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Abstract

Background: To investigate whether the candidate genes that confer susceptibility to type 2 diabetes mellitus are also
correlated with gestational diabetes mellitus (GDM) in pregnant Chinese women.

Methodology/Principal Findings: In this study, 1764 unrelated pregnant women were recruited, of which 725 women had
GDM and 1039 served as controls. Six single nucleotide polymorphisms (rs7754840 in CDKAL1, rs391300 in SRR, rs2383208 in
CDKN2A/2B, rs4402960 in IGF2BP2, rs10830963 in MTNR1B, rs4607517 in GCK) were genotyped using TaqMan allelic
discrimination assays. The genotype and allele distributions of each SNP between the GDM cases and controls and the
combined effects of alleles for the risk of developing GDM were analyzed. We found that the rs4402960, rs2383208 and
rs391300 were statistically associated with GDM (OR = 1.207, 95%CI = 1.029–1.417, p = 0.021; OR = 1.242, 95%CI = 1.077–
1.432, p = 0.003; OR = 1.202, 95%CI = 1.020–1.416, P = 0.028, respectively). In addition, the effect was greater under a
recessive model in rs391300 (OR = 1.820, 95%CI = 1.226–2.701, p = 0.003). Meanwhile, the joint effect of these three loci
indicated an additive effect of multiple alleles on the risk of developing GDM with an OR of 1.196 per allele (p = 1.0861024).
We also found that the risk alleles of rs2383208 (b = 20.085, p = 0.003), rs4402960 (b = 20.057, p = 0.046) and rs10830963
(b = 20.096, p = 0.001) were associated with HOMA-B, while rs7754840 was associated with decrease in insulin AUC during a
100 g OGTT given at the time of GDM diagnosis (b = 20.080, p = 0.007).

Conclusions/Significance: Several risk alleles of type 2 diabetes were associated with GDM in pregnant Chinese women.
The effects of these SNPs on GDM might be through the impairment of beta cell function and these risk loci contributed
additively to the disease.
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Introduction

Gestational diabetes mellitus (GDM) is defined as glucose

intolerance with onset or first recognition during pregnancy [1].

It affects 5% to 10% of Asian women with an increasing trend

observed in some developing countries, including China [2].

Epidemiological studies have confirmed that GDM is associated

with increased feto-maternal morbidity and long-term complica-

tions in mothers and offsprings. However, the pathogenesis of

GDM is still largely unknown. Given the fact that women with a

history of GDM are at an increased risk of developing type 2

diabetes (T2D) later in their lives [3] and women with a family

history of diabetes may be predisposed to an increased risk of

GDM [4], GDM may share the same risk factors and genetic

susceptibilities with T2D.

Genome-wide association studies (GWAS) and large-scale

genetic linkage analyses about GDM have not been reported

lately. So the strategy used to identify genes which underlie the

genetic causes of GDM is mainly through a candidate gene

approach and the majority of the identified candidate genes for

GDM came from those associated with T2D. Recently, spectac-

ular advance in identifying susceptible genes involved in T2D in

the Western population has been made by using GWAS [5–9].

The effects of some candidate genes were replicated in Chinese

populations [10–17] and these genes mainly included cyclin-

dependent kinase 5 regulatory subunit associated protein 1-like 1

(CDKAL1), insulin-like growth factor 2 mRNA binding protein 2

(IGF2BP2), gene regions of cyclin-dependent kinase inhibitor 2A

and 2B (CDKN2A-CDKN2B), solute carrier family 30 (zinc

transporter), member 8 (SLC30A8), potassium voltage-gated

channel, KQT-like subfamily, member 1 (KCNQ1), and peroxi-

some proliferator-activated receptor gamma (PPARG). In the

meanwhile, the GWAS on Chinese population discovered two new

genes, protein tyrosine phosphatase, receptor type, D (PTPRD)

and serine racemase (SRR), as the candidate genes of T2D [16].

Positive association between GDM and some of the new

diabetogenic genes was also observed [18–25].

It has been reported that the pathophysiological changes of

GDM are similar to those observed in T2D, which is characterized

by peripheral insulin resistance accompanied by an insulin
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secretory defect [26–28]. Functional studies showed that these new

diabetogenic genes took part in many steps of the process, for

instance, impaired beta cell function (CDKAL1, SLC30A8,

CDKN2A/B, IGF2BP2, KCNQ1, MTNR1B), insulin resistance

(PPARG), and abnormal utilization of glucose (GCK) [24,29–36].

Considering the lack of sufficient evidence about the effect of

candidate genes of T2D on GDM and the discrepancy among

races [2,37], we aimed to determine whether the results derived

from other races are applicable to the Chinese population, or

whether different genetic background can cause different quanti-

tative traits related to GDM. Moreover, the replication performed

in multiple ethnicities did help to identify population specific risk

variants. In the study, we selected six genes, including CDKAL1,

IGF2BP2, MTNR1B, GCK, SRR and CDKN2A-CDKN2B, and tested

their association with GDM in Chinese pregnant women. The

results may provide additional insights to the mechanisms which

underlie the genetic variants associated with the risk of GDM.

Methods

Ethnic statement
Written informed consent was obtained from each participants,

and the study was approved by the Institutional Review Board of

Peking Union Medical College Hospital.

Study subjects
During the period of 2006 to 2010, we recruited a total of 1,764

participants of Chinese pregnant women residing in Beijing from

Peking Union Medical College Hospital. The pregnant women

without a previous diagnosis of glucose intolerance were routinely

screened for GDM between 24 and 28 weeks of gestation by two

procedures. First of all, a 50 g glucose challenge test (GCT) was

used as preliminary screening. It was considered as GCT negative

(GCT2) if the plasma glucose concentration was less than

7.8 mmol/l after glucose intake 1 hour. Otherwise, diagnosed as

GCT positive (GCT+). The pregnant women of GCT+ were then

given a 100 g oral glucose tolerance test (OGTT). Diagnosis of

GDM was based on the criteria as set by the American Diabetes

Association [38]. The glucose threshold values were as follow:

fasting 5.3 mmol/l, 1 h 10.0 mmol/l, 2 h 8.6 mmol/l and 3 h

7.8 mmol/l. A diagnosis of GDM was made if 2 or more of the

glucose values met or exceeded the threshold value. Normal

glucose tolerance (NGT) was diagnosed when all plasma glucose

values were below the threshold values. Based on the above

criteria, 725 subjects with GDM, 641 with NGT, and 275 GCT2

participants were recruited to the study. The NGT and GCT2

groups were taken as controls.

Clinical and biochemical data
Clinical and biochemical data of all subjects were collected at

24–28 weeks gestation. Clinical data included age, height, weight

at one year before pregnancy, systolic blood pressure and diastolic

blood pressure. The family history of T2D in each subject was also

recorded. Body mass index before gestation (pre-BMI) was

calculated as body weight (kg) divided by the square of height (m2).

Biochemical data consisted of fasting plasma glucose (FPG),

fasting plasma insulin (FPI), glycated hemoglobin, serum triacyl-

glycerol, total cholesterol, HDL-cholesterol, LDL-cholesterol, high

sensitivity C-reactive protein, white blood cell and platelet counts.

Homeostatic model assessment (HOMA) data and the area

under the curve (AUC) of insulin during a 100 g OGTT

performed at the time of GDM diagnosis were calculated to

assess insulin resistance and beta-cell function. Homeostasis model

assessment of insulin resistance (HOMA-IR) was calculated by

(FPI in mU/L6FPG in mmol/l)/22.5. Homeostasis model

assessment of beta-cell function (HOMA-B) was calculated by

(FPI in mU/L620)/(FPG in mmol/l23.5) as previously reported

[39]. Another assessment index of beta-cell function, the AUC of

insulin at 3 hour was evaluated according to the trapezoid

method: V1+V2+0.5*V0+0.5*V3, where V is the insulin concen-

tration at the indicated time [40].

SNP selection, Genotyping and Genotype quality control
The loci previously reported to be associated with type 2

diabetes at a genome-wide significance level were selected,

including IGF2BP2 (rs4402960), SRR (rs391300), MTNR1B

(rs10830963) and CDKAL1 (rs7754840). Another two represen-

tative SNPs (rs2383208 in CDKN2A–CDKN2B and rs4607517

in GCK) that were in the strong linkage disequilibrium with

rs10811661 (D9 = 0.931, r2 = 0.847) and rs1799884 (D9 = 0.961,

r2 = 0.924), respectively, were also selected [24,41]. Genotyping

was performed using Taqman allelic discrimination assays.

The quality value was set as 95% during data analysis using the

Sequence Detection System version 2.4 software (Applied

Biosystems). Genotyping quality control was performed in

10% of the samples by duplicate checking (rate of concordance

in duplicates .99%). Genotyping success rate was similar for

women with gestational diabetes mellitus and for control

subjects. The genotyping call success rates were 98.1%,

98.5%, 97.7%, 97.3%, 94.6% and 98.0% for rs4402960,

rs2383208, rs4607517, rs7754840, rs391300 and rs10830963,

respectively.

Statistical analysis
The quantitative variable with normal distribution (platelet

count) was given as mean 6 standard deviation (SD), and

quantitative variables with non-normal distribution were given as

medians and interquartile range. The continuous data (HOMA-B,

HOMA-IR, AUC of insulin, total cholesterol, triacylglycerol, and

HDL-cholesterol) were log-transformed to approximate normal

distributions. Quantitative data with normal distribution or log-

transformed variables were analyzed by student’s t test. Nonpara-

metric tests were performed to analyze the other variables.

The chi-square tests were used to determine whether individual

polymorphism was in Hardy–Weinberg equilibrium. Genotypes

were given codes of 0, 1 and 2, and the odds ratio (OR) was

expressed per difference in the number of risk alleles. A multiple

logistic regression model was used to investigate the individual

effect of these genes on GDM. These analyses were based on

additive, recessive and dominant models, and adjusted for age and

the family history of type 2 diabetes. The ORs with 95%

confidence intervals (CIs) were presented. Multiple linear

regression models with adjustment for age were also applied to

analyze these quantitative traits, and the regression coefficients (b)

were presented. A two-sided p value ,0.05 was considered

statistically significant. The statistical analyses were performed

using SPSS 11.0 (SPSS Inc, Chicago, IL, USA).

The following assumptions were made for the power calcula-

tion: a prevalence of GDM equal to 3%, a high-risk allele

frequency of 0.20, and an effect size of 1.3. By studying a sample of

725 cases and 1039 controls, our present study had more than

80% power, under a multiplicative model, with a type I error rate

of 0.05. When the predisposing allele frequency was .30%, the

study had at least 80% power to detect an OR of 1.22 under a

multiplicative model. Power calculations were performed using the

Genetic Power Calculator, available at http://ibgwww.colorado.

edu/,pshaun/gpc/.

Genetic Effect of Gestational Diabetes Mellitus
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Results

Clinical and biochemical parameters
The clinical and biochemical parameters of the control and

GDM groups were presented in Table 1. Mean age, systolic and

diastolic blood pressure, FPG, FPI, glycated hemoglobin protein,

serum triacylglycerol, high sensitivity C-reactive protein, white

blood cell and platelet counts were significantly higher in the

GDM group than controls (p,0.001), whereas pre-BMI was

similar in both groups (p = 0.086). In addition, women with GDM

displayed higher HOMA-IR, lower HOMA-B and higher AUC of

insulin (p,0.001).

Genotype and allele analysis
All single nucleotide polymorphisms were in Hardy–Weinberg

equilibrium. We first examined the potential effects of the six

different SNPs on GDM susceptibility in our Chinese case-control

samples. The results were shown in Table 2. We discovered that

GDM was associated with rs2383208 (OR = 1.242, 95%

CI = 1.077–1.432, p = 0.003), rs4402960 (OR = 1.207, 95%

CI = 1.029–1.417, p = 0.021) and rs391300 (OR = 1.202, 95%

CI = 1.020–1.416, p = 0.028). Compared with wild-type carriers,

homozygous harboring the risk alleles of rs4402960, rs2383208

and rs391300 had a 1.498-fold (95%CI = 1.002–2.240, p = 0.049),

a 1.532-fold (95% CI = 1.140–2.060, p = 0.005) and a 1.856-fold

(95%CI = 1.236–2.789, p = 0.003) increased risk of gestational

diabetes mellitus, respectively. In addition, the effect size was

greater under a recessive model in rs391300 (OR = 1.802,

95%CI = 1.226–2.701, p = 0.003) and it changed slightly under a

dominant model in rs4402960 (OR = 1.232, 95%CI = 1.008–

1.507, p = 0.042). The relation between other SNPs (rs7754840,

rs10830963 and rs4607517) and GDM was not observed.

Subsequently we tested the joint effects of risk alleles of

susceptible loci on GDM to investigate if these loci affected the

disease additively. Here we just selected SNPs with p values less

than 0.05 (rs4402960, rs2383208 and rs391300) and calculated the

joint effects by summing up the number of risk alleles for each

participant who had the genotyping information of all these three

SNPs. We found that the proportion of women with GDM

increased in the subgroups with more risk alleles, the subgroups

carrying more risk alleles had a significantly higher risk for GDM,

with each additional risk allele increased GDM risk by 1.196-fold

(95%CI = 1.092–1.309, P = 1.0861024). Moreover, the subjects

who harbor 4, 5 and 6 risk alleles have a 2.008-fold (p = 0.011),

5.576-fold (p = 3.3161024) and 9.717-fold (p = 0.047) increasing

in the odds of developing GDM as compared to individuals

without any risk alleles, respectively. All the analysis was based on

the adjustment for age and the family history of T2D.

FPG, HOMA-B, HOMA-IR and AUC of insulin
We analyzed the association between each SNP and quantita-

tive traits in the research (as shown in table 3). The risk allele of

rs10830963, rs2383208 and rs391300 showed association with

increased FPG (p = 0.019, p = 0.034, p = 0.028, respectively). We

further observed that these variants exerted combined effects on

FPG, with a mean 0.087 mmol/L increase per risk allele

(95%CI = 0.011–0.084, p = 0.012).

We also obtained homeostatic model assessment data for beta-

cell function and insulin resistance (HOMA-B and HOMA-IR,

respectively) in both groups. The loci, rs4402960 and rs10830963,

were statistically associated with HOMA-B (p = 0.046, p = 0.001,

respectively). For rs2383208, we found that carriers of genotype-

AA showed lower level of HOMA-B (p = 0.002, the result was not

listed in table 3). The significance remained in the recessive model

Table 1. Clinical characteristics of the study participants.

Controls (n = 1039) GDM (n = 725) P value

Age (years) 30.00 (28.00, 33.00) 32.00 (30.00, 35.00) ,0.001

Pre-BMI (kg/m2) 21.48 (19.57, 23.62) 21.72 (19.89, 24.04) 0.086

Systolic blood pressure (mmHg) 110.00 (102.00, 120.00) 114.00 (107.00,123.00) ,0.001

Diastolic blood pressure (mmHg) 67.00 (61.00, 73.00) 70.00 (63.00, 76.00) ,0.001

Fasting plasma glucose (mmol/l) 4.50 (4.30, 4.70) 4.80 (4.50, 5.20) ,0.001

Fasting plasma insulin (mU/l) 6.10 (4.33, 8.90) 7.60 (5.20, 11.30) ,0.001

Glycated hemoglobin protein (%) 5.20 (5.00, 5.30) 5.40 (5.20, 5.70) ,0.001

HOMA-B 131.43 (91.67, 191.11) 115.56 (81.13, 177.05) 0.019

HOMA-IR 1.20 (0.84, 1.80) 1.64 (1.08, 2.59) ,0.001

AUC of insulin during 100 g OGTT at the time of diagnosis of GDM (mU l216h) 156.28 (108.28,218.50) 198.90 (141.38,285.51) ,0.001

White blood cell count (*1012/l) 8.86 (7.62, 10.2) 9.40 (8.14, 10.82) ,0.001

Platelet count (*109/l) 225.70650.21 240.91653.51 ,0.001

High sensitivity C-reactive protein (mg/l) 2.19 (1.33, 4.36) 3.24 (1.75, 5.80) ,0.001

Total cholesterol (mmol/l) 6.10 (5.43, 6.74) 6.06 (5.29, 6.72) ,0.001

Triacylglycerol (mmol/l) 2.21 (1.81, 2.74) 2.54 (2.01, 3.19) ,0.001

HDL-cholesterol (mmol/l) 2.10 (1.81, 2.38) 1.99 (1.73, 2.28) ,0.001

LDL-cholesterol (mmol/l) 3.37 (2.79, 3.94) 3.25 (2.68, 3.87) 0.007

Platelet count was the quantitative variable with normal distribution and was given as means 6 standard deviation.
Data was given as medians (interquartile range) for the quantitative variables with non-normal distribution.
Seven variables (platelet count, HOMA-B, HOMA-IR, AUC of insulin, total cholesterol, triacylglycerol and HDL-cholesterol) were log-transformed to approximate normal
distributions and were analyzed by student’s t test. The other variables in table 1 were analyzed using the nonparametric tests.
doi:10.1371/journal.pone.0026953.t001
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using the logistic regression analysis (p = 0.003). Further analyses

of the risk alleles (A-allele of rs4402960, A-allele of rs2383208 and

G-allele of rs10830963) confirmed their joint effects on HOMA-B

level (b = 20.108 unit per risk allele, 95%CI = 220.922,26.546,

p = 1.8661024). We just discovered that rs7754840 was signifi-

cantly correlated with AUC of insulin (b = 20.080 mU l216h per

risk allele, 95%CI = 220.836,23.337, p = 0.007). For HOMA-

IR, no significant association was detected.

Discussion

In the present study, we observed that some common variants

conferring susceptibility to type 2 diabetes mellitus may increase

the risk of GDM in pregnant Chinese women. The results also

confirmed that the polymorphism in SRR was associated with

GDM in the Chinese population for the first time.

IGF2BP2 rs4402960
Our results provided evidence that rs4402960 was a susceptible

gene locus for GDM in Chinese pregnant women (OR = 1.207,

95% CI = 1.029–1.417, p = 0.021). This result was similar to that

observed by a Korean GDM study (OR = 1.18, 95%CI = 1.01–

1.38, p = 0.034) [23], but differed from that of the Danish

(OR = 1.18, 95%CI = 0.97–1.42, p = 0.096) [24]. This discrepancy

might be attributed to racial differences [2,37]. A recent study

have showed an association between rs4402960 and T2DM in a

case-control sample living in Beijing (OR = 1.19, 95%CI = 1.04–

1.37, p = 0.009) [15]. The results of our study showed a similar

effect which further suggested that GDM may share the similar

genetic background with T2D.

It has been reported that the variants of IGF2BP2 can affect

first-phase insulin secretion and the disposition index [29]. In our

research we found that the subjects harboring the risk T allele of

rs4402960 showed a negative association with HOMA-B

(b = 20.057, p = 0.046) but not with HOMA-IR and fasting

glucose level. The results indicated that common variation in

IGF2BP2 mainly affected beta cell function rather than insulin

sensitivity or fasting glucose level. It confirmed a previous study in

women with GDM and in accordant with the dominant role of

beta cell dysfunction in GDM [42,43].

CDKN2A-CDKN2B rs2383208
We found that rs2383208, a variant at the same LD block with

rs10811661 [24], was a risk locus for GDM in Chinese population

(OR = 1.242, 95% CI = 1.077–1.432, p = 0.003). The finding was

consistent with the previous study on Korean GDM women [23],

though the OR in our study was a little lower than that in their

research. On the other hand, a lack of association at rs10811661 in

Danish women with previous GDM was observed, partly due to a

lower effect size (OR = 1.12, 95%CI = 0.87–1.45, p = 0.39) [24].

Table 2. Genotype and allele distributions and corresponding odds ratios for gestational diabetes mellitus.

SNP (Gene)
Genotype or
risk allele

GDM
Number (%)

Controls
Number (%)

Additive model p
value, and OR (95% CI)

Dominant model p
value and OR (95% CI)

Recessive model p
value and OR (95% CI)

rs4402960 (IGF2BP2) TT 56 (7.9) 59 (5.8) 0.049; 1.498 (1.002–2.240) 0.042 1.232(1.008–1.507) 0.095 0.398(0.943–2.072)

GT 278 (39.4) 361 (35.2) 0.108; 1.189 (0.963–1.469)

GG 371 (52.6) 605 (59.0) 1

T 390 (27.7) 479 (23.4) 0.021; 1.207(1.029–1.417)

rs2383208 (CDKN2A2B) AA 280(39.1) 330 (32.3) 0.005; 1.532 (1.140–2.060) 0.008 0.754(0.613–0.928) 0.031 0.744(0.569–0.973)

AG 328(45.7) 497 (48.7) 0.177; 1.217 (0.915–1.619)

GG 109(15.2) 194 (19.0) 1

A 888(61.9) 1157(56.7) 0.003; 1.242(1.077–1.432)

rs391300 (SRR) TT 58 (8.8) 55 (5.5) 0.003; 1.856(1.236–2.789) 0.229 1.133(0.924–1.389) 0.003 1.820(1.226–2.701)

CT 283 (42.7) 431 (42.8) 1.044; 0.689(0.844–1.292)

CC 321(48.5) 520 (51.7) 1

T 399 (30.1) 541 (26.9) 0.028; 1.202(1.020–1.416)

rs10830963 (MTNR1B) GG 137(19.6) 191 (18.6) 0.189; 1.215(0.909–1.626) 0.119 1.190(0.956–1.481) 0.476 1.096(0.852–1.411)

CG 364(52.0) 509 (49.5) 0.159; 1.180(0.937–1.478)

CC 199(28.4) 329 (32.0) 1

G 638(45.6) 891(43.3) 0.152; 1.111 (0.962–1.282)

rs4607517 (GCK) AA 37 (5.3) 49 (4.8) 0.602; 1.131(0.713–1.793) 0.850 1.020(0.832–1.251) 0.602 1.129(0.717–1.778)

AG 244(34.8) 356 (34.8) 0.965; 1.005(0.812–1.243)

GG 1420(59.9) 618 (60.4) 1

A 318(22.7) 454(22.2) 0.726; 1.031(0.870–1.221)

rs7754840 (CDKAL1) CC 159(22.8) 197 (19.3) 0.097; 1.274(0.957–1.695) 0.518 1.075(0.863–1.340) 0.055 1.273(0.995–1.627)

CG 339(48.6) 512 (50.2) 0.991; 1.001(0.793–1.695)

GG 199(28.6) 311 (30.5) 1

C 657(47.1) 906(44.4) 0.127; 1.117(0.969–1.289)

P values,0.05 were shown in bold; P values were adjusted for age and family history of type 2 diabetes (T2D) using the logistic regression analysis, but not corrected for
multiple comparisons.
doi:10.1371/journal.pone.0026953.t002
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Because the relation between CDKN2A-2B and beta cell function

has been widely reported in Western and Eastern populations

[30,44,45], we also determined the association between rs2383208

and beta cell function. However, we only found that carriers of

rs2383208 allele-A showed lower levels of HOMA-B, and lack

association with AUC of insulin. The discrepancy may be largely

caused by differences between the two indexes. The directly

measured insulin data rather than surrogate measures HOMA-B

and AUC of insulin may improve the specificity. In addition, our

finding that rs2383208 was associated with FPG and HOMA-B, to

some content, support the view that impaired beta cell function and

hyperglycemia likely share the same underlying pathogenic

mechanism [33,41]. Therefore, the risk allele of rs2383208 may

be associated with an increased risk of GDM primarily by regulating

the secretion of pancreatic beta cell and FPG.

SRR rs391300
SRR rs391300 was originally identified as genetic determinants

of type 2 diabetes by GWA studies on Han Chinese in 2009 [16].

In our study, we detected its association with GDM in Chinese

population and found a nominal role of this variant on the risk of

GDM (OR = 1.202, 95%CI = 1.020–1.416, p = 0.028). In addi-

tion, we discovered that risk allele-T of rs391300 showed

association with FPG (b = 0.059 mmol/L per allele, p = 0.028)

but not with beta cell function or insulin resistance. All these

findings indicated that SRR variant may affected the incidence of

GDM by modulating the secretion of insulin and/or glucagon as

reported previously [16].

MTNR1B rs10830963
We observed that rs10830963 was not associated with GDM in

Chinese women. However, we found that this variant showed

moderate association with HOMA-B (b = 20.096, p = 0.001) and

FPG (b = 0.062, p = 0.019). Previous studies indicated that the

MTNR1B variants were significantly associated with increased

fraction of glycated hemoglobin and reduced beta-cell function

(HOMA-B), and not related to fasting insulin level or insulin

sensitivity [46,47]. One possible explanation was that MTNR1B

may down regulate GCK expression and glucose-stimulated

insulin secretion by lowering intracellular cAMP level

[33,48,49]. Another study also demonstrated that rs10830963

was associated with GDM by affecting islet beta cell function and

fasting glucose level [25]. In our study, carriers of the risk allele G

of rs10830963 showed a lower value of HOMA-B and higher level

of FPG. Our finding in the subpopulation further emphasized the

importance of rs10830963 for beta-cell function and FPG.

GCK rs4607517
A study in Scandinavian women showed rs1799884 in GCK was

a candidate locus for GDM [22]. We did not find the similar

association between rs4607517 and GDM in our study though the

rs4607517 and rs1799884 exhibited strong linkage disequilibrium

[41]. Furthermore, we did not find the correlation between

rs4607517 and quantitative traits (FPG and HOMA-B) as reported

previously [33,41,47]. One possible explanation for this contrast-

ing result may be attributed to how much GCK rs4607517 affected

these traits. In our study, the effect size of rs4607517 on FPG

(0.04 mmol/l) was a little smaller than that of the other three SNPs

(0.055–0.062 mmol/l FPG per allele) and than that of rs4607517

in previous study (0.06 mmol/l per allele) [47].

CDKAL1 rs7754840
CDKAL1 was originally recognized as a candidate gene for

T2DM by several GWAS [6,7,10,11,13]. The rs7754840 in

Table 3. Associations between risk alleles and FPG, insulin beta cell function and insulin resistance.

SNP
Effect allele*/
other allele FPG (mmol/L) HOMA-B

AUC of insulin during 100 g
OGTT at the time of diagnosis
of GDM (mU h6L21) HOMA-IR

rs4402960 T/G b 0.033 20.057 20.006 20.027

95%CI 20.017,0.076 222.787,20.211 211.175,8.940 20.212,0.074

P 0.214 0.046 0.828 0.345

rs2383208 A/G b 0.055 20.085 20.005 0.005

95%CI 0.003,0.085 258.160,212.101 29.597,7.935 20.113,0.135

P 0.034 0.003* 0.852 0.862

rs391300 T/C b 0.059 0.002 0.020 0.017

95%CI 0.006,0.100 213.872,15.133 26.791,13.633 20.101,0.188

P 0.028 0.085 0.511 0.555

rs10830963 G/C b 0.062 20.096 20.016 20.020

95%CI 0.008,0.091 233.989,29.013 211.509,6.485 20.170,0.079

P 0.019 0.001 0.584 0.476

rs4607517 A/G b 0.040 0.010 0.007 0.017

95%CI 20.011,0.087 212.130,17.193 29.216,11.916 20.104,0.194

P 0.127 0.735 0.802 0.554

rs7754840 C/G b 0.046 20.019 20.080 0.000

95%CI 20.005,0.078 216.663,8.285 220.836,23.337 20.126,0.126

P 0.081 0.510 0.007 0.997

P values,0.05 were shown in bold. P values were adjusted for age but not corrected for multiple comparisons.
Log transformed (log10) values were used for HOMA-B, HOMA-IR and AUC of insulin during 100 g OGTT at the time of diagnosis of GDM.
doi:10.1371/journal.pone.0026953.t003
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CDKAL1 was associated with T2DM in the Chinese population

(OR = 1.127, 95%CI = 1.027–1.238, P = 0.0119) [17]. Recent

studies have indicated that the variation in CDKAL1 involved in

the pathogenesis of GDM with an OR range from 1.22 to 1.55

[23,24]. Unfortunately, we did not find the relation between

rs7754840 and GDM in our study. A relatively lower effect

(OR = 1.117, 95%CI = 0.969–1.289, p = 0.127) might result in this

inconsistent conclusion. Previous study indicated that CDKAL1

probably plays a role in the regulation of insulin secretion, even

under glucotoxic conditions [24,35,36]. In the study, we found

that rs7754840 showed significant association with insulin AUC

(b = 20.080 mU l216h, p = 0.007), which was consistent with a

Korean study [23] and further indicated the role of CDKAL1

variants on beta cell function.

Combined genetic risk of GDM
Individuals carrying more risk alleles had a higher risk of type 2

diabetes [17,34]. This additive effect of the variants on GDM with

an OR of 1.18 per risk allele (95% CI = 1.10–1.27, P = 3.261026)

was also observed by Lauenborg [24]. In our study, subjects who

harbor more than 4 risk alleles have at least a 2.008-fold increase

for developing GDM as compared with individuals who did not

carry any risk alleles. Similarly, the combined effects of the SNPs

on HOMA-B and FPG were much obvious in contrast to the

effects of single SNP as described in our research. These results

support the finding of an additive effect of the type 2 diabetes risk

alleles on the risk for GDM.

There are some limitations in the present study. First, although

the study included 725 women with GDM and 1039 controls, the

statistical power of the sample was not large enough to detect a

weak effect size (OR,1.2). As a result, some associations may have

been overlooked. Second, it was not confirmed whether all of the

subjects in the control group had experienced pregnancy without

GDM. In our study population, there were 271 GCT (2) women

who were not given the 100 g OGTT after a 50 g glucose

challenge test. However, the effects of this overlook on our

interpretation of the results should be minimal because the

prevalence of GDM in GCT (2) pregnant women was estimated

to be very low [50].

Our study demonstrated that several previously proven type 2

diabetes risk alleles were associated with GDM in pregnant

Chinese women. The study also provided evidence of the strong

genetic background for the development of GDM in a multi-

genetic manner. Compared to women who did not harbor any risk

allele, women carrying at least five or more risk alleles had a

higher risk of developing GDM. The effects of these SNPs on

GDM may be through the impairment of beta cell function.

Further studies are required to assess the relationship between

these polymorphisms and GDM in other ethnicities.
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