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Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy, with

varying prognosis after the gold standard rituximab, cyclophosphamide, doxorubicin,

vincristine, and prednisone (R-CHOP). Several prognostic models have been established

by focusing primarily on characteristics of lymphoma cells themselves, including

cell-of-origin (COO), genomic alterations, and gene/protein expressions. However, the

prognostic impact of the lymphoma microenvironment and its association with

characteristics of lymphoma cells are not fully understood. Using the nCounter-based

gene expression profiling of untreated DLBCL tissues, we assess the clinical impact of

lymphoma microenvironment on the clinical outcomes and pathophysiological, molecular

signatures in DLBCL. The presence of normal germinal center (GC)-microenvironmental

cells, including follicular T cells, macrophage/dendritic cells, and stromal cells in

lymphoma tissue indicates a positive therapeutic response. Our prognostic model, based

on quantitation of transcripts from distinct GC-microenvironmental cell markers, clearly

identified patients with graded prognosis independently of existing prognostic models.

We observed increased incidences of genomic alterations and aberrant gene expression

associated with poor prognosis in DLBCL tissues lacking GC-microenvironmental cells

relative to those containing these cells. These data suggest that the loss of GC-associated

microenvironmental signature dictates clinical outcomes of DLBCL patients reflecting the

accumulation of “unfavorable” molecular signatures.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of B-cell non-Hodgkin lymphomas
(NHL) with heterogeneous clinicopathologic features. By performing global gene expression profiling
(GEP), Alizadeh et al have grouped DLBCL cases into 2 subtypes based on the cell-of-origin (COO) of
lymphoma cells. The germinal center B-cell-like (GCB) type exhibits the signature of B cells in the germi-
nal center (GC) of normal secondary lymphoid organs, while lymphoma cells of the activated B-cell
(ABC)-like type resemble post-GC B cells that transit from the GC for plasmacytic differentiation.1

Among DLBCL patients treated with multiagent chemotherapy consisting of cyclophosphamide, doxoru-
bicin, vincristine, and prednisone (CHOP), patients with ABC-type disease generally show significantly
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worse prognosis than do those with GCB-type disease.1 Other
groups have proposed immunohistochemistry (IHC)-based algorithms
for formalin-fixed paraffin-embedded (FFPE) tissues that recapitulate
microarray-based COO classification (eg, Hans’ criteria).2,3 In clinical
trials of patients undergoing R-CHOP (CHOP plus rituximab) regi-
mens, IHC-based COO criteria have minimal prognostic power, pre-
sumably due to discordance between IHC-based classification and
microarray-based “original” classification.4-8 Given that R-CHOP
remains the gold standard after numerous attempts for improvement,
such as intensification of rituximab or CHOP, the introduction of next-
generation anti-CD20 antibodies, and addition of novel therapeutic
agents (eg, proteasome inhibitor),9 the accurate stratification model
is still in demand, which could predict clinical outcomes after
R-CHOP.

A recent large-scale genomic study of .1,000 DLBCL patients
revealed the mutational heterogeneity of DLBCL and concluded that
the best performing predictive model could only be achieved by
combining the DNA- and RNA-risk models.10 Currently, the Interna-
tional Prognostic Index (IPI) remains the most reliable predictive
model, although it is based solely on clinical variables and patient
status. Thus, a more accurate prognostic model, one that compre-
hensively reflects DLBCL pathophysiology and helps physicians in
therapeutic decision-making, is still needed.

As naïve B cells develop into antibody-secreting plasma cells in
lymph nodes (LNs), they undergo stage-specific genome editing
activities to generate variable immunoglobulins. Although required
for immune cell diversity, this process predisposes B cells to trans-
formation if the editing machinery is hijacked.11 Dynamic B-cell
development processes in the GC are controlled by cell-intrinsic
activities and surrounding microenvironmental cells, including follicu-
lar T cells, stromal cells, dendritic cells (DCs), and macrophages.
Microenvironmental cells are, in fact, necessary for GC formation
and are recruited from the periphery in response to normal immune
signals that govern GC formation.12,13 These observations suggest
that the tumor microenvironment may play a role in DLBCL patho-
genesis, originating from GC or post-GC B cells.

In the present study, we sought to identify prognostic factors
through global GEP in clinical samples and demonstrated that
microenvironment-related genes were tightly associated with clinical
outcomes of DLBCL. We revealed characteristics of prognostic
microenvironmental components, their prognostic impact, and, more-
over, their correlation with molecular signatures of lymphoma cells.

Methods

Clinical data collection

We retrospectively collected 280 de novo DLBCL cases (30, 170,
and 80 cases for pilot, training, and validation cohort, respectively),
which were newly diagnosed by 2 or more experienced hematopa-
thologists in the Kurume University Pathology Department from
2006 to 2013, based on the 2008 WHO classification of lymphoid
neoplasms. Our cohorts include the high-grade B-cell lymphoma
with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/TH
in the 2017 WHO classification14) with DLBCL morphology, while
the high-grade B-cell lymphoma, not otherwise specified (HGBL-
NOS14), which replaced the 2008 category of B-cell lymphoma,
unclassifiable, with features intermediate between DLBCL and Bur-
kitt lymphoma (BCLU), were excluded. The use of materials and

clinical information was approved by the Research Ethics Commit-
tee of Kurume University following the Helsinki Declaration. FFPE
samples, which were collected with clinical data, were anonymized
before shipping to Kyushu University. The present study was
approved by the institutional ethics committee of the Kyushu Univer-
sity Graduate School of Medical Sciences.

GEP using nCounter system

To determine gene expression levels, 300 ng total RNA from DLBCL
FFPE samples was analyzed using the nCounter system (NanoString
Technologies, Seattle, WA). We used a nCounter Customer Assay
Evaluation (CAE) kit to evaluate data reproducibility (supplemental
Figure 1A). We used PanCancer Pathways, Immunology, and Kinase
panels to extract candidate prognostic genes in the screening cohort.
To validate the results of the screening, we used a custom gene set
(NanoString Technologies) consisting of 447 genes. Detailed infor-
mation about sample preparation and assay procedure is provided in
the section with the same name in the supplemental Methods. The
Gene Ontology (GO) enrichment analysis was performed using the
Metascape web application (http://metascape.org).15

Multiplexed fluorescent immunostaining

Imaging analyses were performed using the Opal multiplex tissue
staining system and the Mantra quantitative pathology workstation
(PerkinElmer, Waltham, MA). Slides from biopsied tumor tissues were
stained using an Opal multiplex tissue staining system (PerkinElmer,
Waltham, MA). Antigen retrieval was performed by heating slides to
93 6 2�C for 20 minutes in a high-pH antigen unmasking solution
(H-3301, Vector Labs, Burlingame, CA), followed by blocking in 5%
bovine serum albumin (BSA) (Jackson ImmunoResearch, Birmingham,
AL) in phosphate-buffered saline (PBS). Cell phenotyping and count-
ing were performed using the Mantra quantitative pathology worksta-
tion (PerkinElmer) within representative fields preselected by trained
hematopathologists. Spatial distribution and marker intensity in target
cells were analyzed using inFormVR image analysis (PerkinElmer) and
Spotfire (TIBCO Software, Palo Alto, CA) software.

Survival analysis

Data relevant to the observation period and survival and disease status
at the last observation was available for all study patients. Overall sur-
vival (OS) was defined as the time from diagnosis to the last follow-up
or death, and disease-free survival (DFS) was defined as the time
from diagnosis to any recurrence or death. The cutoff values of gene
expression levels were determined as the optimal value for predicting
relapse or death events using the maximally selected rank statistics of
the ‘maxstat’ R package.16

Survival probability was estimated using the Kaplan-Meier method,
and P values were determined by log-rank test. Univariate or multi-
variate analysis using a Cox proportional hazards model was used
to assess the predictive value of DLBCL Microenvironment Signa-
ture (DMS) scores, as defined by gene expression analysis.

Calculation of the DMS score

The DMS score was calculated based on the expression levels of
3 representative microenvironment genes (ICOS, CD11c, and
FGFR1). To call positive (point 5 1) or negative (point 5 0) for
each gene, cutoff values were defined using the ‘maxstat’ R pack-
age.16 The DMS score was determined as a sum of points from
each gene (0 to 3 points).
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Mutation analysis

Among 170 cases in the training cohort, we randomly selected
patients for mutational analysis and evaluated 120 FFPE-derived
DNA samples. Genomic DNA was extracted using a QIAamp DNA
FFPE Tissue Kit (QIAGEN) based on the manufacturer’s instruc-
tions. Then, we undertook massively parallel sequencing using a
solution-phase SureSelect hybrid capture kit (Agilent Technologies,
Santa Clara, CA) and an HiSeq 2500 sequencer (Illumina). To
detect genomic aberrations/rearrangements in FFPE samples, we
used an OncoPanel assay (Brigham and Women’s Hospital) to eval-
uate exonic regions of 447 cancer genes and 191 regions across
60 genes.17 Among 120 cases, we analyzed data from 106 (14
samples were omitted due to insufficient data quality). Detailed infor-
mation about the library preparation, sequencing, and the bioinfor-
matic procedure is provided in the supplemental Methods.

Statistics

We used the Wilcoxon rank-sum test between 2 groups and the
Steel-Dwass test for multiple comparisons for nonparametric testing
to compare numerical data. Fisher’s exact test was used to compare
the categorical data among subgroups. Univariate or multivariate
analysis using a Cox proportional hazards model was used to
assess the predictive value of prognostic models. Statistical analy-
ses were performed using R (http://CRAN.R-project.org/) and JMP
Pro software (SAS Institute Inc., Cary, NC). In the GO analysis,
P values were adjusted using the Benjamini-Hochberg correction
algorithm described in the original article.15

Results

Transcriptome profiling of untreated DLBCL tissues

identifies prognostic genes

We collected 280 FFPE tissues from de novo DLBCL patients (30,
170, and 80 cases for pilot, training, and validation cohort, respec-
tively) (Figure 1A). Cases of relapsed or transformed disease were
excluded. All the patients had been treated with R-CHOP or
R-THPCOP (tetrahydropyranyladriamycin, cyclophosphamide, vincris-
tine, and prednisone).18,19 Median observation time for surviving
patients was 3.67 and 5.60 years, and the 3-year DFS rate was
66.3% and 65.0% in the training and validation cohorts, respectively.
Additional patient characteristics are provided in supplemental Table
1. To quantify fragmented mRNA in FFPE tissues, we employed the
nCounter system, which enables highly sensitive and accurate RNA
detection.20-22 First, we compared 2 replicated measurements of 48
representative genes (supplemental Table 2) with each other in an
FFPE sample. The result showed exceptionally high measurement
reproducibility, suggesting that this assay could detect RNAs
expressed in specimens, whether they are from lymphoma cells or
rare microenvironment components (supplemental Figure 1A).

We performed a pilot screen to identify genes correlated with spe-
cific patient outcomes by analyzing FFPE samples obtained at initial

diagnosis from 30 DLBCL patients: 15 showing favorable outcomes
(.4 years in remission) and 15 showing poor prognosis (primary
refractory or early relapse disease). We used commercially available
probe sets that included 1899 genes related to immunology, can-
cer, or kinase pathway panels (Figure 1A). This screen identified
204 genes with a statistically significant association with either
favorable or poor prognosis (q-value ,0.05, supplemental Figure
1B, supplemental Tables 3-5). More than half of candidate prognos-
tic genes were derived from the immunology panel, including many
T-cell-related genes, especially related to follicular T cells (supple-
mental Figure 1B). To cover the limitation in the number of genes
analyzed, we performed whole transcriptome analysis on the 30
samples of the pilot screen using RNA sequencing (RNA-seq) and
extracted an additional 51 differentially-expressed genes as candi-
date prognostic markers (supplemental Table 6). GO analysis
revealed that most prognostic genes were associated with immune
responses, while only 1 cell proliferation-related term was enriched,
suggesting that immune signature has a significant effect on DLBCL
clinical outcomes (Figure 1B). Transcript levels of each of the 12
genes (ICOS, CD80, CTLA4, EGR2, CD58, TRAF1, C1QBP,
IL21, CD40LG, FAS, MYC, and CD96) were identified as prognos-
tic factors both in nCounter and RNA-seq analyses (Figure 1A). We
added an additional 192 genes for reference and normalization:
COO-defining genes,23 reported prognostic genes, B-cell-associ-
ated genes, and microenvironmental cells-specific genes,24,25 and
designed a probe set containing a total of 447 genes for nCounter
analysis (supplemental Table 7).

We next applied a similar analysis to 170 DLBCL samples from
patients who had undergone R-CHOP-based regimens (Figure 1A).
Among these, tissue specimens came from LNs of 100 patients
and extranodal sites of 70 others (supplemental Figure 1C). The
scatterplot shown in Figure 1C depicts genes upregulated in speci-
mens representing poor (relapsed) vs favorable (disease-free) out-
comes. Among genes upregulated in patients with poor prognosis
(genes depicted in the right upper area in Figure 1C) were those
related to cell proliferation, including MYC and its targets:
FKBP4,26 SRM,27 and PAICS.28 All 4 of these genes were
expressed at high levels in DLBCL cell lines relative to normal LN
samples (supplemental Figure 2A). Kaplan-Meier curves of DFS
confirmed that high expression of each proliferation-associated
gene marks patients with poor prognosis with statistical significance
(P , .005, supplemental Figures 2B,C).

Immune microenvironment-related genes define

favorable prognosis in DLBCL

To our surprise, most genes in the analysis of 170 DLBCL samples
described above were identified as favorable prognostic factors
(Figure 1C, upper left box: P , .05 and log2[fold change] ,20.5).
These factors were again linked to immune-related GO terms, espe-
cially those related to T-B interactions (supplemental Figure 3A).
Of note, most favorable prognostic factors mark GC-related

Figure 1 (continued) Identification of predicting factors for DLBCL outcomes. (A) Schematic representation of overall study design. Thirty cases of newly diagnosed

DLBCL were recruited for a pilot screen using nCounter and RNA-seq methods, followed by analysis of 2 larger nCounter cohorts (training and validation cohort). (B) GO analysis

of candidate prognostic genes from the pilot screen, which was performed using the Metascape web application (http://metascape.org). Enriched GO terms are shown by ID,

category, and derived pilot cohort. Probabilities (adjusted P values) are depicted by color. Most prognostic genes were linked to immune-related terms, irrespective of source.

(C) A volcano plot indicates differentially expressed genes as favorable (left) and poor (right) prognostic factors in the training cohort. Most unfavorable indicators were cell

cycle-related (magenta). Note that many microenvironmental cell-related genes were associated with favorable prognoses. A Mann-Whitney U test (unpaired) with bootstrap

was performed to calculate P values.
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microenvironmental cells. Among them were ICOS, CXCL13,
CD40LG, PD-1, SH2D1A (SAP), IL2RB, IL21, and SLAMF1, all of
which are representative markers for CD41 follicular T cells and reg-
ulate B-cell development in the normal GC.12,13,29,30 In addition,

DC/macrophage- and interstitial stromal cells-associated genes
were identified as favorable prognostic markers (orange and purple
dots in Figure 1C). ITGAX, which encodes CD11c, and fibroblast
growth factor 1 (FGFR1) were the most significant prognostic
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genes among DC/macrophage- and stromal cell-related genes as
represented by the distance from the origin (Figure 1C). Of note,
both ITGAX and FGFR1 were also identified as statistically signifi-
cant genes in the pilot screen (supplemental Figure 1B, supplemen-
tal Tables 3-5). None of the above genes were expressed in
DLBCL cell lines (Figure 2A), strongly suggesting they derived from
nonlymphoma cells. Patients with DLBCL whose specimens show
expression of these microenvironmental cell-related transcripts
above the cutoff values (supplemental Figure 3B) exhibit a signifi-
cantly (P , .005) more favorable prognosis in DFS (Figure 2B) and
OS (supplemental Figure 3C).

Favorable prognostic genes derive from specific

lymphoma microenvironment cells

We next used multispectral fluorescence imaging to identify the ori-
gin of favorable prognostic genes in the DLBCL tissues. The infiltrat-
ing CD31 ICOS1 follicular T cells (double-stained by cyan and
green in Figure 3A, left) scattered around CD201 lymphoma cells
(red) in DLBCL tissues. Most CD31 T cells (green) express ICOS
protein (cyan) in disease-free cases, while not in relapsed cases.
Note that the frequencies of CD201 lymphoma B cells and overall
CD31 T cells were comparable between them. The number of follic-
ular T cells in tissues from disease-free patients exceeded that in tis-
sues from relapsed patients (P 5 .01, Figure 3A, right). Most
CD11c (cyan) positive cells coexpressed pan-macrophage marker
CD68 (yellow), but not CD3 or CD20, and exhibited a “dendritic”
morphology (Figure 3B). CD11c1 CD681 DC/macrophages were
also enriched in samples from disease-free patients (P 5 .02), while
CD681 DC/macrophages did not express CD11c in relapsed case.
In contrast, the expression of FGFR1, which is usually expressed by
interstitial fibroblast or stromal cells,31 did not merge with any
lineage-specific markers such as CD3, CD11c, CD20, or CD68,
suggesting that they are tertiary microenvironment components (Fig-
ure 3C). We also performed multispectral imaging in normal second
lymphoid tissues to assess ICOS, CD11c, and FGFR1 protein lev-
els. Interestingly, all 3 proteins were expressed reactive LNs, prefer-
entially in the GC region, but not in steady-state B-cell follicles
(Figure 3D, supplemental Figure 3D). Overall, these observations
support the idea that the presence in DLBCL specimens of specific
microenvironmental cells seen in the normal GC is associated with
favorable clinical outcome.12,32

Immune microenvironmental signature dictates

DLBCL prognosis independently of existing

stratification models

ICOS, CD11c, or FGFR1 mRNAs were the top-ranked predictors of
favorable prognosis with the significant statistical power and fold-

changes (Figure 1C) and also with the smallest P values in the
log-rank test (Figure 2B) and were representative of 3 different
microenvironment components: follicular T cells, DC/macrophages,
and stromal cells, respectively. Thus, we developed a simple scoring
system based on the expression status of GC-associated microenvi-
ronmental signature that we call DMS. The DMS score was calcu-
lated based on ICOS, CD11c, and FGFR1 expression level of the
tissue, as described in the supplemental Methods (Figure 4A). We
then constructed Kaplan-Meier curves for DFS of patients segre-
gated by DMS score (Figure 4B). Patients with DMS scores of 3, 2,
1, and 0 points exhibited statistically significant differences in proba-
bility of 3-year DFS survival of 0.903 (P 5 1.2e-10, 95% confidence
interval [CI], 0.818-0.998), 0.807 (95% CI, 0.710-0.917), 0.514
(95% CI, 0.375-0.703), and 0.246 (95% CI, 0.131-0.462), respec-
tively. These significant differences were evident even among
patients with extranodal tissues where microenvironmental cells must
migrate (P 5 2.1e-5, Figure 4C). The DMS score also predicted OS
in nodal and extranodal cases (supplemental Figure 4A). Patients of
GCB or non-GCB types based on the Hans COO classification
were distributed equally among different DMS scores (P 5 .6627,
Figure 4D, left). In contrast, based on Lymph2Cx analysis, which is a
refined COO model based on the nCounter assay,23 GCB and
ABC types more frequently corresponded to DMS-high and DMS-
low cases, respectively (Figure 4E, left). Importantly, the DMS score
could stratify patients with different prognoses within each COO
type (Figure 4D,E), suggesting that the DMS score is a prognostic
indicator independent of COO. Patients with high or low IPI were
also distributed equally into groups with different DMS scores (P 5
.0548). In both IPI low and high groups, higher DMS scores marked
patients with better outcomes (P 5 6.5e-3 and 2.1e-4, Figure 4F).
Importantly, the DMS score could extract patients with favorable
prognoses even in the high IPI group. Furthermore, while patients
who received R-THPCOP showed an inferior overall survival than
those treated with R-CHOP (supplemental Figure 4B), the DMS
score successfully stratified patients’ clinical outcomes regardless of
the therapeutic regimen used (supplemental Figure 4C).

The independent cohorts validate the prognostic

impact of DMS

We next validated the prognostic value of the DMS score using an
independent cohort of 80 de novo DLBCL cases (Figure 1A, sup-
plemental Table 1). As expected, the DMS scores defined by the
same cutoff values as the training cohort successfully delineated
clinical outcomes of patients receiving R-CHOP therapy: patients
with different DMS scores exhibited statistically significant differ-
ences in the probability of DFS (P 5 2.1e-5, Figure 5A) and OS
(P 5 2.1e-5, Figure 5B). Multivariate analysis revealed that the
DMS score is a prognostic indicator independent of IPI criteria and

Figure 3 (continued) Identification of microenvironmental cell subtypes by single-cell expression profiling and imaging analysis. (A) Left, detection of

follicular T (Tf) cells in DLBCL tissue based on indicated markers using multiplexed immunofluorescence imaging analysis and the Mantra system. Representative images taken

from 10 patient samples analyzed are shown. We assigned each fluorescent signal to the preset pseudocolor (CD20: red; CD3: green; ICOS: cyan). Most CD31 T cells (green)

express ICOS protein (cyan) in disease-free cases, while not in relapsed cases. Note that the frequencies of CD201 lymphoma B cells (red) and overall CD31 T cells (green)

were comparable between them. Right, Box and Whisker plot (dots indicate outliers) shows frequency of ICOS1 Tf cells, which were digitally counted in 5 fields. P values were

calculated using the Wilcoxon rank-sum test. (B) Left, comparable imaging identified CD681 DCs/macrophages (yellow) expressed CD11c (cyan) in favorable prognostic case.

Note that CD681 DC/macrophages (yellow) did not express CD11c in relapsed cases. Right, the proportion of CD11c1 CD681 cells among total cells in 5 fields, shown as a

Box and Whisker plot (dots indicate outliers), in relapsed vs disease-free cases, as calculated by the Wilcoxon rank-sum test. (C) Characterization of FGFR11 cells (purple) based

on staining with the lineage-specific markers CD3 (T cells), CD68 (DC/macrophages), and CD20 (B cells). (D) Multispectral imaging shows steady-state LN (upper) and reactive

LN (lower) specimens stained with indicated markers. ICOS, CD11c, and FGFR1 are enriched during GC formation.
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Lymph2Cx (P 5 .0283, supplemental Table 8). We also validated
the DMS score using publicly available RNA-seq datasets from 2
large studies that analyzed GEP and mutation profiling, composed
of 229 and 604 DLBCL cases (Figure 1A).10,33 Patients with

DLBCL whose specimens showed high expression of DMS-related
transcripts exhibited a significantly better prognosis (supplemental
Figure 5A,B). As expected, DMS scores, which were calculated
using RNA-seq data values, stratified patients’ clinical outcomes in
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Figure 4 (continued) Clinical impact of DLBCL microenvironment-based stratification model. (A) Schematic representation showing the scoring system used to

calculate DMS score. (B) Kaplan-Meier DFS curve based on DMS score. (C-F) Mosaic plots showing correlation of DMS score with disease site and canonical prognostic

models: (C) disease site (n 5 170), (D) Hans criteria (n 5 160), (E) Lymph2Cx (n 5 170), (F) IPI score (n 5 152). The correlation was calculated using the Fisher's exact

test. DMS-low cases were enriched in ABC-type DLBCL, based on Lymph2Cx, and vice versa, but we observed no correlation with Hans criteria or IPI score. Shown are

Kaplan-Meier DFS curves based on disease site, Hans criteria, Lymph2Cx (31 unclassified cases were excluded), and IPI in all cases and by DMS score in each subgroup.

The DMS score had prognostic value in all subtypes, based on these classifications. A log-rank test was used for survival analysis.
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both cohorts (P 5 8.9e-11 and 3.5e-7, Figure 5C,D). Of note, cut-
off values were determined using maximally selected rank statistics
(supplemental Figures 5C,D).16 The DMS score appeared to be
independent of genetically defined prognostic factors identified by
these original studies: low (0 pt) and high (3 pt) DMS scores were
highly predictive in most subgroups (supplemental Figure 5E,F). Of
note, the DMS score stratified the “genetically unclassifiable group,”
which consists of more than 50% of reported cases33 into clinically
distinct subgroups (P 5 .0026, supplemental Figure 5E). Further-
more, multivariate analysis revealed independence of the DMS score
from these prognostic factors (P 5 2.18e-4 and 1.26e-4, supple-
mental Tables 9 and 10). To assess potential overfitting in our
model, we next applied a cruder method (median-based cutoff cal-
culation) to define more optimized scores. Importantly, the optimized
DMS scores also stratified patients’ clinical outcomes, attesting to
the validity of our model (supplemental Figure 5G,H). We next

assessed the impact of adding MYC, an anticorrelated gene (Figure
1C), to the DMS scoring system. While the overall trend did not sig-
nificantly change, the addition of MYC further stratified the cases
with low DMS scores (supplemental Figure 5I,J).

Multiomics analysis reveals molecular background

for the prognostic impact of DMS

Finally, we tried to understand the molecular backgrounds for the
predictive power of the DMS. For this purpose, we evaluated single
nucleotide variants (SNVs), short insertion/deletions (indels), and
copy number alterations (CNAs) in 106 DLBCL specimens from
the training cohort and investigated the correlation between the
DMS score and the genetic alterations serving as lymphoma cell
hallmarks. The most frequently mutated gene was KMT2D (MLL2),
followed by PIM1, BCL6, BCL2, CDKN2A, and TP53 (supplemen-
tal Figure 6A,B), in agreement with previous reports by us34 and

A

0.0

0.2

0.4

0.6

0.8

1.0

0 12 24 36 48 60 72 84 96 108 120

25 22 22 22 22 18 13 9 8 2 0
23 21 19 17 15 13 8 6 4 2 1
23 13 12 11 10 8 7 1 0 0 0
9 3 1 1 1 1 0 0 0 0 0

DF
S 

(p
ro

ba
bil

ity
)

Time since diagnosis (months)

3 pt
2 pt
1 pt
0 pt

No. at risk
3 pt
2 pt
1 pt
0 pt

P = 6.5e-06

DMS score

B

0.0

0.2

0.4

0.6

0.8

1.0

0 12 24 36 48 60 72 84 96 108 120

Time since diagnosis (months)

3 pt
2 pt
1 pt
0 pt

OS
 (p

ro
ba

bil
ity

)

No. at risk
3 pt
2 pt
1 pt
0 pt

P = 2.4e-05

25 22 22 22 22 18 13 9 8 2 0
23 22 22 22 18 16 11 9 5 2 1
23 13 12 11 11 9 8 1 0 0 0
9 6 3 2 1 1 0 0 0 0 0

DMS score

20 8 3 3 3 2 2 2 2 1 1 0 0 0 0 0 0
66 38 32 28 25 23 19 16 14 8 5 4 2 0 0 0 0
76 57 45 40 37 36 33 28 21 13 10 5 2 0 0 0 0
67 58 55 50 47 45 43 34 24 18 11 4 4 2 1 1 1

0.0

0.2

0.4

0.6

0.8

1.0

0 24 48 72 96 120 144 168 192

No. at risk
3 pt
2 pt
1 pt
0 pt

DMS score

P = 8.9e-11

3 pt
2 pt
1 pt
0 pt

C Schmitz et al. NEJM 2018

PF
S 

(p
ro

ba
bil

ity
)

Time since diagnosis (months)

0.0

0.2

0.4

0.6

0.8

1.0

0 12 24 36 48 60 72 84 96 108 120 132 144 156

139 108 71 48 32 23 18 14 11 5 3 0 0 0
182 139 96 75 55 40 22 14 8 6 3 0 0 0
214 178 144 106 78 54 33 25 17 12 11 4 1 0
69 66 58 49 35 24 11 7 6 4 2 1 0 0

No. at risk
3 pt
2 pt
1 pt
0 pt

DMS score

P = 3.5e-7
3 pt
2 pt
1 pt
0 pt

Reddy et al. Cell 2017

Time since diagnosis (months)

OS
 (p

ro
ba

bil
ity

)

D

Figure 5. Validation of DMS score using independent cohort and 2 publicly available data sets. (A,B) Kaplan-Meier analyses of (A) DFS and (B) OS based on

DMS score using a validation cohort. A log-rank test was used for survival analysis. (C,D) Kaplan-Meier analyses of (C) PFS in Schmitz cohort and (D) OS in Reddy cohort

based on DMS score. A log-rank test was used for survival analysis.
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Figure 6. The relationship between the GC-microenvironmental signature and multiomics prognostic factors. (A) Integrated visualization of transcriptome data
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others.35-39 Figure 6A summarizes the results of mutation analysis
sorted by DMS score, plus GEP, COO classification, and “double-
expressor” lymphoma (DEL) and “double-hit” lymphoma (DHL) sta-
tus in 170 DLBCL patients of the training cohort.

Expression of genes associated with poor prognosis, including cell
cycle-related genes FKBP4, MYC, PAICS, PDXP, and CDK4 (see
also supplemental Figure 2), became higher as DMS scores
decreased (Figure 6A, upper). The anticorrelation between MYC
protein levels and DMS score was also evident (Figure 6B). CNAs
are dramatic structural changes in a genomic region (.1 kbp) and
may involve multiple genes and alter global gene expression. Cases
with a DMS score of 3 were almost devoid of CNAs, and the overall
CNA burden (the number of genes with CNA) increased in low
DMS cases (Figure 6A, middle). CNAs related to poor prognoses,
such as CN gains of BCL240 and CN deletions in the tumor sup-
pressor CDKN2A and the adjacent MTAP gene at the chromosome
9p21 locus41,42 were also more frequent in low relative to high
DMS cases (Figure 6A, middle). Also, SNVs and short indels in
BCR and Toll-like receptor (TLR) signaling genes and in the NF-kB
regulator PIM143 were more frequent in DMS-low cases, with statis-
tical significance (Figure 6A, middle). These mutations, as well as
CN gains of MYD88 and adjacent SETD2, promote constitutive
activation of antiapoptotic and proliferative NF-kB pathways and
contribute to poor prognosis.10,34,43-45 On the other hand, other
major somatic mutations, including epigenome/chromatin modifiers,
NOTCH- and JAK-STAT signaling pathways, were equally distrib-
uted among all DMS score groups.

We further assessed the DMS score in DEL and DHL, both of
which reportedly exhibit poor prognoses.46 Among 123 DLBCL
cases analyzed, 27 (22.0%) and 5 (4.1%, Figure 6A, lower) were
identified as DEL and DHL, respectively. DEL were significantly
enriched in DMS-low cases (Figure 6A,C). DHL cases appeared to
be preferentially distributed in DMS-low cases, but without statistical
significance, due to the small sample size (Figure 6A [lower], 6D).
We also validated these results using the external cohort of 604
DLBCL cases.10 As expected, low DMS score was associated with
high mRNA levels of genes related to poor prognosis (supplemental
Figure 7A), presence of CNAs (supplemental Figure 7B), ABC phe-
notype (supplemental Figure 7C), DEL phenotype (supplemental
Figure 7D) and MYD88 and PIM1 mutations (supplemental Figure
7E), as observed in our cohort (Figure 6). By contrast, no associa-
tion was observed between DMS score and the DHL phenotype
(supplemental Figure 7F). Of note, the genetic risk model defined
by Reddy et al was highly correlated with the DMS score (supple-
mental Figure 7G).

Thus, lymphoma cell-intrinsic aggressiveness of DLBCL, which is
characterized by proliferation-related gene expression, high fre-
quency of specific genomic alterations, COO, and DEL status, is
associated with loss of GC-microenvironment components as
reflected by low DMS score. A GC-associated microenvironment
comprehensively reflects multiomics’ unfavorable molecular
signatures.

Discussion

GC formation is an essential step for normal B-cell development in
LNs and requires the recruitment of microenvironmental cells. Here,
by employing accurate GEP, we demonstrated that GC-associated
microenvironmental components significantly impacted the clinical
outcomes of DLBCL and established a DMS prognostic model. The
DMS score successfully provided graded stratification of patients’
clinical responses to standard R-CHOP-based therapy. Moreover,
DMS scoring had significant prognostic value even in patients’
groups stratified by either COO or the IPI score. These results sug-
gest that the interaction of lymphoma cells with their microenviron-
ment governs DLBCL malignancy.

RNA-seq is a robust transcriptome profiling method; however, data
reproducibility of lowly-expressed genes is generally poor. Further-
more, constructing a high-quality library using FFPE-derived frag-
mented RNA is technically challenging. By contrast, the nCounter
system is highly sensitive enough to quantify low abundance micro-
environmental transcripts even from fragmented RNAs in FFPE sam-
ples.47,48 Therefore, observations through this system might
highlight the subtle differences in microenvironmental immune cells
among DLBCL tissues. In fact, we observed less differentially
expressed genes (DEGs) in RNA-seq (51 genes) than in nCounter-
based measurements (192 genes) (Figure 1A). A previous study
showed that microenvironmental cells function in DLBCL pathogen-
esis: GEP of DLBCL tissues revealed positive associations between
extracellular matrix (ECM) deposition by stromal cells and favorable
prognosis (“stromal-1” signature) and tumor blood-vessel density
and poor prognosis (“stromal-2” signature).49 These findings were
validated by the recent study50 in which prognostic significance of
the M2 macrophage signature was proposed. Ciavarella et al dem-
onstrated a strong correlation between DLBCL prognosis and
microenvironmental components such as myofibroblasts, DCs, and
CD41 T cells via GEP using a customized gene panel with the
NanoString platform.51 Their results were validated in silico using
the data from the Lenz et al study.49,51 More recently, Kotlov et al
performed GEP using 4655 DLBCL samples and identified 4
types of lymphoma microenvironment signatures: “GC-like,”
“mesenchymal,” “inflammatory,” and “depleted.”52 Tripodo et al pro-
posed that GC-related aggressive B-cell lymphoma can be subdi-
vided based on the dark- and light-zone microenvironment
signatures using a digital spatial profiling method.53 Results from
these studies strongly support our observations regarding the
impact of DLBCL microenvironmental signature on clinical out-
comes. In this study, we further uncover the characteristics of the
prognostic microenvironment components and their correlation with
multifaceted features that explained the malignant activity of DLBCL.

Our nCounter data suggest follicular T cells and DC/macrophages
as critical microenvironment components in determining DLBCL
prognosis. In the normal reactive GC, follicular T cells patrol the
B-cell region to participate in B-cell selection via the BCR, and their
activity determines whether B cells undergo apoptosis or prolifera-
tion.54,55 Recent studies indicate 2 subsets of follicular T cells:

Figure 6 (continued) genes or the number of genes showing CNA and BCR-TLR signaling mutations, were enriched as the DMS score decreased. (B) The difference of

MYC protein expression by DMS score. MYC protein positivity was analyzed by IHC. P values were calculated using the Steel-Dwass test. (C) MYC and BCL2 protein

levels were assessed by immunohistochemistry, and cases positive for both MYC and BCL2 were defined as DEL. DELs (magenta) exhibited low DMS scores. Fisher’s exact

test was performed to calculate P value. (D) The frequency of DHL by each DMS score is shown. Fisher’s exact test was performed to calculate P value.
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follicular helper T (Tfh) cells promoting survival, proliferation, and
class switching of developing B cells,56 and FOXP3-positive follicu-
lar regulatory T (Tfr) cells, which function in suppression and elimina-
tion of inappropriate B-cell clones.30 The fact that specific markers
for Tfh (IL-21) and Tfr (FOXP3 and CTLA4) were of the most signif-
icant prognostic genes (Figure 2B) suggests that the abundance of
follicular T cells in DLBCL tissues is a strong indicator of a favorable
prognosis. In addition to follicular T cells, CD11c1 DC/macro-
phages play a critical role in clearing apoptotic B cells32 after selec-
tion by follicular T cells and participate in antigen-presentation to
developing B cells in normal GC. In our study, CD11c1 DC/macro-
phages were also enriched in primary DLBCL tissues from patients
with favorable prognoses.

Given that the DMS score was calculated based on 3 independent
GC-associated microenvironmental cells, these cells may cooperate
to regulate DLBCL development or maintain DLBCL cells, compara-
ble to their activity in the normal GC. Importantly, the DMS score
stratified patients not only in cases of nodal DLBCL but also in
those showing extranodal lesions (Figure 4C), suggesting that in the
latter, the GC-associated microenvironment is reconstituted through
recruitment of these cells into lymphoma tissue.

The nCounter probe set used in the pilot study broadly covers can-
cer and immune-related genes (1889 genes), enabling us to cap-
ture gene expression signatures associated with the DLBCL
microenvironment with high precision. Given its high sensitivity and
reproducibility in measuring fragmented RNAs from FFPE samples,
a more unbiased analysis targeting all transcripts, including noncod-
ing RNAs, may further elucidate DLBCL biology relevant to clinical
practice. We noticed that the predictive power of DMS scores 1
and 2 is not as high as that seen in scores 0 and 3 in subgroup
analyses (Figure 4C-F, supplemental Figure 5E,F). Although we
don't know exactly what causes these results, a few plausible
explanations come to mind. Since the DMS score recapitulates
microenvironmental signatures of DLBCL tissues, the score may not
necessarily reflect lymphoma cell-intrinsic signatures, such as muta-
tional status (supplemental Figure 5E,F), and/or patients’ general
characteristics, such as age (used for IPI calculation). It is also pos-
sible that the low number of cases in some subgroups could have
caused inconsistent results (supplemental Figure 5E).

We believe that the simplicity of the DMS model is beneficial in
terms of clinical utility; however, improvements in analytical methods
and additional validation studies are necessary prior to clinical use.
For example, adding more genes, such as those positively corre-
lated with poor prognosis (such as FKBP4 and MYC) or those
related to COO, may enhance the accuracy and reproducibility of
the model. While an nCounter-based assay is used in the Prosigna
Breast Cancer Gene Signature Assay, an FDA-approved clinical
diagnostic test, because of its high sensitivity and reproducibility,
our system, including analytical parameters, should be prospectively
validated in a clinical trial setting.

Why does a high DMS score reflect a favorable prognosis in
DLBCL? One assumption is that lymphoma cells in favorable cases
are regulated by GC-associated microenvironmental cells com-
parably to normally developing B cells, and once they acquire
cell-autonomous proliferation or survival properties through addi-
tional genetic events, they become microenvironment-independent.
This hypothesis is supported by the fact that DMS-low cases
tend to accumulate lymphoma cell-intrinsic abnormalities, including

expression of c-Myc-related or cell cycle-related molecules, and
genomic alterations, all related to unfavorable prognosis (Figure 6A).

In summary, our study shows that the GC-associated microenviron-
mental signature is tightly associated with clinical outcomes in
DLBCL patients. These data strongly suggest that the evaluation of
microenvironment components and their functions is the key to
understanding DLBCL pathogenesis and malignancy. We believe
that the DMS scoring system could help clinicians at multiple levels.
First, it enables more accurate prognostic stratification when com-
bined with the IPI Index (Figure 4F). Second, the DMS score could
guide clinicians to choose better therapeutic options. For instance,
while clinical trials are generally recommended for high-grade B-cell
lymphoma with MYC and BCL2 and/or BCL6 rearrangements with
DLBCL morphology (NCCN Guidelines v4.2021), those patients
with high DMS scores may benefit from standard R-CHOP-based
regimens. Thus, combining the DMS score system with current
genomics- and/or COO-based systems enable precision medicine
for DLBCL patients. Finally, the DMS score system is simple (based
on the expression of 3 genes), fast, and easy to implement in a
clinic.
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