestos for 8hr _vs_ unexposed

Asbestos,

crocidolite

HPM3 GSE63966 8 5ug/cm2 15.2

Paroxetine_20uM_24hr_Chen Paroxetine MCF7 PMID:

24496634

24 20 13.3

Macrophages monocyte-derived 10uM nutlin-3

treated 2hr _vs_ DMSO

Nutlin 3 Monocyte-derived

macrophages

GSE43596 2 10 13.2

Dermal fibroblasts (C18)—3uM sphingosine-

1-phosphate treated 8hr _vs_ untreated_GPL6480

Sphingosine

1-phosphate

Dermal fibroblasts GSE56308 8 3 13.2

HUVEC cells + 1.5 mM nickel chloride for 5hr

_vs_ control

Nickel chloride HUVEC GSE4852 5 1500 12.6

Bronchial epithelial BEAS-2B cells treated 4hr with

10ug/ml PM10—indoor _vs_ outdoor

Particulate matter BEAS-2B GSE34607 4 10ug/ml 12.2

Huh7 hepatocarcinoma cells 10uM GENK treated

for 4hr _vs_ DMSO control

Genkwanin HuH-7 GSE39002 4 10 12.2

A549 lung carcinoma cells grown in presence of

10nM geldanamycin (IC20) 48hr _vs_ vehicle

Geldanamycin A549 GSE26525 48 0.01 12.2

Monocyte derived dendritic cells + TLR4 agonist

R848 2hr _vs_ untreated

R848 Monocyte-derived

dendridic cells

GSE2706 2 2.5 μg/ml 11.8

HEK293 cells overexpression p65-S547A mutant—

etoposide treated 8hr _vs_ untreated

Etoposide HEK293 GSE33990 8 Not reported 11.5

Bronchial epithelial BEAS-2B cells—4hr 10ug/ml

indoor PM10 _vs_ 4hr untreated

Particulate matter BEAS-2B GSE34607 4 10ug/ml 11.4

Dermal fibroblasts (NHDF)—3uM sphingosine-

1-phosphate treated 8hr _vs_ untreated_GPL6480

Sphingosine

1-phosphate

Dermal fibroblasts GSE56308 8 3 11.3

Dermal fibroblasts (NHDF)—3uM sphingosine-

1-phosphate treated 12hr _vs_ untreated_GPL6480

Sphingosine

1-phosphate

Dermal fibroblasts GSE56308 12 3 11.1

Macrophages treated 6hr with 10ug curdlan _vs_

untreated controls

Curdlan Macrophage GSE32282 6 10ug/ml 10.8

Hepatocellular carcinoma hepatocyte HepaRG cells

+ 6hr 100nM vinblastine _vs_ DMSO

Vinblastine HepaRG GSE69851 6 100 10.4

Lung epithelium A549 cells 200ug/ml silica treated

from 24hr _vs_ untreated

Silicon dioxide A549 GSE30215 24 0.1 10.4

HL60 cells + amphotericin B, 4.4uM _vs_ DMSO

vehicle

Amphotericin B HL-60 GSE5258 6 4.4 10.3

https://doi.org/10.1371/journal.pone.0261854.t001
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components of NF-κB signaling. Fig 6A shows that the biomarker predicted NF-κB suppres-

sion after exposure to inhibitors of RelA (PB-1086), IKKα (BAY 11–7082), and IKKβ (KINK-

1, Bay 65–1942, PBS1145). The second group included two chemicals (AZD1152, SNS-314) in

8 biosets that act as aurora kinase inhibitors. Aurora kinases play a crucial role in cellular divi-

sion by controlling chromatid segregation [49]. The third group includes four chemicals (AZD

6244, PD0325901, PLX4720, SB203580) that act as inhibitors of overlapping signaling compo-

nents RAF, MEK, and p38α/β [50, 51]. The fourth group includes two chemicals (JQ1,

GSK525762A) that act as bromodomain (BRD) and extra terminal protein (BET) inhibitors.

Members of the BET subfamily of proteins play important roles in cell-cycle control and tran-

scription, and recent evidence has established a link between BET proteins and NF-κB-medi-

ated inflammatory response [52]. Lastly, there were 169 biosets which were derived from cells

treated with four glucocorticoid receptor agonists (compound A, betamethasone, dexametha-

sone, mometasone furoate). GR agonists are well known to suppress inflammatory responses

through NF-κB [53, 54]. Fig 6B shows two examples of the time-dependent suppression of

NF-κB by 10 nM mometasone in lung fibroblasts (from GSE30242) and 100 nM dexametha-

sone in macrophages (from GSE61880).

Identification of putative NF-kB activators in high-throughput screens

In an effort to comprehensively identify NF-κB modulators, large sets of organic compounds

were screened in two NF-κB HTS assays. The first screen conducted by NCATS as part of the

Tox21 screening program was carried out using a beta-lactamase reporter gene under control

of a NF-κB response element in the human cervical cancer cell line, ME-180. Out of ~7,500

Fig 5. Characterization of NF-κB activators. (A) Time-dependent changes in NF-κB activation after exposure to

particulate matter (PM)10 isolated from either indoor air from classroom settings (indoor) or outdoor air in bronchial

epithelial BEAS-2B cells (from GSE34607). (B) Time-dependent changes in activation of NF-κB by 3uM sphingosine-

1-phosphate in dermal fibroblasts from primary normal human dermal fibroblasts (normal) or C18 dermal fibroblasts

(C18) (data from GSE56308). (C) Concentration-dependent increase in NF-κB activity after exposure to silica (left;

from GSE30213 and GSE30200) and silica nanoparticles (right; from GSE63806) in A549 cells.

https://doi.org/10.1371/journal.pone.0261854.g005
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Table 2. Predicted inhibitors of NF-κB identified using the biomarker screening approach. Forty-nine chemicals predicted to inhibit NF-κB were identified. Shown

are experimental conditions that led to significant correlation�.

PREDICTED NF-κB

INHIBITOR

CELL LINE(s) TREATMENT

TIME(s)

TREATMENT

DOSE(s)

DATA SOURCE(s)

Inhibitors of RelA, IKKa/b

BAY 11–7082 HCMV-infected monocytes GSE9601

Bay 65–1942 MCF10A cells 4hr GSE33403

KINK-1 A375 melanoma cells 12hr, 24hr 5uM GSE8772

PB-1086 Lung cancer 11–18 cells 5uM GSE65420

PS1145 Lung cancer A549 cells 1.5hr 10uM GSE34329

Aurora Kinase Inhibitors

AZD1152 Melanoma 1205Lu cells 6hr, 12hr, 18hr,

24hr

0.5uM GSE38466

SNS-314 Melanoma 1205Lu cells 6hr, 12hr, 18hr,

24hr

0.05uM GSE38466

Inhibitors that act upstream of NF-κB on RAF, MEK, and P38a/b

AZD 6244 Melanoma Me13 cells 8hr 0.1uM GSE59882

PD 0325901 Melanoma Me23682 cells 24hr 5nM GSE34686

PLX4720 Melanoma Me13 cells 8hr 0.5uM GSE59882

SB203580 Primary cells—hepatocytes 10uM GSE76098

UM101 Primary cells—lung 1hr 100uM GSE93330

Doxycycline Whole Blood—Leukocytes GSE63085

Bromodomain and Extra Terminal Domain Inhibitors

GSK525762A Prostate carcinoma PC-3 cells 24hr 10uM GSE56352

JQ1 Primary Cells—Osteoblasts, Umbilical vein

endothelial cells; Prostate cancer PC3 cells;

Prostate RWPE cells

2hr, 24hr 250nM, 25ng/mL,

500nM

GSE82289; GSE53999; GSE55063

Glucocorticoid Receptor Agonists

2-(4-acetoxyphenyl)-2-chloro-N-

methyl-ethylammonium chloride

Breast adenocarcinom MDA-MB-231 cells 2hr 10uM GSE56022

Betamethasone Primary tissue—skin GSE32473

Dexamethasone U-2 OS Cell Line; Primary Cells—Leukocytes,

Macrophages, Dendritic Cells, Lung Cells; Blood

Fraction; MDA-A1 Cell Line

2hr, 4hr, 6hr, 10hr,

8d, 24d

100nM, 1uM GSE46448; GSE50012; GSE33135;

GSE61880; GSE45407; GSE56022;

GSE56017; GSE34313

Mometasone Primary Cells—Fibroblasts 3hr, 6hr GSE30242

Miscellaneous or Unknown Mechanisms

Tofacitinib Primary tissue—scalp 5mg GSE80688

Imatinib CD34+ hematopoietic stem cells GSE12211

Simvastatin Primary cells—hepatocytes 24hr 30uM TG-GATES

Formoterol Primary Cells—Fibroblasts 6hr GSE30242

Givinostat HDLM-2 Cell Line 24hr 100nM GSE31060

Etanercept Primary Cells—Leukocytes GSE36177

Infliximab Primary Tissue—RA synovial tissue E-TABM-104

2-hydroxypropyl-beta-

cyclodextrin

Cervical cancer HeLa cells 3hr 2p HBCD E-TABM-599

2-nitrofluorene TK6 Cells 7hr Yauk et al study

Aeb071 Mino Cell Line 3hr 2.5uM GSE42549

Benzene B lymphoblast TK6 cells 24hr 0.01mm GSE87005

Carbon black Primary cells—epithelium GSE41178

Carboplatin Xenograft GSE55399

Erlotinib Lung cancer 11–18 cells 100nM GSE65420

Glucose HEK293 cells 7d 450 mg/dl GSE15575

(Continued)

PLOS ONE Identification of modulators of NF-κB

PLOS ONE | https://doi.org/10.1371/journal.pone.0261854 February 2, 2022 11 / 24

https://doi.org/10.1371/journal.pone.0261854


chemicals originally examined, there were 55 unique compounds identified as putative activa-

tors, and 26 of these activators were selected for further analyses (S7 Table in S1 File). Notably,

three compounds represented by four biosets overlapped as hits in both the Tox21 data and in

our screen of our microarray compendium. These three compounds (mitoxantrone, thiorida-

zine, vincamine) were examined further, as discussed below.

The second high-throughput screen was carried out as part of the ToxCast screening pro-

gram by Attagene (under contract to the EPA). In this assay, a reporter gene was under control

of a NF-κB response element in the human hepatocyte cell line HepG2. A total of 3,806 sam-

ples were screened and 165 were identified as potential activators (S8 Table in S1 File).

Confirmation of the NF-κB Activators

We selected a total of 32 chemicals predicted to activate NF-κB from the HTS assays or the bio-

marker screen (Table 3). The ability of these 32 chemicals to activate NF-κB-dependent genes

in wild-type and NFKB1-null HeLa cells was tested by RT-qPCR. Expression of NF-κB bio-

marker genes was first examined in cells after exposure to IL1β for 6 hrs. We first examined a

number of genes that were in the biomarker (Fig 7A). In addition, we examined the CXCL1
gene that was highly induced by TNFα only at one hr in wild-type but not IkB-overexpressing

cells [29]. Most genes showed concentration-dependent increases in expression in wild-type

cells (Fig 7A). In contrast in the NFKB1-null cells, there was little if any increase in expression

of the biomarker genes at the highest concentration of IL1β used. Given that HTTr screening

efforts at EPA have utilized the MCF7 cell line [5], we confirmed that most of the biomarker

genes were responsive to TNFα or IL1β in MCF7 cells (S2 Fig in S2 File) indicating that this

cell line would be an appropriate HTTr model for identification of chemicals that modulate

NF-κB.

Table 2. (Continued)

PREDICTED NF-κB

INHIBITOR

CELL LINE(s) TREATMENT

TIME(s)

TREATMENT

DOSE(s)

DATA SOURCE(s)

Hydrogen peroxide Primary Cells—T-lymphocytes 4hr GSE6607

Mesalamine Primary cells—Mucus membrane 6hr 50nM GSE46451

Metformin THP-1 Cell Line 48hr 2mM GSE51803

Mln4924 Chronic lymphocytic leukemia B cells 24hr 1uM GSE44864

Nanotubes, carbon Primary cells—respiratory epithelium GSE41178

Nickel-sulfate Primary tissue—skin 7hr GSE6281

N-octanoyldopamine HUVECs 24hr 100uM GSE34059

Phenethyl isothiocyanate Primary cells—hepatocytes 48hr 25uM GSE20479

Pimecrolimus Primary tissue—skin GSE32473

Risperidone SK-N-SH neuroblastoma cells 6hr 10uM GSE36678

Rituximab REC-1 Cell Line 10ug/mL GSE54169

Rosiglitazone Primary cells—macrophages 72hr GSE16385

Sulforafan PC-3 Cell Line 6hr 15uM GSE48812

Tobacco smoke Primary cells—alveolar macrophages; Primary

tissue—bronchi

GSE13931; GSE37147

Tolvaptan Primary cells—hepatocytes 72hr 50uM GSE99878

�Experimental conditions (length of exposure, concentration) are shown here only when this information was clearly presented in the bioset description. Additional

details can be found using the indicated accession information.

https://doi.org/10.1371/journal.pone.0261854.t002
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HeLa cells were exposed to either 15 chemicals identified in the Tox21 screen or the 17

chemicals identified in the ToxCast screen and expression of CXCL1 or IL6 genes were exam-

ined (S11 Table in S1 File). All of the Tox21 chemicals except aminoquinuride activated

CXCL1 in wild-type cells that was abolished in similarly treated NFKB1-null cells (Fig 7B).

Some of the same chemicals also activated IL6 in wild-type cells. A subset of these chemicals

exhibited abolishment of induction in the NFKB1-null cells. Similarly, all 18 of the ToxCast

chemicals induced the CXCL1 gene expression in wild-type cells that was uniformly abolished

in the NFKB1-null cells (Fig 7C). A similar pattern was also observed for the IL6 gene for most

of the chemicals. Thus, the RT-qPCR studies indicated that almost all of the chemicals selected

for validation induced NF-κB target genes in a NFKB1-dependent manner.

Transcript profiling of chemicals in wild-type and NFKB1-null cells

In future HTTr studies, we propose that the use of cell lines nullizygous for important targets of

environmental chemicals will facilitate the interpretation of gene expression patterns. To pro-

vide proof of this concept, we generated transcript profiles of activators of NF-κB in wild-type

Fig 6. Characterization of NF-κB inhibitors. (A) The -log(p-values) representing the correlation between the NF-κB

biomarker and each of the 19 putative NF-κB inhibitors that fell into the five major functional categories of inhibitors

(from 49 total biosets). Error bars are shown when multiple biosets assessed a single chemical. (B) Time-dependent

NF-κB suppression by 10 nM mometasone in lung fibroblasts (from GSE30242) and 100 nM dexamethasone in

macrophages (from GSE61880).

https://doi.org/10.1371/journal.pone.0261854.g006
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Table 3. Activators of NF-κB identified by HTS assays examined by RT-qPCR. There were 32 organic chemicals predicted to activate NF-κB selected for further study.

Chemical CASN HTS

Assay

AC50 (uM) EFFICACY (fold

increase)

Identified using the

NF-κB Biomarker

Data

Source

Validated as an NF-κB

Activator in HeLa Cells by RT-

qPCR1

1,10-Phenanthroline 66-71-7 ToxCast 77.05706 3.163462 NA NA Yes

1,4-Dihydroxyanthracene-

9,10-dione

81-64-1 ToxCast 2.125469 1.86884 NA NA Yes

1-Amino-2-methylanthraquinone 82-28-0 ToxCast 33.57287 2.952916 NA NA Yes

Aloe-emodin 481-72-1 ToxCast 9.564654 2.112953 NA NA Yes

Apigenin 520-36-5 ToxCast 24.31648 6.368289 NA NA Yes

Biochanin A 491-80-5 ToxCast 128.6124 3.190983 NA NA Yes

C.I. Disperse Yellow 64 10319-14-

9

ToxCast 26.37337 2.037707 NA NA Yes

Chlorhexidine diacetate 56-95-1 ToxCast 30.4311 4.095707 NA NA Yes

Chlorophacinone 3691-35-8 ToxCast 31.79655 4.897706 NA NA Yes

Chlorpyrifos-methyl 5598-13-0 ToxCast 9.022388 1.603474 NA NA Yes

Chrysin 480-40-0 ToxCast 11.41565 2.688455 NA NA Yes

Flavone 525-82-6 ToxCast 71.15899 5.433016 NA NA Yes

Hexythiazox 78587-05-

0

ToxCast 26.59593 2.467522 NA NA Yes

Phenyl 1-hydroxy-2-naphthoate 132-54-7 ToxCast 81.67663 1.956113 NA NA Yes

Prodiamine 29091-21-

2

ToxCast 34.63778 2.925536 NA NA Yes

Quinalizarin 81-61-8 ToxCast 27.32025 2.446469 NA NA Yes

Tebufenpyrad 119168-

77-3

ToxCast 0.804216 2.914699 NA NA Yes

9-Ethyl-3-nitro-9H-carbazole 86-20-4 Tox21 61.64481 12.7423 NA NA Yes

Aminoquinuride dihydrochloride 5424-37-3 Tox21 22.14763 15.76857 NA NA No

Benzo(b)fluoranthene 205-99-2 Tox21 54.941 58.50674 NA NA Yes

Carbocyanine 605-91-4 Tox21 19.73909 38.73972 NA NA Yes

Cridanimod 38609-97-

1

Tox21 20.51133 82.39178 NA NA Yes

Dimethisoquin hydrochloride 2773-92-4 Tox21 11.53437 19.73928 NA NA Yes

Falnidamol dihydrochloride 1216920-

18-1

Tox21 13.44809 44.78139 NA NA Yes

Lacidipine 103890-

78-4

Tox21 23.01409 17.59346 NA NA Yes

Lintitript 136381-

85-6

Tox21 0.258222 17.89915 NA NA Yes

Methyl 3-amino-

5,6-dichloropyrazine-2-carboxylate

1458-18-0 Tox21 15.089 51.31506 NA NA Yes

Mitoxantrone 70476-82-

3

Tox21 0.425266 17.54468 B-cell lymphoma cell

line

GSE60408 Yes

Thioridazine 50-52-2 Tox21 23.91446 14.72563 PC-3 Cell Line,

9.8uM, 10uM

GSE5258 Yes

Thioridazine hydrochloride 130-61-0 Tox21 25.39531 16.8285 NA NA Yes

Triamterene 396-01-0 Tox21 23.91446 20.18841 NA NA Yes

Vincamine 1617-90-9 Tox21 34.66543 13.88488 PC-3 Cell Line,

11.2uM

GSE5258 Yes

All exposures were for 6 hrs at 50uM.
1Data from RT-qPCR studies in Fig 7.

Chemicals had to induce either CXCL1 or IL6 in wild-type cells but not NFKB1-null cells to be classified as confirmed.

https://doi.org/10.1371/journal.pone.0261854.t003

PLOS ONE Identification of modulators of NF-κB

PLOS ONE | https://doi.org/10.1371/journal.pone.0261854 February 2, 2022 14 / 24

https://doi.org/10.1371/journal.pone.0261854.t003
https://doi.org/10.1371/journal.pone.0261854


andNFKB1-null cells generated by TempO-Seq targeted sequencing of ~3000 human genes

[55]. Fig 8A shows the heat maps of the filtered changes altered by IL1β, TNFα, carbocyanine

and chlorhexidine diacetate in the two cell lines. Fig 8B shows the number of genes altered by

each treatment in wild-type cells and the number of those genes that are altered in theNFKB1-

null cells. Almost all of the genes regulated by IL1β and TNFα in wild-type cells were no longer

regulated in the NFKB1-null cells. For carbocyanine and chlorhexidine, about half of the genes

(49% and 54%, respectively) regulated in the wild-type cells were no longer regulated in the

NFKB1-null cells. These studies demonstrate that many of the changes in gene expression after

exposure to two putative NF-κB activators were NFKB1-dependent.

Discussion

Gene expression biomarkers can identify chemical modulators of transcription factors, as

demonstrated by previous work from our group and others [23, 56–59]. In the present study,

Fig 7. Expression of NF-κB biomarker genes in wild-type and NFKB1-1-null cells. Wild-type and NFKB1-null HeLa

cells were treated with IL1β or the indicated chemicals for 6 hrs and expression of the NF-κB-responsive gene CXCL1
or several NF-κB biomarker genes were examined by RT-qPCR. (A) Expression changes of NF-κB-responsive genes

are diminished or abolished in NFKB1-null cells. �Indicates significant difference between treated and control wild-

type cells; p-value< 0.05. # Indicates significant difference between treated wild-type and treated NFKB1-null cells; p-

value< 0.05. (B) Changes in the expression of CXCL1 and IL6 genes after exposure to 15 Tox21 chemicals. (C)

Changes in the expression of CXCL1 and IL6 genes after exposure to 17 ToxCast chemicals.

https://doi.org/10.1371/journal.pone.0261854.g007
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we developed a biomarker to predict the modulation of NF-κB in response to environmental

perturbations. We used published gene expression datasets with treatments known to activate

NF-κB to demonstrate that our approach is a reliable method to predict activation of NF-κB.

We first identified genes that are NF-κB-regulated by analyzing published archived gene

expression data from TNFα-stimulated HeLa cells with active or inactive NF-κB signaling con-

trolled by overexpression of IκB. A weight of evidence strategy identified 108 genes consis-

tently activated or repressed by TNFα at three time points in cells with active NF-κB signaling

but not in its absence. The resulting biomarker consisted of 63 up-regulated and 45 down-reg-

ulated genes many of which are known direct targets of NF-κB, including IL6 [30], ICAM1
[31], and IRF1 [32]. Genes in the biomarker with well-characterized functions within the NF-

κB regulatory network included members of the TRAF protein family, interleukin (IL) cyto-

kines, and members of the Rel/NF-κB family (NF-κB subunits encoded by NFKB2 and RELB).

The biomarker also included high ranking genes that are not apparently known NF-κB targets

but play important roles in inflammatory responses. For example, the gene with the highest

average fold-change in the biomarker was EFNA1 (ephrin A1), which responds to TNFα
through JNK and p38 MAPK signaling pathways that can be independent of NF-κB [60].

However, it should be noted that while TNFα regulates genes through both NF-κB-dependent

and -independent mechanisms, the genes that were identified would be NF-κB-dependent

because of the genetic filter imposed, i.e., IkB-dependent. The genes in the biomarker are most

likely regulated by NF-κB through the canonical pathway. The ability of the biomarker to iden-

tify activation of the nonclassical pathway could not be thoroughly tested due to the lack of

appropriate biosets.

Using biosets with treatments known to activate NF-κB, the biomarker had a predictive

balanced accuracy of 90.3%. Given this high reliability, we then used the biomarker to iden-

tify chemical modulators of NF-κB in a large human microarray compendium [22]. This

analysis identified 215 chemicals that were positively correlated and 49 chemicals that were

negatively correlated with the NF-κB biomarker. We used the top 20 ranking biosets that

resulted in NF-κB activation to examine published experimental links to NF-κB activation.

Fig 8. Transcript profiling of chemicals in wild-type and NFKB1-null cells. The indicated treatments were analyzed

by TempO-Seq human S1500+ platform examining the expression changes in ~3000 genes. Significant expression

changes were identified as described in the Methods. (A) The heat maps show the genes altered by the indicated

treatment in wild-type HeLa cells and their expression after treatment in theNFKB1-null cells. Chlor, chlorhexidine

diacetate; Carbo, carbocyanine. (B) Number of genes significantly altered in each treatment described in A.

https://doi.org/10.1371/journal.pone.0261854.g008

PLOS ONE Identification of modulators of NF-κB

PLOS ONE | https://doi.org/10.1371/journal.pone.0261854 February 2, 2022 16 / 24

https://doi.org/10.1371/journal.pone.0261854.g008
https://doi.org/10.1371/journal.pone.0261854


For example, we found evidence that NF-κB is activated by crocidolite asbestos [3, 41] (Jans-

sen, Driscoll et al. 1997) [3], nickel chloride [42], and curdlan [4, 43] (Rand, Robbins et al.

2013) [4]. For the 49 chemicals identified as putative inhibitors, many fell into five major

groups according to their known molecular targets: 1) inhibitors of RelA and IKKα/β, 2)

aurora kinase inhibitors, 3) inhibitors that act upstream of NF-κB on RAF, MEK, and P38a/

b, 4) bromodomain (BRD) and extra terminal protein (BET) inhibitors, and 5) glucocorti-

coid receptor agonists.

Two HTS for NF-κB activators were carried out using cell-based, reporter gene assays. We

selected a total of 32 chemicals predicted to activate NF-κB from the HTS assays, and we tested

the ability of these 32 chemicals to activate NF-κB-dependent genes in wild-type and NFKB1-

null HeLa cells. These studies demonstrated that wild-type vs. null cell line comparisons can

unequivocally identify targets of environmental chemicals. To our knowledge, this is one of

the first studies (in addition to Jackson et al. [6, 25] (Jackson AC 2020) [6] to compare profiles

of chemicals between wild-type and nullizygous cell lines. Although the study was limited in

scope, it provides support for the use of nullizygous cell lines in HTTr screening, especially in

targeted screening to confirm predicted targets from primary HTTr screens. These findings

also underscore the utility of multi-pronged screening approaches that include HTS assays, in
silico screens, and targeted functional follow-up. The limited overlap between chemicals iden-

tified in the biomarker screen and those identified in HTS assays suggests that identification of

NF-κB modulators is constrained by experimental approach. For example, thioridazine was

identified as an NF-κB activator in the Tox21 chemical library and was identified in the screen

of our compendium using the biomarker, but this chemical was “inconclusive” in the Tox21

follow-up assay. This discrepancy highlights the need for multiple lines of evidence, as the

detection of transcription factor activity depends on a variety of variables, including cellular

conditions (e.g., cell line and environment) and experimental approach.

In summary, the results of our screen demonstrate that our biomarker strategy can be used

to readily identify NF-κB modulators. Despite extensively documented importance of NF-κB

in gene-regulatory networks, this study provides the first gene expression biomarker for pre-

dicting the modulation of NF-κB in multiple cell lines. These results indicate that the NF-κB

biomarker will be useful in analyzing HTTr data, such as screening of environmental chemi-

cals in ToxCast libraries.

Methods

Use of a gene expression microarray experiment compendium

As described previously [59], annotation data from BaseSpace Correlation Engine (BSCE)

(https://www.illumina.com/products/by-type/informatics-products/basespace-correlation-

engine.html; formerly NextBio) was used to build a spreadsheet of gene expression compari-

sons (called biosets) from experiments carried out using human cell lines and tissues. This

compendium included the study accession information, bioset name, cell line, tissue, chemical

name and in many cases, chemical concentration and treatment time. Of the biosets included,

12,061 biosets were derived from experiments from chemically treated cells. Methods used to

derive the filtered gene lists are described in detail in Kuperschmidt et al. [22]. In short, gene

expression data were processed using BSCE protocols to generate filtered gene lists with

expression fold-change values for each bioset; information about the methods used to normal-

ize and identify differentially expressed genes are found in Kuperschmidt et al. [22]. Gene lists

were filtered to include only genes which had an absolute fold change magnitude of�1.2 and

p< 0.05.
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Construction of the NF-κB biomarker

The NF-κB biomarker was derived from raw microarray expression data from Tian et al. [29]

(GSE2624 available on the NCBI GEO database). Genes were selected that were differentially

expressed in the same direction in at least 2 of the 3 biosets from the TNFα-treated wild-type

cells but not in the same direction from TNFα-treated cells overexpressing IκB. Genes were

further filtered for an average fold change across those biosets in the wild-type cells which

showed significant expression of at least 1.5-fold in either direction. The final biomarker con-

sisted of 108 genes and average fold-change levels. This biomarker was uploaded to BSCE for

subsequent analyses.

Ingenuity pathway analysis

The NF-κB biomarker genes were analyzed using the canonical pathway and upstream analysis

functions of Ingenuity Pathway Analysis (IPA, Qiagen Bioinformatics, Redwood City, Califor-

nia). IPA was used to calculate the significance of overlap of the biomarker genes with canoni-

cal pathways and upstream transcription factors using a right-tailed Fisher’s Exact test,

yielding a list of p-values describing the probability of the overlap between the NF-κB bio-

marker gene list and the IPA pathway gene lists. Upstream analysis used the number of differ-

entially expressed genes to predict upstream regulators of the biomarker genes.

Comparison of the biomarker to database biosets

The NF-κB biomarker was compared with all other biosets in the database using the Running

Fisher algorithm. This method provides an assessment of the statistical significance of the

overlapping genes between the biomarker and each bioset by assessing correlation and provid-

ing a summary p-value. A complete description of the Running Fisher test is provided in

Kuperschmidt et al. [22]. While we acknowledge that other methods have been used to make

comparisons between two gene lists (such as in GSEA), the Running Fisher test is the only

method provided in BSCE to compare the gene lists. The Running Fisher test has worked

remarkably well for the prediction of transcription factor modulation in mice, rats and

humans [7–9]. The p-values of the pair-wise comparisons were exported and converted to a

-log(p-value), with negative values used to indicate negative correlation between the biomarker

and the bioset. Biosets with |-log(p-value)|� 4 were considered significant based on prior

studies using this threshold [23, 56, 58]. A column in the human gene expression spreadsheet

was populated with the -log(p-value) for each bioset. Biosets that were positively correlated

with the biomarker (-log(p-value)� 4) were predicted to exhibit activation of NF-κB; biosets

that were negatively correlated (-log(p-value)� -4) were predicted to exhibit suppression of

NF-κB.

Selection of positive and negative controls and calculation of biomarker

accuracy

In the database of human gene expression comparisons, biosets were identified that examined

the effects of immunomodulator factors on global gene expression in human cell lines. Biosets

examining the effect of more than one factor or that could not be interpreted were not used.

For example, the bioset “Colorectal cancer HT 29 cells 24hr IFNG and GATA6L overexpres-

sion—2hr TNF _vs_ no TNF” derived from the study GSE72079 compared the effects of a 2hr

treatment with TNFα. Since both the treated and control cells were treated with interferon

gamma and overexpressed the long form of the gene GATA6, this study was eliminated from

consideration. The resulting list of biosets were not filtered for time of exposure or
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concentration of the factor used in the experiment, although it is acknowledged that these are

important parameters to consider in evaluating the value of the comparison as a true positive

or true negative. The 6 biosets used to create the biomarker which examined TNFα effects

(essentially the training set) were not included in this list. The accuracy analysis was carried

out two ways. In the first method, true positive biosets were used individually, assuming that

the conditions of exposure would always lead to activation of NF-κB. However, there were a

number of time course studies in which NF-κB was activated or suppressed during only part

of the time window of exposure (see Results). Thus, the second method examined the true pos-

itive biosets by study. If any bioset in the time course study was positive for NF-κB activation,

then the study was called positive. By individual bioset, there were 43, 90, and 79 true positives

according to the–(log(p-values)). Using the method based on study ID, there were 25, 56, and

47 true positives for IL1α/β, LPS, or TNFα, respectively. True negatives were selected from the

database based on the fact that a number of immunomodulatory factors (IL2, IL3, IL4, IL6,

IL12, IFNα, and IFNβ) were not expected to activate NF-κB. There were a total of 208 biosets

which were classified as true negatives (S4 Table in S1 File). These biosets were also evaluated

both individually and by study. The values for predictive accuracy were calculated as follows:

sensitivity (true positive rate) = TP/(TP+FN); specificity (true negative rate) = TN/(FP+TN);

positive predictive value (PPV) = TP/(TP+FP); negative predictive value (NPV) = TN/(TN

+FN); balanced accuracy = (sensitivity+specificity)/2.

High-throughput screening for NF-kB activators in the Tox21 chemical

library

Tox21 data were accessed through the Tox21 Data Browser (https://tripod.nih.gov/tox21/).

Data were downloaded for the NF-κB assay (“tox21-NF-κB-bla-agonist-p1”), which is a cell-

based, ratiometric readout assay performed using ME-180 human cervical cancer cells. Com-

pounds with the “active agonist” call as the assay outcome were considered positive hits [10]. It

is acknowledged that the compounds are likely not directly interacting with NF-κB but are

activating indirectly. Because this assay relied on fluorescence signals from a β-lactamase

reporter system, autofluorescent compounds may result in false positives. Autofluorescent

compounds were identified and filtered using the “flag” field. Fifty-five unique compounds

were identified as activators, and 31 of these passed the filter for autofluorescence (S7 Table in

S1 File). We compared the list of 55 hits to the compounds revealed in the screen of our micro-

array compendium and identified 3 compounds in four biosets that overlapped as hits in both

the Tox21 data and our compendium. Two of these compounds were in the set of 31 agonists

that appeared promising for further validation. One compound (benzo(a)fluoranthrene) of the

55 was flagged as autofluorescent but was included in the validation set. Based on availability,

26 of the 32 identified agonists were selected for further validation using the same assay. Out

of the 26 chemicals examined, 15 chemicals were confirmed as NF-κB activators in a second-

ary screen. Fourteen of the 15 chemicals were evaluated by RT-qPCR. An additional chemical,

thioridazine, which was “inconclusive” in the Tox21 follow-up assay, was also examined as

that chemical was identified in the screen of our compendium using the biomarker.

High-throughput screening for NF-κB activators in the ToxCast chemical

library

Activation of NF-κB was determined in a multiplexed reporter gene assay encompassing 48

transcription factor binding sites including one for NF-kB in the human cell line HepG2 as

previously described [11]. The endpoint was queried for active chemicals from a total of 3806

samples using the assay endpoint name ATG_NF_kB_CIS_up (all results available at https://
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comptox.epa.gov/dashboard/assay_endpoints/ATG_NF_kB_CIS_up). Initially, 165 samples

with active hit calls were identified and subsequently prioritized to 17 based on robustness and

potency of concentration-response curves for further characterization (S8, S9 Tables in S1

File).

Culture and treatment of wild-type and NF-κB-null cells

Chemicals were obtained through the Tox21 or ToxCast chemical procurement programs and

were� 95% pure. All chemical stock solutions were supplied in DMSO. TNFα recombinant

human protein (�95% purity) was obtained from Thermo Fisher/Gibco (Carlsbad CA), IL1β
came from Thermo Fisher/Life Technologies (Frederick, MD). A NFKB1 nullizygous cell line

engineered in HeLa cells using in part CRISPR/Cas9 technology was obtained from Edigene,

along with the wild-type HeLa cell line. Cells were cultured in DMEM media (GIBCO) supple-

mented with 10% FBS (Omega Scientific, Australia) and 1x penicillin/streptomycin/glutamine.

Cells were plated at 8 x10^5 cells per well in 24-well plates. After 20 hours, media was replaced

with dosing solutions containing DMSO (0.05%), IL1β (1 ng/mL), TNFα (5 ng/mL), or the

Tox21 and ToxCast chemicals (50 μM) in wild-type and the NFKB1-null cells. After 6 hours of

exposure, media was removed, and cells were lysed in 0.3 mL Trizol, followed by RNA

extraction.

Evaluation of gene expression by RT-qPCR

Gene expression was quantified using reverse transcription quantitative PCR (RT-qPCR).

Total RNA was reverse transcribed with the SensiFAST cDNA Synthesis Kit per manufacturer

instructions (Bioline). cDNA was then amplified in 384-well PrimePCR assay plates (Bio-Rad)

with Sso Advanced Universal SYBR Green Supermix (Bio-Rad). Primers were designed using

Primer3 v0.4 [61] and are listed in S10 Table in S1 File.

Evaluation of gene expression using TempO-Seq

Gene expression in wild-type and NFKB1-null cells was evaluated for gene expression changes

after exposure to IL1β, TNFα, carbocyanine and chlorhexidine diacetate at the same concen-

trations as described above using the human S1500+ Tempo-Seq platform [55] (BioSpyder,

Inc, Carlsbad, CA). After extraction, RNA samples were sent to BioSpyder for analysis. Raw

read counts were normalized and filtered gene lists (p-value < 0.05 with no multiple test cor-

rection) were generated using the DESeq2 module in Partek Flow. The data is publicly avail-

able at Gene Expression Omnibus, accession number GSE153616. (Reviewers: to be released

once manuscript is accepted).
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