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Abstract

Background: Mechanical ventilation with variable tidal volumes (VT) may improve lung function and reduce ventilator-

induced lung injury in experimental acute respiratory distress syndrome (ARDS). However, previous investigations were

limited to less than 6 h, and control groups did not follow clinical standards. We hypothesised that 24 h of mechanical

ventilation with variable VT reduces pulmonary inflammation (as reflected by neutrophil infiltration), compared with

standard protective, nonvariable ventilation.

Methods: Experimental ARDS was induced in 14 anaesthetised pigs with saline lung lavage followed by injurious me-

chanical ventilation. Pigs (n¼7 per group) were randomly assigned to using variable VT or nonvariable VT modes of

mechanical ventilation for 24 h. In both groups, ventilator settings including positive end-expiratory pressure and oxygen

inspiratory fraction were adjusted according to the ARDS Network protocol. Pulmonary inflammation (primary endpoint)

and perfusion were assessed by positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose and 68Gallium

(68Ga)-labelled microspheres, respectively. Gas exchange, respiratory mechanics, and haemodynamics were quantified.

Lung aeration was determined using CT.

Results: The specific global uptake rate of 18F-FDG increased to a similar extent regardless of mode of mechanical

ventilation (median uptake for variable VT¼0.016 min�1 [inter-quartile range, 0.012e0.029] compared with median uptake

for nonvariable VT¼0.037 min�1 [0.008e0.053]; P¼0.406). Gas exchange, respiratory mechanics, haemodynamics, and lung

aeration and perfusion were similar in both variable and nonvariable VT ventilatory modes.

Conclusion: In a porcine model of ARDS, 24 h of mechanical ventilation with variable VT did not attenuate pulmonary

inflammation compared with standard protective mechanical ventilation with nonvariable VT.
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Editor’s key points

� Mechanical ventilation with variable tidal volumes (VT)

may reduce ventilator-induced lung injury in experi-

mental acute respiratory distress syndrome (ARDS).

� Previous experimental investigations have been short

and did not adhere to gold standard ventilation for

ARDS.

� In an experimental porcine model of ARDS, the authors

examined whether prolonged (24 h) variable VT venti-

lation reduced pulmonary inflammation, compared

with protective nonvariable VT ventilation.

� Variable VT ventilation failed to alter either pulmonary

inflammation or perfusion, as assessed by positron

emission tomography.
Patients with acute respiratory distress syndrome (ARDS)

usually require mechanical ventilation. Despite being life-

saving, mechanical ventilation may itself damage the lungs

(ventilator-induced lung injury [VILI]).1 The ARDS Network2

proposed a mechanical ventilation protocol that avoids

excessive mechanical stress on the lungs through the use of

low tidal volumes (VT, 4e8 ml kg�1), inspiratory plateau pres-

sure (Pplat) <30 cm H2O, and combinations of positive end-

expiratory pressure/fraction of inspired oxygen (PEEP/FIO2)

which take into account the severity of gas exchange

impairment.

The use of low VT, which is rather constant (nonvariable)

breath to breath, has been considered one of the most

important elements of the ARDS Network ventilation proto-

col. Different studies, however, have suggested that variable

VT (termed variable ventilation) improved gas exchange and

lung mechanics in experimental ARDS3 by reducing lung

inflammation.4e6 However, these studies have been of short

duration (<6 h) and have not included protective mechanical

ventilation as standard care, as defined by the ARDS Network

low PEEP.7

VILI results in infiltration and activation of neutrophils in

lung tissue.8,9 Activated neutrophils compared with other

cells have a higher glucose uptake,10,11 which can be quan-

tified in vivo with positron emission tomography (PET/CT)

using the glucose analogue 2-deoxy-2-[18F]fluoro-D-glucose

(18F-FDG). In this study, we evaluated the effects of 24 h of

variable ventilation combined with the ARDS Network pro-

tocol on lung inflammation (primary endpoint), gas ex-

change and respiratory system mechanics in experimental

ARDS. We hypothesised that 24 h of mechanical ventilation

with variable VT reduces neutrophilic inflammation, as

compared with standard protective ventilation with non-

variable VT.
Methods

The study protocol was approved by the Institutional Animal

Care and Welfare Committee and the Government of the
State of Saxony, Germany (AZ 24-9168.11-1/2013-53). All

animals received humane care in compliance with the

Principles of Laboratory Animal Care formulated by the

National Society for Medical Research and the US National

Academy of Sciences Guide for the Care and Use of Labo-

ratory Animals and complied with relevant aspects of the

Animal Research: Reporting of In Vivo Experiments (ARRIVE)

guidelines. Animals were kept in an environment with

controlled temperature (23�C) and lightedark cycles, with

free access to water and food.
Animal preparation

Fourteen female pigs (German landrace, weighing 29.5e40

kg; Danish Specific Pathogen Free Certification; www.spf.dk)

were pre-medicated with midazolam (1 mg kg�1 i.m.) and

ketamine (10 mg kg�1 i.m.); intravenous anaesthesia was

induced and maintained with midazolam (bolus 0.5e1 mg

kg�1, followed by 1e2 mg kg�1 h�1) and ketamine (bolus 3e4

mg kg�1, followed by 10e18 mg kg�1 h�1). Neuromuscular

block was achieved with atracurium (bolus 3e4 mg kg�1,

followed by 1e2 mg kg�1 h�1). Adequacy of anaesthesia was

assessed continuously by lack of spontaneous movements,

absence of reaction to painful stimulation between the front

hooves, and absence of cardiovascular signs of sympathetic

stimulation (increases in heart rate or arterial blood pres-

sure). The trachea of the animals was intubated transorally

with a cuffed single-lumen tracheal tube (8.0 mm internal

diameter; Mallinckrodt, Athlone, Ireland), and lungs were

ventilated with an EVITA XL (Dr€ager Medical AG, Lübeck,

Germany) ventilator. All skin incisions were preceded by

infiltration of 2e5 ml lidocaine 2%. After surgical preparation

of the right internal carotid artery, an indwelling catheter

was inserted and the mean arterial pressure continuously

monitored. A 7.5 Fr pulmonary artery catheter (Opticath;

Abbott, Abbott Park, IL, USA) was advanced through an 8.5 Fr

sheath, placed in the right external jugular vein until typical

pulmonary arterial pressure waveforms could be observed.

Urine was collected with a bladder catheter inserted through

a median mini-laparotomy. Parameters of gas exchange,

respiratory signals, and haemodynamics were recorded

before ARDS induction (time point BASELINE1).
Experimental ARDS

Lung injury was induced with a double hit model consisting of

isotonic saline lung lavage alternating prone and supine po-

sition (four times each), followed by injurious ventilation with

VT of 20 ml kg�1 and zero PEEP until the PaO2/FIO2 is <13.3 kPa

for at least 30 minutes. Measurements were performed

immediately thereafter (Injury). PET/CT imaging data were

acquired (Day 1) and measurements performed (Baseline2).

Thereafter, animals were randomly assigned to mechanical

ventilation with: (i) variable VT (VV) or (ii) nonvariable VT (NV).

In both groups, mechanical ventilation settings followed the

recommendations of the ARDSNetwork protocol using the low

http://www.spf.dk
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FIO2/PEEP table.7 Measurements were performed in intervals of

6 h (Time1 to Time4). An illustration of the experiment’s time

course is available in the Supplementary material. Intravas-

cular volumewasmaintainedwith a crystalloid solution (E153;

Serumwerk Bernburg AG, Bernburg, Germany) at a rate of 4 ml

kg�1 h�1. Norepinephrine was used to maintain a mean arte-

rial pressure of at least 60mmHg throughout the experiments.

After 24 h, PET/CT imaging was repeated (Day 2) and animals

were killed with an intravenous injection of thiopental (2 g),

followed by potassium chloride (1 M, 50 ml). Postmortem lung

tissue samples were obtained for histological and molecular

biology analyses.
Ventilator settings

Until randomisation, animals were ventilated in volume-

controlled mode with VT¼6 ml kg�1, FIO2¼1.0, inspiratory/

expiratory (I/E) ratio¼1:1, PEEP¼10 cm H2O, constant inspira-

tory flow of 35 L min�1, and ventilatory frequency (VF)

adjusted to achieve an arterial pH between 7.38 and 7.42.

During initial PET/CT, PEEPwas set to 16 cmH2O to standardise

imaging conditions before randomisation. After random-

isation, VF was set to reach a pH of >7.3, the lowest tolerable

pH being 7.15 with a maximum VF of 35 breaths min�1;

otherwise, an increase of VT was allowed. Combinations of FIO2
and PEEP were set according to the low-PEEP table of the ARDS

Network.7
Variable VT ventilation

During variable ventilation, VT changed from breath to breath,

based on a predefined sequence of 600 random VT values

(mean VT¼6 ml kg�1, normal distribution) which looped infi-

nitely. The sequence of 600 variable VT cycles achieved the

same minute volume as nonvariable ventilation. The targeted

variance of the VT values was 30%, which is roughly the vari-

ability in healthy spontaneously breathing subjects.12 The flow

rate was 35 L min�1, and active inspiratory time was adjusted

at each cycle to achieve the target VT. Because the I/E ratio was

fixed at 1:1, the inspiratory pause varied.
Lung imaging

A low-dose helical CT scan (Biograph16 Hirez PET/CT;

Siemens, Knoxville, TN, USA) of the thorax was obtained at

mean airway pressure holds, and used for attenuation

correction of the subsequent PET scans (attenuation correc-

tion CT [ACCT]). ACCT scans were used for manual segmen-

tation of the lungs, excluding major airways and vessels.

Segmented ACCT scans were used to define ventral, mid-

ventral, central, mid-dorsal, and dorsal lung regions (region

of interest [ROI]) of equal lung tissue mass,13 and to calculate

gas fraction (FGAS) from the linear relation between tissue

attenuation expressed in Hounsfield units (HU) and lung

density (FGAS¼HU [e1000]�1).
Primary outcome: pulmonary inflammation

After the ACCT scan, a bolus of 18F-FDG (~200 MBq) was

infused to assess the infiltration of activated neutrophils

which have a higher glucose uptake.10,11 Sequential PET

frames and a series of blood samples were acquired over a

period of 75 min. Blood samples were spun down, and the

plasma activity was measured in a gamma counter, cross-
calibrated with the PET scanner. The field of view (cranio-

caudal extension: 15 cm) of the dynamic PET scan was set

above the diaphragmatic dome to reduce motion artifacts.

The Patlak two-compartment model14 was used to calculate

the 18F-FDG uptake rate (Ki). To account for differences in

lung inflation and blood volume between ROI, animals and

time points, Ki was normalised to lung tissue fraction (FTIS-

SUE), thus computing the specific Ki (KiS) as shown (equation

(1)):

KiS ¼
Ki

FTISSUE
¼ Ki

1� FGAS � FBLOOD
; (1)

where FBLOOD is the fractional blood volume obtained from the

three-compartment Sokoloff model.15 KiS was determined for

each ROI of comparable lung mass (regional KiS) and for the

whole lung (global KiS).
Secondary outcomes

Lung perfusion

After the acquisition of the residual 18F-FDG activity by a PET

scan, 68Ga-labelled (ITG Isotope Technologies Garching GmbH,

Munich, Germany) microspheres (ROTOP Pharmaka AG,

Dresden, Germany) were injected i.v. (~100 MBq) to quantify

lung perfusion, as assessed by a static PET scan.16 Specific

regional perfusion was determined for each ROI of comparable

lung mass as count rate per ROI relative to that of the whole

lung and multiplied by the cardiac output at the time point of

the 68Ga PET measurement.
Lung aeration

A static high-resolution helical CT scan of the thorax was

acquired under a respiratory hold at mean airway pressure

and muscle paralysis. In those high-resolution images, seg-

mentation was performed in every fifth slice to define the

lung contour. Segmented CT scans were used to differen-

tiate between hyper-aerated, normally aerated, poorly

aerated, and nonaerated compartments, for which the

respective mass relative to that of the whole lung was

calculated.17,18
Markers of lung injury and inflammation

The wet/dry ratio of the right lung was measured. The diffuse

alveolar damage score19 was evaluated by an expert blinded to

group allocation. Gene expression and protein levels of

markers associated with inflammation (interleukin [IL]-6 and

IL-8), fibrosis (type III procollagen), and endothelial cell dam-

age (vascular endothelial growth factor [VEGF] and intercel-

lular adhesion molecule 1 [ICAM-1]) were analysed using

quantitative real-time polymerase chain reaction (PCR) (iCy-

cler IQ Real-Time PCR System; Bio-Rad Laboratories Inc., Her-

cules, CA, USA, and PerfeCta SYBR Green FastMix; Quanta

Biosciences, Gaithersburg, MD, USA) and enzyme-linked

immunosorbent assay (ELISA) (R&D Systems Europa, Abing-

don, UK).
Experimental protocol

Gas exchange, respiratory signals (obtained from internal

sensors of the ventilator), and haemodynamics were assessed

at time points defined as Baseline1, Injury, Baseline2, and at 6



Table 1 Respiratory mechanics and gas exchange. Values are given as mean and standard deviation. Effects of Injury on variables were tested with paired t-test (Baseline vs Injury,
P<0.05). Differences between and within groups (Group effect; Time � Group effect) were tested with general linear model statistics with BASELINE2 as a covariate. Global statistical
significance was accepted at P<0.05. VT, tidal volume; CV VT, coefficient of variation of tidal volume; VF, ventilatory frequency; MV, minute ventilation; Pplat, plateau airway pressure
averaged over 100 single breaths; Pmean, mean airway pressure averaged over 100 single breaths; Ppeak, peak airway pressure averaged over 100 single breaths; ERS, elastance of the
respiratory system; RRS resistance of the respiratory system; VV, variable ventilation; NV, nonvariable ventilation; PaO2/FIO2, arterial partial oxygen pressure divided by inspiratory
oxygen fraction; PaO2; arterial partial oxygen pressure; PaCO2, arterial partial carbon dioxide pressure; pH, arterial pH value

Variable Group Baseline1 Injury Baseline2 Time1 Time2 Time3 Time4 Group effect
P-value

Time £ Group
effect P-value

VT (ml kg�1) VV 6.5 (0) 6.5 (0.1) 6.5 (0) 6.2 (0.5) 6.2 (0.5) 6.2 (0.6) 6.1 (0.5) 0.931 0.20
NV 6.6 (0.2) 6.6 (0.2) 6.9 (1.0) 6.5 (0.3) 6.4 (0.5) 6.5 (0.4) 6.6 (0.2)

CV VT (%) VV 0.6 (0.1) 0.6 (0.2) 0.5 (0.2) 28 (2.4) 26.6 (6.8) 27.6 (4.3) 27.4 (4) �0.001 0.843
NV 0.7 (0.3) 0.6 (0.2) 0.6 (0.4) 0.5 (0.2) 0.4 (0.1) 0.5 (0.2) 0.5 (0.1)

VF (min�1) VV 33.6 (2.5) 33.6 (2.5) 35.1 (0.1) 28.3 (7.2) 27.5 (8.1) 25.3 (8.6) 26 (9.3) 0.522 0.162
NV 33.6 (2.5) 33.6 (2.5) 35.1 (0.0) 32.9 (2.7) 29.3 (6.1) 27.9 (5.7) 26.4 (5.6)

MV (L min�1) VV 7.9 (0.6) 7.9 (0.6) 8.3 (0.7) 6.2 (1.4) 6.0 (1.6) 5.4 (1.5) 5.5 (1.5) 0.333 0.349
NV 7.6 (0.7) 7.6 (0.6) 8.2 (0.9) 7.3 (0.6) 6.4 (0.8) 6.1 (1) 6 (1.4)

ERS (cm H2O L�1) VV 24.1 (2.7) 81.2 (7) 69.2 (12) 74.6 (22) 74.1 (24) 71.3 (23) 70.1 (23) 0.746 0.647
NV 23.6 (4.3) 67.7 (9.8) 69.1 (8.8) 79.3 (14) 78 (14) 74.6 (11) 71 (10)

RRS (cm H2O L�1 s) VV 7.3 (0.6) 10.7 (2) 7.4 (0.3) 8.2 (0.6) 9.1 (1.1) 9.8 (2.1) 10.7 (4.2) 0.479 0.101
NV 7.6 (1.1) 10 (1.6) 8.5 (1.9) 7.9 (0.6) 8.4 (2.1) 9.4 (2.2) 9.6 (2.4)

Ppeak (cm H2O) VV 21 (0.7) 34.4 (2.4) 27.6 (4.2) 27.1 (5.2) 27.6 (6) 26.8 (5) 27.2 (4.7) 0.713 0.152
NV 20.9 (0.7) 31.1 (2.6) 30.5 (3.6) 29.1 (3.9) 28.1 (2.3) 28 (2.5) 26.6 (2.4)

Pplat (cm H2O) VV 17.4 (0.7) 30.8 (2.3) 25.6 (4.3) 24.6 (5.2) 24.7 (7) 23.5 (6.1) 23.4 (6.2) 0.608 0.188
NV 17.3 (0.6) 27 (2.3) 27.8 (4.8) 27.1 (4.2) 25.7 (3.4) 25.2 (3.1) 23.6 (3)

Pmean (cm H2O) VV 14 (0.2) 19.2 (0.8) 15.5 (3.2) 14.2 (2.7) 14.4 (3.5) 13.8 (3.1) 14 (3.2) 0.479 0.101
NV 14 (0.3) 17.9 (0.9) 17.6 (3.1) 15.9 (2.8) 15.3 (2.2) 15.2 (2.1) 13.9 (1.7)

PEEP (cm H2O) VV 10 (0.0) 9.8 (0.2) 7.7 (2.9) 6.2 (1.5) 6.3 (2) 5.8 (1.9) 6.2 (2) 0.519 0.088
NV 10 (0.0) 9.8 (0.2) 9.7 (2.8) 7.6 (2) 6.9 (1.9) 6.7 (1.9) 5.6 (1.5)

PaO2/FIO2 (kPa) VV 80.1 (80.3) 9.2 (2.1) 27.1 (10.9) 28.5 (10.5) 29.3 (10.3) 29.7 (9.9) 30.4 (11.5) 0.990 0.530
NV 80 (8) 8.5 (2) 21.1 (5.6) 22 (4.3) 25.2 (5.9) 26.4 (6.4) 25.3 (5.6)

PaO2 (kPa) VV 80.1 (80.3) 9.2 (2.1) 11.6 (1.7) 11.1 (2.4) 11 (2.1) 11.1 (1.9) 11.7 (2.4) 0.349 0.483
NV 80 (8) 8.5 (2) 10.8 (0.8) 10.1 (1.5) 9.9 (1.3) 10.3 (1.4) 9.9 (1.2)

PaCO2 (kPa) VV 6.4 (0.8) 11.9 (1.4) 11.7 (2.4) 11.2 (1.5) 10.9 (1.0) 12.2 (1.4) 12.8 (2.1) 0.237 0.587
NV 6.8 (0.8) 11.8 (3.7) 11.9 (2.7) 10.7 (2.0) 10.7 (2.1) 11.6 (2.6) 11.2 (1.4)

pH VV 7.38 (0.04) 7.23 (0.06) 7.26 (0.08) 7.30 (0.06) 7.33 (0.06) 7.32 (0.06) 7.30 (0.07) 0.188 0.401
NV 7.38 (0.04) 7.25 (0.11) 7.22 (0.08) 7.30 (0.05) 7.32 (0.04) 7.34 (0.05) 7.35 (0.05)
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h intervals (Time1 to Time4). At the end of the experiments,

the left and right lungs were removed for tissue analysis.
Statistical analysis

At the time of study planning, there was no literature available

with suitable data for sample size estimation. Therefore, the

number of animals per group was derived from the expertise

of the group; thus, the analysis is exploratory in nature. Data

are presented as median and 25% and 75% quartiles unless

indicated otherwise. Student’s t-test, generalised linear

model, ManneWhitneyU-tests, andWilcoxon’s test were used

as appropriate. Calculations were performed using the SPSS

software package (SPSS version 22.0; IBM, Armonk, NY, USA);

multiple comparisons were adjusted according to the

BonferronieHolm procedure. Global statistical significance

was accepted at P<0.05.
Results

ARDS model

Respiratory variables were similar between each group, apart

from the coefficient of variation of VT, which was close to 30%

in the group with variable VT ventilation (Table 1). Arterial pH

was maintained at >7.15 in both groups. All other parameters,

including fluid therapy, anaesthetic requirements, and
Fig 1. Transversal slices of inflammation, aeration, and perfusion of

domisation. Left column: transversal slice of the specific uptake rates

positron emission tomography/CT and kinetic modelling according to

tissue fraction (KiS¼Ki/FTISSUE¼Ki/(1 e gas fraction e blood fraction); gas

Sokoloff three-compartment model). Middle column: aeration comp

normally, normally aerated compartment; poorly, poorly aerated compa

of perfusion obtained with 68Ga-labelled microspheres and positron e

ventilation; Day 1, before randomisation; Day 2, 24 h after randomisat
number of lavages were similar between groups (Supple-

mentary material).
Primary outcome: pulmonary inflammation

Figure 1 shows the maps of the distribution of lung inflam-

mation, aeration compartments, and perfusion of one repre-

sentative animal of each group before randomisation at 24 h.

At 24 h, global KiS increased significantly in both groups, but

values did not differ significantly between groups (VV: 0.016,

0.012e0.029 min�1; NV: 0.037, 0.008e0.053 min�1; P¼0.406).

Similarly, the increase in regional KiS from before random-

isation (Day 1) to 24 h after randomisation (Day 2) did not differ

significantly between VV and NV in the investigated sub-

regions. The same global and regional behaviour was observed

when inflammation was assessed by non-normalised Ki

measurements. Within each group, regional KiS values were

higher on Day 2 compared with Day 1 in all regions for group

VV, and in ventral, mid-ventral, and mid-dorsal regions for

group NV (Fig. 2).
Secondary outcomes

Lung aeration

The amount of normally aerated and hyper-aerated lung tis-

sue decreased during the observation period in both groups.
one representative animal per group before and 24 h after ran-

of 2-deoxy-2-[18F]fluoro-D-glucose (KiS). KiS was determined with

the Patlak method. The resulting Ki values were normalised to the

fraction determined from CT; blood fraction determined using the

artments obtained from CT; hyper, hyper-aerated compartment;

rtment; non, nonaerated compartment. Right column: distribution

mission tomography/CT. VV, variable ventilation; NV, nonvariable

ion.



Fig 2. Regional specific uptake rates of 2-deoxy-2-[18F]fluoro-D-

glucose (KiS) before and 24 h after randomisation. KiS were

determined by positron emission tomography/CT and kinetic

modelling according to the Patlak method. Resulting Ki values

were normalised to tissue fraction (KiS¼Ki/FTISSUE¼Ki/(1egas

fractioneblood fraction); gas fraction was determined from CT;

blood fraction determined using the Sokoloff three-

compartment model). Symbols and horizontal lines represent

the median and inter-quartile range. Global statistical signifi-

cance was accepted at P<0.05, BonferronieHolm adjustment for

multiple testing. Differences between Day 1 and Day 2 within

the same region and group were tested with Wilcoxon test

(depicted P-values). No differences were found between groups

VV and NV (ManneWhitney U-test). n¼7 per group. VV, variable

ventilation; NV, nonvariable ventilation. Day 1, before ran-

domisation; Day 2, 24 h after randomisation.
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The amount of nonaerated lung tissue increased in the NV

group after 24 h, but not in the VV group. No significant dif-

ferences were found between groups VV and NV (Fig. 3).
Pulmonary perfusion

The regional pulmonary perfusion increased in ventral and

mid-ventral regions after 24 h in both groups. In the VV group,

but not in the NV group, pulmonary perfusion decreased in the
dorsal region after 24 h. No significant differences were found

between groups VV and NV (Fig. 4).
Histologic lung injury score, inflammatory markers, and
wet/dry ratio

The cumulative DAD score, the wet/dry ratio, and gene

expression of IL-6 and IL-8, VEGF, ICAM-1, and type III pro-

collagen did not differ significantly between groups (Table 2).
Gas exchange and haemodynamics

During the observation period, gas exchange and haemody-

namics variables did not differ significantly between groups

(Supplementary material).
Discussion

In this experimental model of ARDS in pigs, 24 h ofmechanical

ventilation according to the ARDS Network protocol with

variable compared with nonvariable VT did not attenuate

pulmonary inflammation. In addition, gas exchange, respira-

tory mechanics, lung aeration, pulmonary perfusion, histo-

logic lung injury score, gene expression of inflammatory and

endothelial damage markers and the wet/dry ratio did not

differ between groups.

To our knowledge, this is the first study to address the ef-

fects of 24 h of variable ventilation on the distribution of lung

inflammation. Of note, mechanical ventilation settings fol-

lowed closely the clinical standard recommended by the ARDS

Network. We used a double hit model consisting of saline lung

lavage and injurious ventilation, as it reproduces several

typical features of human ARDS, including alveolar haemor-

rhage, hyaline membrane formation, neutrophilic infiltration,

decreased compliance, and gas-exchange deterioration, and

results in a serious lung injury.20 A further strength of our

study is that lung inflammation was determined with PET and

the radiotracer 18F-FDG, which is an established method to

assess lung inflammation in vivo.15 Our study also quantified

the distribution of pulmonary perfusion in vivo using 68Ga-

labelledmicrospheres and PET, which allows quantifying even

minimal regional differences21 and assessed the distribution

of aeration in lungs with a gold standard technique, namely

CT.17,18

Previous studies have reported conflicting results with

respect to the effects of variable ventilation on lung damage

and inflammation. In a porcine oleic acid model22 and a

lavage-endotoxin-VILI model of ARDS in rabbits,23 variable

ventilation with different PEEP levels did not reduce the

level of pro-inflammatory cytokines (IL-8) and cell counts in

bronchial alveolar lavage fluid22 and histological lung injury

scores.23 In contrast, reduced lung damage has been

observed in small animals ventilated with variable ventila-

tion compared with conventional ventilation in hydrochlo-

ric acid injured24 and noninjured lungs.5,25 In pigs with

saline lung lavaged lungs, the histologic damage, but not the

level of cytokines, was reduced during variable ventilation

compared with nonvariable ventilation when PEEP was �12

cm H2O.6 In contrast, variable ventilation worsened

epithelial cell damage when combined with higher PEEP

levels,24 whereas we opted for the use of the ARDS Network7

low PEEP table, which represents current clinical

practice.2,26,27



Fig 3. Size of aeration compartments of the whole lung expressed as % mass of the whole lung. Bars represent the mean values of the

hyper aerated (blue), normally aerated (green), poorly aerated (yellow), and nonaerated compartments (red). Vertical lines represent

standard deviations. Global statistical significance was accepted at P<0.05, BonferronieHolm adjustment for multiple testing. Differences

between Day 1 and Day 2 within the same group and same compartment were tested with Wilcoxon tests (depicted P-values). No dif-

ferences were found between groups VV and NV (ManneWhitney U-test). n¼7 per group. VV, variable ventilation; NV, nonvariable

ventilation; Day 1, before randomisation; Day 2, 24 h after randomisation.
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The present observation that 24 h of variable ventilation did

not improve gas exchange nor respiratory mechanics, differs

from recent experimental3 and clinical28 reports. However, in

line with the results of our study, variable ventilation

compared with conventional ventilation did not improve gas

exchange in oleic acid-induce ARDS in pigs29 and dogs.30

Furthermore, variable ventilation did not improve ERS in oleic

acid injury in pigs.4 These results might be partly explained by

differences in the severity of the lung damage. In fact, in saline

lung lavage, variable ventilation resulted in lower mean and

peak airway pressures, lower ERS, and higher arterial oxygen-

ation values,31 whereas these beneficial effects could not be

seen in the present double hit model of ARDS. Furthermore,

PEEP values used in that study31 were higher (12 cm H2O) than

those used in clinical practice. These higher PEEP values might

have favoured stabilisation of lungs after recruitment with

variable ventilation. Also, the observation period was much

shorter (6 h)31 than in the present study, and it cannot be ruled

out that respiratory mechanics would have deteriorated after

that period.

Our finding that variable ventilation did not increase lung

aeration compared with nonvariable ventilation differs from

similar studies in the field. In a previous study, variable

ventilation resulted in a significant recruitment of nona-

erated and poorly aerated lung volume and a significant

increase of normally aerated lung volume in oleic acid-

induced ARDS in pigs.29 Furthermore, redistribution of

perfusion towards dependent lung zones was observed after

saline lung lavage in pigs treated with variable ventilation,6

suggesting improved lung aeration in dorsal areas. In our

study pulmonary perfusion was redistributed from depen-

dent towards nondependent lungs, which is probably

attributable to hypoxic pulmonary vasoconstriction. These

differences in aeration and perfusion are likely explained by

the use of higher PEEP values in other studies.6,29,32 Another

possible explanation is that the time constant for
derecruitment could have been lower in our study, leading

to increased end-expiratory lung collapse. In fact, in a study

with a computer model of lung recruitment33 variable

ventilation combined with low PEEP levels was not able to

recruit lungs when the time constants of recruitment and

derecruitment were the same.
Limitations

Our study has several limitations. First, the double hit model

does not fully mimic all features of the human ARDS, even

though this model has been considered clinically relevant.20

Second, the metabolic activity as indicated by 18F-FDG up-

take was used as a surrogate of VILI, which involves not only

metabolism, but also structural damage. Nevertheless,

different studies showed that KiS is a reliable marker of lung

injury.34,35 Third, we set PEEP in both groups according to

minimal adequate oxygenation; thus we did not evaluate the

effects of variable ventilation in combination with alternative

ways of PEEP titration aimed at stabilising lungs. However, in

large clinical trials, the low PEEP table of the ARDS network has

proved superior to other strategies that aim at an open lung

with respect to clinical outcome.2,26,27 Fourth, we did not

determine the pressure vs volume curve of the respiratory

system. A previous study suggested that PEEP values according

to the low PEEP table most likely centre the ventilation at the

lower part of that curve.36 Thus, variable ventilation was likely

conducted in a low compliance range, that is, was not opti-

mised for respiratory mechanics. Fifth, we have targeted for a

mathematically derived VT variance of 30% during VV.

Although we cannot rule out that different levels or distribu-

tions of variance would have yielded different results,23 this

value corresponds to the value of young healthy volunteers12

and led to most pronounced improvement in lung function

in two experimental studies in rats19 and pigs.31 Sixth, the

sample size was mainly derived from the expertise of the



Table 2 DAD score, protein levels [pg mg�1], and gene expression o
compared with the house-keeping-gen hypoxanthin-phosphoribosy
tistical significance was accepted at P>0.05. Dad score diffuse alv
immunosorbent assay, IL-8, interleukin 8; mRNA, messenger ribon
intercellular adhesion molecule 1. VV, variable ventilation, NV nonv

Group DAD score IL-6 ELISA IL-8 ELISA IL-6 mRNA

VV 15.1 (12.5
e17.1)

44.2 (38.6
e49.3)

109.3 (99.4
e136.3)

0.6 (0.5e1.

NV 10.4 (8.0
e23.3)

47.0 (38.5
e60.3)

165.6 (111.4
e272.2)

0.7 (0.4e1.

P-value 0.565 0.482 0.085 0.655

Fig 4. Specific regional pulmonary perfusion in regions of equal

lung mass from ventral to dorsal determined by positron

emission tomography/CT and 68Ga-labelled microspheres.

Symbols and horizontal lines represent median and inter-

quartile ranges. Global statistical significance was accepted at

P<0.05, BonferronieHolm adjustment for multiple testing. Dif-

ferences between Day 1 and Day 2 within the same group and

same region were tested with Wilcoxon tests (depicted P-

values). No differences were found between groups VV and NV

(ManneWhitney U-test). n¼7 per group. VV, variable ventilation;

NV, nonvariable ventilation; Day 1, before randomisation; Day 2,

24 h after randomisation.
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authors. An increased sample size might have resulted in a

statistically significant difference presumably not being clini-

cally relevant.
Conclusion

In this model of ARDS in pigs, 24 h of ventilation according to

the ARDS Network protocol with variable VT did not attenuate

pulmonary neutrophilic inflammation compared with non-

variable VT. These data reinforce the need to compare

emerging ventilatory strategies with established gold-stan-

dard therapy.
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