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Abstract

The Chinese poultry industry has experienced outbreaks of Newcastle disease (ND) dating

back to the 1920s. However, the epidemic has exhibited a downtrend in recent years. In this

study, both observational and genetic data [fusion (F) and haemagglutinin-neuraminidase

genes (HN)] were analyzed, and phylogeographic analysis based on prevalent genotypes of

Newcastle disease virus (NDV) was conducted for better understanding of the evolution and

spatiotemporal dynamics of ND in China. In line with the observed trend of epidemic out-

breaks, the effective population size of F and HN genes of circulating NDV is no longer grow-

ing since 2000, which is supported by 95% highest posterior diversity (HPD) intervals.

Phylogeographic analysis indicated that the two eastern coastal provinces, Shandong and

Jiangsu were the most relevant hubs for NDV migration, and the geographical regions with

active NDV diffusion seemed to be constrained to southern and eastern China. The live

poultry trade may play an important role in viral spread. Interestingly, no migration links from

wild birds to poultry received Bayes factor support (BF > 3), while the migration links from

poultry to wild birds accounted for 64% in all effective migrations. This may indicate that the

sporadic cases of ND in wild bird likely spillover events from poultry. These findings contrib-

ute to predictive models of NDV transmission, and potentially help in the prevention of future

outbreaks.

Introduction

Newcastle disease (ND) is one of the most contagious diseases of poultry. The causative agent

of ND is known as Newcastle disease virus (NDV), which is a member of the family Paramyxo-
viridae in the genus Avulavirus [1, 2]. It was first reported both in Java, Indonesia and Newcas-

tle-upon-Tyne, England in 1926. Since then, four epidemic waves have occurred worldwide

through the 1990s [3]. In China, the time of the first probable ND outbreak was nearly syn-

chronous with the initial global epidemic in the 1920s. It was not until 1946 that the etiology of
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the outbreak in China was identified. This delay resulted in enormous losses to the poultry

industry. Although ND poses a threat to the Chinese chicken industry, the number of out-

breaks, cases and deaths since 2005–2015 have been decreasing year by year due to a strict vac-

cination program [4]. Most cases that occurred were mild and sporadic in Chinese vaccinated

chicken flocks, which may be the result of immune failure [5]. Characteristic of “atypical ND”,

presents as a prolonged disease duration with no typical clinical and pathological manifesta-

tion [6]. Similar to other single-stranded-RNA respiratory viruses, multiple genotypes of NDV

can co-circulate and cause outbreaks, and the “mild ND” under long-term immune pressure

may also provide the conditions for the evolution of the virus.

In general, the capacity of some viruses to adapt to hosts and environments is highly depen-

dent on their ability to generate de novo diversity in a short period of time [7], and prevalent

genotypes of viruses tend to have a higher evolutionary rate under more selection pressure [8].

Low evolutionary rates of fusion (F) gene exhibited in genotypes II and IX of virulent NDV

(7.05 × 10−5 and 2.05 × 10−5 per year, respectively) make that there is a high genetic similarity

to virulent isolates from the 1940s [9], while the evolutionary rate and diversity of the predom-

inant NDV genotypes VI and VII in China remain unknown. According to Fan (2017), nucle-

ocapsid protein is observed with an unexpected rapid evolutionary rate, 1.059 × 10−2 per year

(95% HPD: 4.187 × 10−3 ~ 1.74 × 10−2) rather than surface proteins (F and HN) of NDV [10].

Wrong estimation of the evolutionary rate of viruses may significantly affect the prevention

and control of viral diseases [11, 12].

Similar with the avian influenza virus, wild birds are also considered to play an important

role in the spread of ND by the high nucleotide homology of viruses between wild birds and

poultry [13–15]. However, the directionality of viral transmission between wild birds and

poultry remains unknown.

The present study aimed to estimate the evolutionary rate and diversity of surface protein

of the predominant NDV genotypes in China, and explore the evolutionary dynamics and

transmission patterns in multiple hosts of NDV in China using phylodynamics analysis.

Materials and methods

Epidemiologic data

Clinical case data of NDV were obtained from the Official Veterinary Bulletin, which is made

available by the Ministry of Agriculture and Rural Affairs of the People’s Republic of China

[16]. We collected the data (S1 Table), including the total number of outbreaks, number of

cases and deaths, province and animal species in 2006–2019 by month and compared the dis-

tribution of NDV outbreaks in China.

Sequence data

All NDV sequences used in this study were obtained from GenBank, which were sampled in

China between 1985 and 2015. The F and HN gene sequences were screened by filtering out

those that were duplicate and incompletely or vaguely annotated. The screened and reference

sequences were aligned using the Clustal W method in MEGA7 [17] to perform genotyping.

Recombinant sequences were detected using RDP 4.95 [18]. TempEst1.5.1 [19] was used to

examine the temporal signal and look for problematic sequences. Furthermore, three random

down-samples were created with a maximum of 15 sequences of VII-F gene per location to

assess the robustness of the phylogeographic reconstructions against sampling biases. As only

small number (less than 150 taxa) of VI-F and VII-HN gene sequences are available in Gen-

Bank, they were retained with no random down-sampling for the following analysis. The

alignment sequence data of NDV used for analysis are listed in S1 Dataset.
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Phylogenetic analysis

Time-scaled phylogenetic trees of NDV were reconstructed using a Bayesian inference

approach by Bayesian Evolutionary Analysis Sampling Trees (BEAST) (model selection:

BEAST v2.5.1; analysis: BEAST v1.10.4) with BEAGLE [20–22]. All analyses were performed

using the GTR+I+Γ4 nucleotide substitution model by jModelTest v2.1.7 [23]. Relaxed clock

[24] with uncorrelated lognormal distribution (UCLD), relaxed clock with uncorrelated expo-

nential distribution (UCED), Strict clock and Tree priors (Coalescent Constant Size, Coales-

cent Exponential Growth and Coalescent Bayesian Skyline) were combined in different

combinations to calculate their respective marginal L estimate values by Path sampling [25]

(Nr of Steps: 100; Chain Length: 100,000; Pre Burnin: 10,000) to find best-fit model in BEAST

v2.5.1. UCED relaxed clock with Bayesian skyline model was best-fit for all genotype subsets

(S2 Table). A Markov Chain Monte Carlo (MCMC) chain of 100 million with sub-sampling

every 10,000 generations was specified. Convergence was assessed by estimating the effective

sampling size (ESS) after a 10% burn-in using Tracer v1.7 [26]. The ESS was over 200 for

parameter estimation in the MCMC analysis. Maximum clade credibility (MCC) trees were

summarized in Tree Annotator v1.75 [27] and visualized using FigTree v1.4.3 [28].

The Coalescent Bayesian skyline plot (BSP) was used to infer the past population dynamics

[29]. The uniform sampling strategies were used to select datasets with a maximum of 20

sequences per year [30]. To avoid the effect of left censoring [31], the BSPs were truncated at

the time of the last coalescent event. Package Tracer was used to plot BSP and lineages-

through-time (LTT) plots.

Bayesian phylogeography analysis

An asymmetric discrete trait phylogeography model was specified to explore the spatial diffusion

patterns of NDV. Both location and hosts were imported into the model to infer a spreading net-

work with Bayesian stochastic search variable selection (BSSVS) using BEAST 1.10.4 [32].

SpreaD3 v0.9.6 was used to calculate Bayes factor support for each transmission path between dis-

crete location states and hosts [33]. The settings used here can be found in the SpreaD3 tutorials

[34]. Only migration links with Bayes factor support of at least 3 were considered. Also, the num-

ber of expected location-state and host-state transitions (Markov jump counts) along the branches

of the phylogeny using the asymmetric migration model were estimated [35]. Total number of

state counts for migration into and out of each region and host were also plotted.

To uncover potential predictors of viral spread, we tested the association between the viral

dispersal and predictors (including environmental predictors, poultry farming and live poultry

trade predictors) among provinces using generalized linear model (GLM). GLM analyses were

run in BEAST v1.10 using prior specifications recommended above on the set of trees obtained

by Bayesian phylogenetic analysis [36, 37]. The province-level matrix data of live poultry trans-

portation were referred to a recent research [38]. Province-level poultry farming data (includ-

ing domestic broiler/layer population of each large, medium and small scale chicken farms

and annual output of poultry) were obtained from statistical yearbooks of China, and annual

relative humidity and temperature data were obtained from China Meteorological Adminis-

tration (S3 Table).

Results

Epidemiology

From 2006 to 2019, a total of 4,789 ND epidemics were reported in China, covering 26 prov-

inces, municipalities and autonomous regions, and the Chinese epidemics of ND primarily
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occurred in the south and southwest of China (S1 Fig). The number of NDV outbreaks showed

a downtrend each year, as did the number of cases and deaths over time (Fig 1).

Sequence dataset compilation

The F (N = 876) and HN (N = 387) gene sequences were downloaded from GenBank, and

only sequences subtyped as VI and VII-type were retained (F gene: N = 753; HN gene:

N = 177). The duplicate, problematic sequences and short (nucleotide length < 1,600 base

pair) sequences were removed, leaving 444 taxa of VII-F gene, 72 taxa of VI-F gene, 132 taxa of

VII-HN gene and 18 taxa of VI-HN gene. And the VI-HN gene sequences were not used for

the subsequent study due to its small number.

NDV infection was reported in 19 host species so far. Of these, 6.25% of the VI and VII

genotype viruses were reported in wild species and more in domestic poultry (93.56%).

Among 25 discrete regions, most NDVs were isolated in Shandong (25.57%) and Jiangsu

(24.81%) provinces, followed by Heilongjiang (7.95%) and Guangdong (7.58%). To mitigate

the potential impact of sampling biases in following phylodynamic reconstructions, three ran-

domly down-sampling were used to select datasets with a maximum of 15 taxa per location.

After down-sampling randomly, three final sets (N = 177, 171 and 178) of VII-F gene were

used in the following analysis. As there was small number of sequences of VI-F gene and

VII-HN gene, all of the sequences were retained, and the meta-data was listed in S4 Table.

Phylogenetic and population dynamic analysis

A examine for molecular clock signal revealed that there was sufficient accumulation of diver-

gence over the sampling time span to estimate evolutionary rates (S2 Fig). The evolutionary

Fig 1. The total number of annual outbreaks, cases, and deaths of NDV in China from 2006 to 2019.

https://doi.org/10.1371/journal.pone.0239809.g001
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rates and past population dynamics of NDV were inferred using a Bayesian coalescent

approach. The mean evolutionary rates of the VI-F, VII-F and VII-HN genes were estimated

at 8.07 × 10−4 subs/site/year (95% HPD: 5.06 × 10−4 ~ 1.09 × 10−3), 1.03 × 10−3 subs/site/year

(95% HPD: 8.54 × 10− 4 ~ 1.19 × 10−3) and 8.78 × 10−4 subs/site/year (95% HPD: 7.11 × 10−4 ~

1.05 × 10−3), respectively. For the effective population size of three subsets (VI-F, VII-F and

VII-HN), the LTT graphs (S3 Fig) showed that there were no new lineages since 2013. There-

fore, we assumed that there was no change imputed in the effective population size from 2013

onwards. Effective population size in BSP plots of VII-F and VII-HN genes showed that an

increasing trend was observed from 1995 to 2000, and the trend from 2000 to 2013 kept rela-

tively constant (Fig 2). Compared with VII-genotype, the effective population size of VI-F

gene was relatively stable since the 1970s supported by a 95% HPD interval (Fig 2).

The MCC tree showed (S4 Fig) that the most recent common ancestor (MRCA) for the

VI-F gene was estimated to be 1934 (95% HPD: 1897 ~ 1972), which might originate in South-

eastern China (Jiangxi province). The majority of VII genotype viruses which fell into four

phylogenetic clades (VIId, VIIc, VIIe and VIIf) might originate in Guangxi province. MRCA

estimation of both F and HN gene was similar with approximately 1984 (95% HPD: 1975 ~

1988) and 1972 (95% HPD: 1962~ 1978), respectively. Sub-genotype VIId viruses of VII-NDVs

were the majority clades since 2008, and a small group of two new clades VIIe- and VIIf-

NDVs were isolated since 2012.

The MCC tree based on hosts (S4D Fig) demonstrated that the earliest genotype VI NDVs

in China might be derived from pigeons. The MCC trees inferred from F and HN genes based

Fig 2. Bayesian skyline plot of genotypes VI and VII NDVs in China. Effective population size estimates are expressed on a logarithmic scale (Y-axis), and the

x-axis represents time (years). The dark thick lines denote the median estimates and the light thin lines give the 95% HPD intervals of the estimate. The dark blue,

red and green thick lines represent the median estimates of VI-F gene, VII-F gene and VII-HN gene, respectively. The light blue, red and green thin lines

represent the 95% HPD intervals of the estimates of VI-F gene, VII-F gene and VII-HN gene, respectively.

https://doi.org/10.1371/journal.pone.0239809.g002
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on hosts (S4E and S4F Fig) showed that the earliest source of genotype VII virus seemed to be

chicken and subsequently spread to other poultry and wild birds.

Phylogeographic analysis

Among 25 provinces, municipalities, and autonomous territories of China, a total of 285 migra-

tion links of well supported (Bayes factor support, BF> 3) were identified for VI-F, VII-F and

VII-HN genes (S5 Table). Herein, the total number of 156 migration links were the sum of VI-F,

VII-F (subsample one) and VII-HN BSSVS outputs (Fig 3). The eastern seaboard of China, Shan-

dong (29.50%; N = 46/156) and Jiangsu (21.20%; N = 33/156) provinces were the most frequently

implicated source and recipient location, followed by southern seaboard of China, Guangdong

(16.02%; N = 25/156) and Guangxi (12.80%; N = 20/156). The results showed that the eastern sea-

board of Shandong and Jiangsu provinces might have played a key role in seeding the NDV epi-

demics. This is further supported by the number of observed state changes in Markov jump count

analysis with migration into and out of Shandong and Jiangsu provinces, which was higher than

any other region (S5 Fig). Furthermore, the visual migration maps (Fig 3) indicated that the east-

ern and southern regions of China seemed to become the hot spots of NDV diffusion.

The data sets of VI-F, VII-F and VII-HN genes were used to infer bird migration history

and the Bayes factor support for each migration path between hosts were estimated using

BSSVS. Between the 19 hosts (poultry: 5, wild birds: 14) identified by F and HN genes, 44

routes (counting strategy is the same as above) of statistically supported (BF > 3) were identi-

fied. Interestingly, among all supported well migration paths (S6 Table), the migration direc-

tions were spread from poultry to wild birds accounted for 58.10% (N = 25/44), between

poultry accounted for 30.30% (N = 13/44), and between wild birds accounted for 11.60%

(N = 5/44). However, no migration links of wild birds to poultry were observed. This observa-

tion indicates that the sporadic cases of ND in wild birds are likely spillover from poultry.

Besides, the number of expected host-state migrations was also estimated in this study. Pigeons

may play an important role in the transmission of NDV genotype VI, with the largest into and

Fig 3. Migration link map of genotypes VI and VII NDVs in China supported by Bayes factor. (A) VI-F gene, (B) VII-F gene (subsample one), (C) VII-HN gene.

The line colour represents the relative strength by which the rates are supported: very strong (BF> 100, red lines), strong (20< BF< 100, blue lines) and positive

(3< BF< 20, green lines). The thickness of the arrows indicates increasing number of Markov jumps between locations.

https://doi.org/10.1371/journal.pone.0239809.g003

PLOS ONE Epidemiology and phylogeographical analysis of Newcastle Disease in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0239809 September 29, 2020 6 / 14

https://doi.org/10.1371/journal.pone.0239809.g003
https://doi.org/10.1371/journal.pone.0239809


output sources of virus. According to the outcomes of Markov jump counts analysis based on

F and HN genes of VII genotype (S6 Fig). Chicken is the biggest output source of VII-NDVs,

which spread to other poultry/wild birds, such as duck and goose. These results demonstrated

that NDV appears to mainly spread from poultry to other poultry and wild birds.

The results GLM analysis inferred from the data sets of VI-F, VII-F and VII-HN genes

showed that live poultry trade network is positively associated with viral spread (Fig 4). In

Fig 4. Predictors of NDV dispersal across China. (A), (B) and (C) represent the contributions of predictor variables to the dissemination of viral VI-F, VII-F and VII-HN

genes, respectively; VI-F,VII-F and VII-HN genes are shown as green, red and blue, respectively. (Left) Circles show the estimated conditional effect sizes for the predictor

coefficients (> 0 = positive association,< 0 = negative association). Error bars represent the 95% highest posterior density (HPD) credible interval for these estimates.

(Right) Bars show the posterior probability of inclusion of each predictor in the model.

https://doi.org/10.1371/journal.pone.0239809.g004
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addition to the predictor of live poultry trade, other biological potential predictors and abiotic

predictors had also been estimated, but they did not get noticeable support by any of the ana-

lyzed datasets (Fig 4).

Discussion

In the present study, large amounts of epidemiologic and genetic data, along with associated

temporal and geographic information, were collected to investigate the emergence and dis-

persal of the predominant genotypes VI and VII NDV in China. The number of outbreaks,

cases, and deaths of NDV in China has been decreasing in recent years. A strict immunization

program in conjunction with a reduction in the numbers of backyard poultry are the major

contributors to the decline of ND in domestic poultry. Phylogeographic analysis based on

prevalent genotypes of NDV was conducted for the better understanding of the evolution and

spatiotemporal dynamics of ND in China.

Bayesian coalescent analysis revealed the mean substitution rates of F gene of genotypes VI

and VII and HN gene of genotype VII were 8.07 × 10−4 subs/site/year (95% HPD: 5.06 × 10−4

~ 1.09 × 10−3), 1.03 × 10−3 subs/site/year (95% HPD: 8.54 × 10−4 ~ 1.19 × 10−3) and 8.78 × 10−4

subs/site/year (95% HPD: 7.11 × 10−4 ~ 1.05 × 10−3), respectively. The evolutionary rates in

this study were slightly lower than the rates estimated in a previous study [39] for full-length F

and HN genes sequences. However, it still lies within the 95% HPD interval of estimations for

F gene (0.71 × 10−3 ~ 1.98 × 10−3) subs/site/year and (0.51 × 10−3 ~ 1.68 × 10−3) subs/site/year

for HN gene, respectively. The differences in evolutionary rates may be due to the use of

sequences only including Chinese isolates in present study. Based on these evolutionary rates,

the MRCA was established to be around 1934 (95% HPD: 1897 ~ 1972) for VI-F gene, which is

compatible with the first outbreak record of ND in China in 1935 [3]. Similar to VI-F genes,

the MRCA of VII-F and VII-HN genes estimated in the present study is matching with a

recent study [39].

In the previous study, the BSP analysis of NP gene performed by Fan [10], suggesting the

population size of NDV showed an increase in the 1990s. Similar results were obtained in our

study of population dynamics history for NDV genotype VII, which are summarized in a BSP

supported by a narrow 95% HPD (Fig 2). This increase may be closely related to the fourth

panzootic of NDV worldwide [40–42]. Genotype VII virus evolved into epidemic lineages and

the viruses spread to most parts in China during this time [43, 44]. Unlike previous studies, the

population dynamics observed after 2000s displayed a different behavior since a relatively sta-

ble trend in the effective population size was observed. Although the factors responsible for the

observed population size are currently unknown, a compulsory vaccination program has been

considered to be a major factor leading to the death of some lineages [39]. While, the extant

diversity has not decreased over time, the circulating of mutants and/or new sub-genotypes of

the virus may keep the stable effective population of NDVs in China [45, 46]. More studies

should be carried out to explore these changes.

Two eastern seaboard provinces, Shandong and Jiangsu, were identified as the most fre-

quently implicated source and recipient location, which might play central roles for NDV

spread in China. This finding is also supported by the number of observed state changes in

Markov jump count analysis with migration into and out of Shandong and Jiangsu provinces,

which was greater than any other region (S5 Fig). Visualizing migration links (BF > 3)

revealed more detail about the migration patterns of the virus (Fig 3). All these migration

maps reflected that the eastern and southern seaboard of China became the active regions in

the transmission of NDV. The Bohai Economic Rim, Pearl River Delta and Yangtze River

Delta regions, located in eastern and southern China, are the most densely populated and

PLOS ONE Epidemiology and phylogeographical analysis of Newcastle Disease in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0239809 September 29, 2020 8 / 14

https://doi.org/10.1371/journal.pone.0239809


convenient transportation network in China, making them the economic powerhouses of the

country [47]. Those regions are also the places with the highest density of poultry farming in

China. However, GLM analysis showed that the viral dispersal may not directly associate with

the density of poultry. The possible reason is that both broilers and layers are vaccinated with

NDV vaccine nationwidely, which causing the low risk of NDV outbreak in most farms. Live

poultry transport is presumed to be related to the viral spread. While, how the virus is trans-

mitted in live poultry transporting remains unclear.

Long-distance migratory birds play a major role in the global spread of avian influenza

viruses in previous studies [48–50], while the role of wild bird migration in the spatial diffusion

of NDV is unknown. In our study, several long migration paths, such as Beijing to Xinjiang,

Jiangsu to Tibet, and Guangdong to Shandong were observed, which are associated with NDV

migration. Surprisingly, all these routes are associated with spread by poultry (S4 Fig). By

counting the migration links (BF> 3) of NDV spread between diverse hosts (S6 Table), no

migration links supported by BF (BF> 3) and the direction was from wild birds to poultry.

Furthermore, the number of expected host-state migrations (Markov jump counts) estimated

in this study also demonstrated that poultry (i.e. Chicken and pigeon) were the main output

source of NDV expansion and contributed most to the virus spread (S6 Fig). Therefore, we

speculated that the NDV mainly migrated from poultry to poultry/wild birds. However, this

result could be affected by the lack of NDV samples from wild birds [51].

A major limitation of any phylodynamic analysis is the dependence on sampling [52]. It is

an inherent issue that sampled viruses are concentrated in high-risk areas, potentially resulting

in sampling bias and inaccurate ancestral reconstruction processes [53]. Similar to previous

studies, an attempt was made to reduce sampling biases by down-sampling with a maximum

of 15 sequences per location [54, 55]. However, owing to passive and active surveillance in

wild bird populations appears to be very limited for NDV in China, the few available sequences

were collected from wild birds. Therefore, we did not opt for a down-sampling to obtain even

number of sequences by host category to infer the contribution of wild bird in the diffusion of

NDV, which inevitably leads to potential biases and limitations of the results. Furthermore, we

recommend that the active systemic surveillance of wild birds should be strengthened and val-

ued to obtain more viral samples from wild birds.

Conclusion

Our study demonstrates that the number of outbreaks, cases and deaths of NDV appeared to

be gradually decreasing since 2006, and a relative stable trend in the effective population size

was observed in the predominant genotypes of NDVs in recent ten years. The regions of Shan-

dong and Jiangsu were estimated to be the most relevant hubs for NDV migration, and the live

poultry trade may play an important role in viral spread. Also, the potential of NDV migration

appeared to be the highest between poultry fowl and spillover from poultry to wild birds.

These findings extend our understanding of dispersal patterns of the predominant genotypes

of NDV and cross-hosts transmission in China, which may improve awareness and future con-

trol capability and other important avian pathogens.

Supporting information

S1 Fig. Spatial distribution of NDV epidemic from 2006 to 2019. Different shades of color

represent the total number of outbreaks in the region. The deeper the color, the more out-

breaks of NDV in the region.

(TIF)
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S2 Fig. Plots of the divergence from the root of the tree against time of sampling. The X-

axis represents time, Y-axis represents root-to-tip divergence, the line is the best-fit regression.

The red spot represents the problematic sequences and has been removed in the phylogenetic

and phylogeographic analysis.

(TIF)

S3 Fig. Lineages-Through-Time (LTT) plot from BEAST. (A) VI-F gene, (B) VII-F gene, (C)

VII-HN gene.

(TIF)

S4 Fig. The Maximum Clade Credibility (MCC) trees of NDV. (A), (B) and (C) represent

the MCC trees based on locations of VI-F gene, VII-F (subsample 1) and VII-HN genes,

respectively; (D), (E) and (F) represent the MCC trees based on hosts of VI-F gene, VII-F (sub-

sample 1) and VII-HN gene respectively. Lines of diverse colors represent different locations

or host origins. The scale bar represents the unit of time (year).

(TIF)

S5 Fig. Histograms of the total number of location-state transitions. (A) VII-F gene (sub-

sample 1), (B) VII-F gene (subsample 2), (C) VII-F gene (subsample 3), (D) VI-F gene, (E)

VII-HN gene.

(TIF)

S6 Fig. Histograms of the total number of host-state transitions. (A) VII-F gene (subsample

1), (B) VII-F gene (subsample 2), (C) VII-F gene (subsample 3), (D) VI-F gene, (E) VII-HN

gene.

(TIF)

S1 Table. NDV epidemic data in China between 2006 and 2019 collected from Official Vet-
erinary Bulletin.

(XLSX)

S2 Table. Best model screening of NDV.

(DOCX)

S3 Table. The matrix data of environmental predictors, poultry farming and live poultry

trade predictors used for GLM analysis.

(XLSX)

S4 Table. Summary of F and HN genes sequence data of NDV by collected location, host

and year from 1986 to 2015 in China, and the accession numbers of the sequences used for

analysis.

(XLSX)

S5 Table. Posterior probabilities and Bayes factor support for diffusion between discrete

locations of NDV.

(DOCX)

S6 Table. Posterior probabilities and Bayes factor support for diffusion between diverse

hosts of NDV.

(DOCX)

S1 Dataset. The alignment sequence data of NDV used for analysis.

(ZIP)
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