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Abstract: The development process of catalytic core/shell microreactors, possessing a poly(ethylene
glycol) (PEG) core and a polyurea (PU) shell, by implementing an emulsion-templated non-aqueous
encapsulation method, is presented. The microreactors’ fabrication process begins with an emulsi-
fication process utilizing an oil-in-oil (o/o) emulsion of PEG-in-heptane, stabilized by a polymeric
surfactant. Next, a reaction between a poly(ethylene imine) (PEI) and a toluene-2,4-diisocyanate (TDI)
takes place at the boundary of the emulsion droplets, resulting in the creation of a PU shell through an
interfacial polymerization (IFP) process. The microreactors were loaded with palladium nanoparticles
(NPs) and were utilized for the hydrogenation of alkenes and alkynes. Importantly, it was found that
PEG has a positive effect on the catalytic performance of the developed microreactors. Interestingly,
besides being an efficient green reaction medium, PEG plays two crucial roles: first, it reduces the
palladium ions to palladium NPs; thus, it avoids the unnecessary use of additional reducing agents.
Second, it stabilizes the palladium NPs and prevents their aggregation, allowing the formation of
highly reactive palladium NPs. Strikingly, in one sense, the suggested system affords highly reactive
semi-homogeneous catalysis, whereas in another sense, it enables the facile, rapid, and inexpensive
recovery of the catalytic microreactor by simple centrifugation. The durable microreactors exhibit
excellent activity and were recycled nine times without any loss in their reactivity.

Keywords: non-aqueous interfacial polymerization; polyurea microcapsules; poly(ethylene glycol);
oil-in-oil emulsions; hydrogenation

1. Introduction

The pursuit of a sustainable future has become the driving force for today’s science,
where pioneering approaches toward greener processes are continually being developed.
In this regard, the design of efficient and facile catalytic systems is highly desired [1,2].
Although the homogeneous route of catalysis is endowed with high reactivity and selectiv-
ity [3,4], most of the industrial catalytic processes rely on the heterogeneous counterpart
owing to significant recovery and cost concerns [5,6]. Many efforts have been devoted to
bridging the gap between the two routes and to utilizing their advantages; in this regard,
numerous methods have been developed. Among others, this includes the use of Pickering
emulsion systems [7,8], anchored single-atom catalysts [9], mesoscale nanostructures [10],
and tunable solvents [11].

The use of metal nanoparticles constitutes another powerful tool for combining the
advantages of both disciplines because of metal nanoparticles’ high surface area [12,13].
However, despite their great reactivity and selectivity, metal nanoparticles require ad-
ditional immobilization techniques to avoid their aggregation, and usually involve the
use of different supports to enable catalyst recovery. The uses of organic polymer sup-
ports [14–16], dendrimers [17–19], supported ionic liquid phase (SILP) catalysts [20–22],
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magnetic nanoparticles (MNPs) [23–25], and inorganic supports [26–28] are just a few
examples of many immobilization techniques available for metal nanoparticles. However,
along with leaching problems, these methods generally involve multiple synthetic steps
and pre-functionalization processes, which make the development of new catalysts difficult,
expensive, and cumbersome. Moreover, generally, their reactivity and selectivity are less
efficient in comparison with the pure homogeneous catalysts.

Recently, catalysis within microenvironmental entities, called in brief microreactors,
has been proven to be efficient at least as the pure homogeneous route. The remark-
ably enhanced catalytic performance refers to the local high concentrations of reagents
within the dispersed microreactors, a fact that dramatically increases the reaction rate
constants [29–34]. Accordingly, microcapsules (MCs) might serve as a useful tool for induc-
ing such microenvironmental catalytic conditions [35–38]. Microencapsulation involves
the process of confining various types of ingredients for diverse purposes, such as the
controlled release of pesticides in agriculture [39–41], the release of drugs in pharmaceutical
applications [42–44], the masking of odors and tastes in the food industry [45–47], and the
protection and recycling of catalysts [48–52].

Interfacial polymerization (IFP) is a well-known chemical method for preparing
MCs [53–56]. This process is based on a polycondensation reaction between two highly
reactive monomers; it takes place at the boundary of two immiscible phases, and each phase
contains one of the two monomers. Polyurea (PU) is the most common polymer prepared
via IFP for the synthesis of MCs; it has been thoroughly investigated and applied in
different fields [57–62]. PUs are generated from the reaction between amine and isocyanate
monomers. These MCs are considered valuable owing to their unique features, such as low
Tg, rubbery characteristics, as well as their chemical [61] and mechanical [60] stability and
biocompatibility, [63] which make them an ideal material for holding liquid in their core
even for in vitro applications. In addition to the encapsulation of ionic liquids, which was
demonstrated by our group [64], phase change materials [65] and more common organic
solvents, such as xylene [66], were found to serve as an efficient platform for implementing
PU MCs. The encapsulation process in the latter examples was preceded by an oil-in-
water (o/w) emulsification process. Furthermore, water-in-oil (w/o) emulsion-templated
PU MCs have been reported as well [67]. However, these two emulsification strategies
(o/w and w/o) cannot provide an adequate solution in the case of moisture-sensitive
ingredients, including catalysts. Thus, the development of a non-aqueous process, such
as the use of oil-in-oil (o/o) emulsions, is of the utmost importance [68–72]. Although
PU MCs and o/o emulsions themselves are well-established topics, their combination has
barely been studied [73–77]. In addition, palladium NPs have been successfully supported
on different catalytic systems, including magnetic carbon-coated cobalt nanobeads [78],
silicon nanowire arrays [79], and cotton and filter paper [80], and were applied in the
hydrogenation of alkenes. Moreover, palladium NPs were successfully encapsulated
within PU MCs based on oil-in-water [81–83] and water-in-oil [84] emulsions.

Herein, we present the first palladium-based PU microreactor prepared via a non-
aqueous process that utilizes an o/o emulsion. A low-molecular-weight poly (ethylene
glycol) (PEG) was successfully encapsulated, for the first time, within a PU shell. PEG
represents a green reaction medium owing to its low vapor pressure and it is considered
as a GRAS (generally recognized as safe) material [85,86]. In addition to its acting as a
green medium for organic transformations, PEG was also found to play two additional
roles that have a direct positive impact on the catalytic performance. First, it acts as a good
stabilizing agent for palladium NPs, which is in line with the results obtained in other
works [87–90]. Thus, it prevents the aggregation of palladium NPs and increases their
reactivity. Second, it acts as a reducing agent, avoiding the need for additional reducing
agents to activate the palladium NPs. Recently, PEG-based microcapsules were developed
and applied for energy storage [91,92] or drug formulation [93–95] and for creating unique
multilayer polymeric shells with complex structures [96].
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2. Materials and Methods
2.1. Materials

The organic solvents heptane, toluene, xylene, and cyclohexane were purchased from
Romical, along with chemicals and laboratory equipment. Poly(1-vinylpyrrolidone)-graft-
(1-hexadecene) co-polymer (containing 80% by weight of C16 α-olefin and 20% by weight
of polymerized vinylpyrrolidone) (Agrimer AL-22) was purchased from International
Specialty Products (ISP). Bis-poly(ethylene glycol)/poly(propylene glycol)-14/14 dime-
thicone (ABIL EM 97) was purchased from Evonik. Poly(ethylene glycol) 200, sodium tetra-
chloropalladate (Na2PdCl4), dioctyl sulfosuccinate sodium salt (AOT), sorbitan monooleate
(span 80), poly(ethylene glycol) oleyl ether (brij 92v), branched poly(ethylene amine) 800,
2,2′(ethylenedioxy)bis(ethylamine), hexamethylenediamine (HMDA), and diethylenetri-
amine (DETA) were purchased from Sigma Aldrich-Merck. Polymethylene polyphenyl
isocyanate (PAPI 27) was contributed by FMC Corporation. Toluene-2,4-diisocyanate (TDI)
was purchased from Acros Organics. All substrates were purchased either from Alfa Aesar
(Tewksbury, MA, USA) or Sigma Aldrich-Merck (Budapest, Hungary).

2.2. Instrumentation

The o/o emulsion containing 0.01% Rhodamine B in PEG200 was analyzed by a
fluorescence microscope (Carl Zeiss, Axio Vision, Mátészalka, Hungary). The catalytic
microcapsules were initially examined using a high-resolution scanning electron micro-
scope (HR SEM) Sirion from FEI equipped with a Shottky-type field emission source and a
secondary electron (SE) detector at 5 kV. Focused ion beam (FIB-SEM), using a FEI Helios
nanolab 460S1 instrument, was used to investigate the inner and outer morphology of
the microcapsules and to evaluate whether core–shell or matrix structures were obtained.
Moreover, it was utilized for the mapping and EDXS (energy dispersive X-ray spectroscopy)
analyses. 1H-NMR measurements were performed using a Bruker DRX-400 spectrometer
to determine conversion and selectivity. Emulsifications were performed using the Kine-
matica Polytron homogenizer PT-6100 equipped with dispersing aggregate 3030/4EC. IR
was recorded with KBr pellets at room temperature in transmission mode on a PerkinElmer
65 FTIR spectrometer to determine the chemical composition of the microcapsules. In
addition, thermogravimetric analysis (TGA) was performed using a Mettler Toledo TG 50
analyzer at a temperature range of 25–700 ◦C and at a heating rate of 10 ◦C min−1 under N2
atmosphere. Scanning transmission electron microscopy (STEM) and electron diffraction
spectroscopy (EDS) were performed with (S)TEM Tecnai F20 G2 (FEI Company, Hillsboro,
OR, USA) operated at 200 kV.

2.3. The Procedure for Preparing the PdNPs/PEG200 Polar Phase

In a vial of 10 mL, 100 mg (0.287 mmol) of Na2PdCl4 was dissolved and sonicated in
4.66 g of PEG200 for one hour. At this stage, the mixture’s color changes from light red to
dark red and then to black, indicating that the palladium was reduced. Then, 0.34 g of an
amine was added and the mixture was allowed to sonicate for one more hour.

2.4. General Procedure for Preparing the PdNPs/PEG200@PU Microreactors

In a 100 mL beaker, 2.00 g of surfactant was dissolved in 13.40 g of heptane. The
solution was homogenized at 10,000 rpm for 30 s. Then, the PdNPs/PEG200 polar phase
was added and the homogenization proceeded for another two minutes. Afterward, a
mixture of 0.6 g of an isocyanate dissolved in 4 g of xylene was added dropwise. The
emulsion was allowed to stir at 500 rpm on a stirring plate for 4 h at room temperature.
The resulting catalytic microreactors were separated by centrifugation and washed three
times with heptane. The PdNPs/PEG200@PU MCs were then dispersed in heptane until the
weight of the whole dispersion was 20.00 g.
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2.5. General Procedure for the Hydrogenation Reaction

In a 25 mL glass-lined autoclave equipped with a magnetic stirring bar, 1 g of the
catalytic dispersion (0.047 mmol of Pd per 1 g of dispersion) was added to 2 mL of heptane.
Then, a suitable amount of substrate was added relative to the substrate/catalyst (S/C)
ratio. The autoclave was purged three times with H2 and then pressurized to 100 psi of
H2. The reactions were carried out at room temperature for 2.5 h. Finally, the MCs were
separated from the reaction mixture by centrifugation, washed two times with heptane,
redispersed in 3 mL of heptane, and then used for the next catalytic cycle. The reaction
content was examined using 1H-NMR spectroscopy in order to determine the conversion
and selectivity.

3. Results and Discussion
3.1. Synthesis and Optimization of the PEG200@PU MCs

The synthesis of the polyurea microcapsules (PU MCs) is based on an emulsion-
templated non-aqueous encapsulation process. The preparation procedure begins with
an emulsification process consisting of two immiscible oil phases: (1) the polar dispersed
phase consists of branched poly(ethylene imine)800 (PEI800) and Na2PdCl4 dissolved in
poly(ethylene glycol)200 (PEG200), and the PEG200 rapidly reduces the palladium (II) ions to
palladium (0) nanoparticles (NPs); and (2) a polar continuous phase of heptane containing
the polymeric surfactant ABIL EM 90. Then, a toluene-2,4-diisocyanate (TDI) dissolved
in xylene was slowly added while the homogenization process was running. Finally, an
interfacial polymerization process at the boundary of the emulsion droplets between the
PEI and the TDI is executed, leading to the creation of a PU MC possessing a core/shell
structure owing to the insolubility of the PU in PEG (Scheme 1).
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The selection of these materials was determined after conducting a series of optimiza-
tion experiments in which other continuous phases (cyclohexane and toluene), surfactants
(Agrimer AL-22, AOT, span 80, and brij 92v), amines (2,2′(ethylenedioxy)bis(ethylamine),
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HMDA, and DETA) and isocyanate (PAPI 27) were examined. Briefly, excluding the poly-
meric surfactants, ABIL EM 90, and Agrimer AL-22 (Figure S1), none of the surfactants
were able to stabilize the o/o emulsion; the stabilization of such emulsions is not obvious
and usually requires the involvement of multi-armed polymeric surfactants rather than
small ones; the former settle irreversibly at the interface of the droplets, as their departure
from the interface requires that all the surfactants’ arms leave the interface concomitantly,
which is statistically less possible. Moreover, whereas the interfacial polymerization of the
PEI/TDI and DETA/TDI pairs fabricates MCs, the 2,2′(ethylenedioxy)bis(ethylamine)/PAPI
27 and HMDA/PAPI 27 pairs result in the formation of nanocapsules (Table S1). However,
the latter two suffer from aggregation problems, whereas in the case of the DETA/TDI
pair, the encapsulation of PEG200 is not attainable. In the case of cyclohexane only, the
DETA/TDI pair affords MCs when Agrimer AL-22 was utilized as the emulsion stabilizer
(Figure S2); however, as already mentioned, the encapsulation of PEG200 with this pair is
not viable. For toluene, well-defined MCs were not obtained with either of the pairs.

3.2. Characterization of the PdNPs/PEG200@PU MCs

First, the catalytic system was investigated before the penetration of the palladium.
Scanning electron microscopy (SEM) was employed for determining the morphological
structure of our system (Figure 1a,b). Smoothed spherical surfaces and some pressed
capsules, caused by the high vacuum applied in this analysis, were obtained. As can be
easily noted, a polydispersed system with sizes ranging from 200 nm to 15 µm was formed,
which is a typical feature of macroemulsion systems. The measurement of the size of the
microcapsules dispersed in isopropyl alcohol by laser diffraction size analyzer indicated an
average size of 12.48 µm (d0.5 = 12.48 micron, Figure S3). Moreover, fluorescent microscopy
images indicate the presence of the liquid PEG200, accompanied by 0.01 wt.% of Rhodamine
B dye, within the PU MCs (Figure 1c,d).

Polymers 2021, 13, 2566 5 of 14 
 

 

Scheme 1. Schematic illustration of the PdNPs/PEG200@PU preparation procedure. 

The selection of these materials was determined after conducting a series of optimi-
zation experiments in which other continuous phases (cyclohexane and toluene), surfac-
tants (Agrimer AL-22, AOT, span 80, and brij 92v), amines (2,2′(ethylenedioxy)bis(ethyla-
mine), HMDA, and DETA) and isocyanate (PAPI 27) were examined. Briefly, excluding 
the polymeric surfactants, ABIL EM 90, and Agrimer AL-22 (Figure S1), none of the sur-
factants were able to stabilize the o/o emulsion; the stabilization of such emulsions is not 
obvious and usually requires the involvement of multi-armed polymeric surfactants ra-
ther than small ones; the former settle irreversibly at the interface of the droplets, as their 
departure from the interface requires that all the surfactants’ arms leave the interface con-
comitantly, which is statistically less possible. Moreover, whereas the interfacial polymer-
ization of the PEI/TDI and DETA/TDI pairs fabricates MCs, the 2,2′(ethylenedi-
oxy)bis(ethylamine)/PAPI 27 and HMDA/PAPI 27 pairs result in the formation of 
nanocapsules (Table S1). However, the latter two suffer from aggregation problems, 
whereas in the case of the DETA/TDI pair, the encapsulation of PEG200 is not attainable. In 
the case of cyclohexane only, the DETA/TDI pair affords MCs when Agrimer AL-22 was 
utilized as the emulsion stabilizer (Figure S2); however, as already mentioned, the encap-
sulation of PEG200 with this pair is not viable. For toluene, well-defined MCs were not 
obtained with either of the pairs. 

3.2. Characterization of the PdNPs/PEG200@PU MCs 
First, the catalytic system was investigated before the penetration of the palladium. 

Scanning electron microscopy (SEM) was employed for determining the morphological 
structure of our system (Figure 1a,b). Smoothed spherical surfaces and some pressed cap-
sules, caused by the high vacuum applied in this analysis, were obtained. As can be easily 
noted, a polydispersed system with sizes ranging from 200 nm to 15 µm was formed, 
which is a typical feature of macroemulsion systems. The measurement of the size of the 
microcapsules dispersed in isopropyl alcohol by laser diffraction size analyzer indicated 
an average size of 12.48 µm (d0.5 = 12.48 micron, Figure S3). Moreover, fluorescent micros-
copy images indicate the presence of the liquid PEG200, accompanied by 0.01 wt.% of Rho-
damine B dye, within the PU MCs (Figure 1c,d). 

 
Figure 1. (a,b) Scanning electron microscopy (SEM) and (c,d) fluorescent microscopy images of 
PEG200@PU microcapsules (MCs). 
Figure 1. (a,b) Scanning electron microscopy (SEM) and (c,d) fluorescent microscopy images of
PEG200@PU microcapsules (MCs).

Thermogravimetric analysis (TGA) indicates the existence of two weight loss stages
(Figure 2). The first weight loss is associated with the decomposition of the encapsulated
PEG200. This weight loss occurs almost at the same range of temperatures at which pure
PEG200 decomposes (200–300 ◦C), and constitutes 85% of the sample’s weight, which is in
agreement with the calculated wt.% of PEG200 from the total amount of MCs (87%). The
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second weight loss (15%), centered at 400 °C, apparently is associated with the thermal
decomposition of the PU shell, which, according to the theoretical calculations, stands at
13%. Moreover, the MCs are thermally stable up to 200 ◦C; this makes them applicable
even when elevated temperatures are needed.
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Fourier-transform IR (FT-IR) was further employed to confirm the chemical composi-
tion in the system. The results presented in Figure 3 revealed that polyurea polymerization
was achieved. The absence peak band at ~2270 cm−1 confirms the total polymerization of
the isocyanate monomer (TDI), which apparently reacted completely with the branched
PEI800 to form the polyurea shell. The absorption bands at 846 cm−1 (CH2 rocking),
890 cm−1 (C-OH bending), 1100 cm−1 (C-O stretching), and 2870–2960 cm−1 refer to
PEG200, whereas the wide absorption band from 3000 to 3700 cm−1 is attributed to the N-H
and O-H stretching vibrations of polyurea and PEG.

After confirming the feasibility for the formation of the MCs, they were loaded with
palladium NPs and characterized by different methods. The focused ion beam (FIB-SEM)
images indicate that the MCs maintain their morphology and their spherical structure
after the penetration of the palladium (Figure 4a,b). Moreover, a cutting process con-
firms the existence of a core/shell structure with a shell thickness of ~1 µm (Figure 4c,d);
however, the thickness varied, depending on the MC size. The presence of the carbon,
nitrogen, and oxygen elements was further confirmed by conducting mapping and EDXS
(energy dispersive X-ray spectroscopy) analyses, for the cut MC and the complete MCs
(Figures S4 and S5).

However, although the EDXS analysis confirms the existence of palladium, the map-
ping measurement was not sensitive enough to detect the presence of palladium. In this
regard, we carried out the mapping measurement in scanning transmission electron mi-
croscopy (STEM) mode (Figure 5a). Moreover, the figure reveals that the palladium NPs
were successfully encapsulated within the MCs. The presence of palladium was also veri-
fied by EDXS analysis (Figure 5b). Besides the already known positive stabilization effect of
the PEG [87–90], the very small palladium NPs are further stabilized by the nitrogen atoms
of the branched PEI800 and by the microencapsulation process itself; the latter constructs a
concrete barrier between the palladium NPs and constitutes a hurdle to the possibility of
high constrictions of palladium NPs, which eventually will lead to aggregation processes
and, subsequently, to a drop in the catalytic activity.
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Figure 4. Focused ion beam (FIB)-SEM images of the PdNPs/PEG200@PU MCs before etching process (a,b) and after
etching (c,d).
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PdNPs/PEG200@PU MCs.

3.3. Evaluation of the Catalytic Performance

The catalytic performance of the PdNPs/PEG200@PU microreactor was tested in the
hydrogenation of various alkenes and alkynes. As shown in Table 1, the catalyst exhibits
highly desirable activity in the hydrogenation of alkenes. Fully saturated alkanes could be
generated smoothly under mild conditions (Table 1, entries 1–6). The catalyst’s activity was
also tested in the hydrogenation of alkynes; aromatic terminal alkynes were fully converted
to the corresponding fully hydrogenated products (Table 1, entries 7–9). Interestingly, para-
substrates, such as 4-vinylanisole and 4-methylstyrene, exhibit a slightly better catalytic
performance compared with meta-substrates, such as 3-methylstyrene and 3-chlorostyrene.
Nevertheless, such a finding requires further kinetic experiments and an in-depth inves-
tigative study of the microreactor structure’s porosity. In addition, diphenylacetylene,
which was also fully converted, exhibits exceptional behavioral patterns with a moderate
selectivity of 61% towards the cis-stilbene and 39% towards the fully hydrogenated biben-
zyl. This partial selectivity could be attributed to the steric hindrance of the cis-stilbene
formed initially, which can slow its hydrogenation within the Pd/PEG@polyurea microre-
actor (Table 1, entry 10). An excellent reactivity of our catalyst was also achieved when
a substrate/catalyst ratio of 5000 was applied in the hydrogenation of styrene (Table 1,
entry 11).

Furthermore, the catalytic performance of the developed microreactor was compared
with a completely homogeneous system. In this regard, the hydrogenation of styrene
was used as a model reaction. Strikingly, the PdNPs/PEG200@PU microreactor exhibits
catalytic supremacy over the pure homogeneous catalyst under the same conditions; the
homogeneous catalyst reached 28% in PEG200, whereas the microreactor reached 100%
conversion. These results indicate that the PEG stabilization does not ensure high catalytic



Polymers 2021, 13, 2566 9 of 13

reactivity; however, performing the reaction within a microenvironmental entity guarantees
a high local concentration of interactions between the catalyst and the substrates, leading
to an improved catalytic performance and highly efficient processes.

Table 1. The catalytic performance of the PdNPs/PEG200@PU microreactor in the hydrogenation reaction.

Entry Substrate Conversion (%) a Entry Substrate Conversion (%) a
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4. Conclusions

With our continuous intent to bridge the gap between the homogeneous and het-
erogeneous routes, highly reactive PdNPs/PEG200@PU microreactors were successfully
developed. The fabrication process is based on implementing an o/o emulsion-templated
non-aqueous microencapsulation, through the interfacial polymerization of PEI800 and TDI.
These microreactors were well characterized and utilized in the hydrogenation of aromatic
alkenes and alkynes, exhibiting extraordinary reactivity. The catalytic supremacy results
from the very small and efficient palladium NPs; such a stabilization is achievable owing to
the presence of PEG, which, to the best of our knowledge, was not encapsulated previously
within a PU shell, surely not by a non-aqueous route. Not less important is the existence
of the microenvironmental entity, which allows high local concentrations of interactions
between the catalyst and substrates. Finally, the robust PU shell maintains the spherical
structure of the microreactor and enables its facile recovery and recyclability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13152566/s1, Figure S1: SEM images of PEG@PU microcapsules prepared using
different surfactants; Table S1: PEG200@PU microcapsules obtained using different amines and
isocyanate monomers; Figure S2: SEM image of PEG200@PU microcapsules obtained using PEG200-
in-cyclohexane emulsions; Figure S3: FIB-SEM images of Pdnano/PEG200@PU microcapsules.
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