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Abstract: Gait disorders and falls are common in elders and in many clinical conditions,
yet they are typically infrequently and subjectively evaluated, limiting prevention and intervention.
Completion-time of the Timed-Up-and-Go (TUG) test is a well-accepted clinical biomarker for rating
mobility and prediction of falls risk. Using smartphones’ integral accelerometers and gyroscopes,
we already demonstrated that TUG completion-time can be accurately measured via a smartphone
app. Here we present an extended app, EncephaLogTM, which provides gait analysis in much
more detail, offering 9 additional gait biomarkers on top of the TUG completion-time. In this pilot,
four healthy adults participated in a total of 32 TUG tests; simultaneously recorded by EncephaLog
and motion sensor devices used in movement labs: motion capture cameras (MCC), pressure mat;
and/or wearable sensors. Results show high agreement between EncephaLog biomarkers and those
measured by the other devices. These preliminary results suggest that EncephaLog can provide an
accurate, yet simpler, instrumented TUG (iTUG) platform than existing alternatives, offering a solution
for clinics that cannot afford the cost or space required for a dedicated motion lab and for monitoring
patients at their homes. Further research on a larger study population with pathologies is required to
assess full validity.
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1. Introduction

Abnormal gait patterns are common in a wide range of clinical populations, causing many
discomforts and significantly increasing the risk of falls in seniors [1–3], neurological patients [4–6],
and individuals suffering from orthopedic injuries [7,8]. Gait is commonly evaluated by the Timed Up
and Go (TUG) test [9], which is usually conducted by a human rater, with TUG total completion time
being the only quantitative outcome measured by a stopwatch. Scores for other gait components may
also be subjectively evaluated by the rater, a method prone to intra- and inter-rater variability [10,11].

In order to provide quantitative and more detailed gait analysis, instrumented TUG (iTUG)
has been introduced, using various devices for capturing a subject’s motion [12–15]. iTUG provides
additional biomarkers that complement TUG completion time and augment the evaluation of disease
progression [16,17]. On top of the TUG completion time, iTUG output includes the duration of TUG
phases (Stand-Up, Walk-Away, Rotation, Walk-Back, and Sit-Down), as well as non-temporal parameters
including step-related biomarkers and more [18–25]. iTUG’s higher accuracy in comparison to subjective
evaluation has proven to be more sensitive to pathologies, useful in fall risk prediction [12,19,23,24,26,27],
helpful in the evaluation of responses to therapeutic interventions [17,26], and can even provide
cognitive related indicators [24,26,28].

Medical devices used for iTUG can be grouped into three main categories: (A) motion capture
video cameras that record subjects’ gait from joint movements, (B) pressure sensor walkway arrays,
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that record walking pressures, and (C) wearables attached to the subjects’ bodies, that record sensor
accelerations. All three technologies require dedicated and often expensive hardware, as well as
trained professionals to operate the devices and extract the biomarkers. The first two groups also
require devoted and large spaces to accommodate the hardware setup, making these solutions even
more expensive and less accessible for most patients.

EncephaLogTM is a platform that utilizes smartphones’ internal motion sensors for conducting
motor evaluation. We have already demonstrated the accuracy of EncephaLog’s TUG module (a.k.a
AppTUG) in reporting TUG Completion Time in comparison to physicians’ reports [29]. In this paper
we present how EncephaLog TUG can provide additional gait biomarkers on top of the TUG completion
time, and how they match biomarkers obtained from representatives of the device categories mentioned
above. Given the wide availability of smartphones, EncephaLog TUG offers an accessible and affordable
iTUG solution that can take place at the clinic and/or in the patient’s natural environment.

2. Materials and Methods

We chose one representative from each of the three categories of medical gait evaluation devices
mentioned above, to be used as a reference to EncephaLog results. We performed a total of 32 TUG
tests (×2 repetitions per test): 17 TUG tests were used for matching EncephaLog against motion
capture cameras (MCC; Experiment 1), and 15 for matching against a walkway pressure mat and
wearable sensors (tested in parallel; Experiments 2 and 3, respectively). All sessions were conducted
on healthy subjects (n = 4). Data was collected simultaneously from the reference device and two
smartphones running EncephaLog, an Android device (Galaxy S7 by Samsung Electronics, Suwon,
South-Korea; 142.4 × 69.6 × 7.9 mm3, 152 g), and an iOS device (iPhone X, Apple, Cupertino, CA,
USA; 143.6 × 70.9 × 7.7 mm3, 174 g). Smartphones were worn on the subjects’ body using a strap,
a 5.5-inch phone waist bag commonly used for sport, on different body locations (Experiment 1:
sternum, abdomen and hip; Experiments 2 and 3: sternum).

All data was analyzed offline, using Python 3.6.0 and JMP 14 (SAS institute). Signals from all four
methods were aligned to the subject’s physical space (Superior-Inferior (SI), Anterior-Posterior (AP),
and Medial-Lateral (ML); Figure 1A), to put the data in a meaningful physiological context and to
use a unified coordinate system. Five TUG phases were identified (Figure 1B, shaded backgrounds):
Stand-Up (SU), Walk-Away (WA), Rotation (Rot), Walk-Back (WB), and Sit-Down (SD) [14,24,30–32],
and up to 10 biomarkers were extracted and compared between methods (within specific system
limitations, see below) including six temporal biomarkers: Completion-Time (CT; the traditional
TUG biomarker), Stand-Up Time, Walk-Away Time, Rotation Time, Walk-Back Time, Sit-Down Time;
and four non-temporal biomarkers: number of Steps (from straight walking phases), number of
Rotation Steps, average Steps Frequency (Cadence), and average Steps Length. Note that in some
cases, the reference devices were limited in their ability to capture some phases of the TUG protocol,
e.g., the walkway arrays cannot properly track the Stand-up and Sit-down patterns. These sections
were therefore excluded from comparison.
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Figure 1. Timed-Up-and-Go (TUG) conventions. (A) Human coordinate system. Anterior-Posterior
(AP) is the walking direction. (B) Event detection in EncephaLog TUG. Example of EncephaLog data
from one TUG test, including nine raw signals collected by a smartphone device (lines), and the five
TUG phases detected offline (shaded backgrounds). See Table A1 for events and biomarkers definitions.

We tested the agreement between EncephaLog and reference devices, looking at the concordance in
measuring the same biomarkers by the various methods, given that all motion sensors aim to measure
the same biomarkers. For that, we calculated the difference between each of the 10 biomarkers extracted
from EncephaLog and the equivalent biomarker from each other device, using Bland–Altman (B&A)
statistical method [33]. For each pair Encephalog and one of the three reference devices, the mean
of differences d between methods, and the maximum relative error (Equation (1)) were obtained
over all samples. In cases of correlation between the differences and the averages of two methods,
B&A analysis was applied after log transformation. A two-tailed t-test was used to compare the
difference between methods to zero (per biomarker), in order to test whether there was a systematically
fixed bias (i.e., no agreement) between methods. We further report upper and lower 95% confidence
intervals of the mean differences between methods, per biomarker. If the differences are within
the confidence intervals, they are not clinically important, indicating that the two methods may be
used interchangeably.

%error =
abs(golden standard− EncephaLog)

golden standard
· 100%. (1)

In Experiment 3, we further calculated the cross correlation (R) and the goodness of fit using
normalized root mean square error (NRMSE) between raw EncephaLog signals and wearable sensors
signals, expecting high and low values respectively.

2.1. EncephaLog

EncephaLogTM, by Montfort Brain Monitor (Zichron Ya’acov, Israel), is a smartphone-based
platform for motor and cognitive evaluation. One of the test protocols supported by EncephaLog
is the TUG test. The test starts with the subject sitting on a chair, and the smartphone attached
to his/her body by means of a strap. Once the subject is ready for the test, indicated by pressing
a “begin” button, an auditory countdown is heard, followed by auditory and vibratory “start” signals.
The subject then stands up from a chair, walks a few meters, turns, walks back to the chair, and sits
back down. During the test, EncephaLog uses three accelerometers (Acc; Figure 1B, top three lines)
and three gyroscopes (Gyro; Figure 1B, middle three lines) to measure subjects’ motion patterns.
Furthermore, smartphones provide three phone orientation signals (Yaw, Pitch, Roll; Figure 1B,
bottom three lines) derived from the six sensors. EncephaLog TUG validates the proper execution of
the test, and when the test is completed, it accurately reports the TUG Completion Time [29]. The raw
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sensors’ data is transmitted to the cloud (Microsoft Azure Storage), resampled to 100 Hz, followed by
offline signal processing and semi-automatic TUG phase detection and biomarker extraction. Table A1
describes the definition of the EncephaLog phases and biomarkers.

Many previous studies using wearable sensors for gait and posture recording place the device
on the body’s center of mass (COM), that is on the horizontal plane of the navel, and usually on the
lower back (and not on the abdomen) [11,28,34]. In preliminary studies we found that the location
most suitable for measuring the ML Sway biomarker (not presented in this paper) is the sternum,
as every degree of COM tilt is manifested in a larger distance shift of the sternum than of the COM
itself, magnifying sway amplitude. For all other biomarkers, we did not find a significant effect of
smartphone location. In order to artificially increase data variance, we placed the smartphones on
multiple body positions (sternum, abdomen, and on hip) during Experiment 1.

2.2. Motion Capture Cameras (MCC)

A system of video-based motion capture cameras (6+ series by Qualisys™, Göteborg, Sweden [35])
was used for TUG recording, and Visual 3D V6 software (C-Motion, Germantown, MD, USA) was used
for offline gait analysis. This video-based method offers high performance, precision, and usability
in biomechanics, using 10 motion capture cameras and eight passive infrared reflective markers on
the subject’s body (four for upper body: sternum, back, and each shoulder; and two for each foot;
see Figure 2A). Each marker provides 3D coordinates over time. Using a special calibration kit,
an experienced technician calibrated the cameras system before the experiment. Given the cameras’
fields of view visibility limitation [36], only 5 m were visible enough for the TUG test (out of an 8 m
walkway space) and therefore tests were limited to that distance.

Figure 2. TUG experimental setups. (A) Experiment 1. The motion capture cameras (MCC) setup
included a system of 10 (six drawn for simplicity) motion capture cameras, and eight passive infrared
sensors placed on the subject’s body (only seven displayed since the eighth was located on the subject’s
back). Additionally, two smartphones devices (Android and iPhone) running EncephaLog were
strapped to the subject’s sternum. (B) Experiments 2 and 3. Two smartphones devices (Android and
iPhone) running EncephaLog and one wearable sensor (Opal) were strapped to the subject’s sternum,
while he/she walked on a pressure walkway mat.
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EncephaLog tests (n = 17) were completed by one subject (43 year-old male), during Experiment
1, using three different device locations (sternum, abdomen, or hip); two walking distances (5 m,
the longest walking distance available in the MCC lab; and 3 m, the common TUG distance); and
various walking patterns (different speed, different step length, etc.) In each test, the subject performed
two TUG trials and their output biomarkers were averaged.

The output of the MCC system is coordinates in 3D space over time, per marker, without video
frames. The combination of limited cameras’ fields of view and the biological movement during
the TUG test create “missing” data, as not all infrared reflective markers are continuously captured
throughout the test. The main challenge of TUG data analysis via this method is therefore to find
which markers provide the data required for each gait biomarker and how to synchronize between
markers and signals, or between markers/signals and gait patterns (see examples in Figure A1).
Therefore, experts working in the video lab conducted this initial analysis with Visual 3D software,
synchronizing markers signals in time. We then plotted those signals to identify TUG phases according
to physical 3D movement trajectories in space and time.

2.3. Pressure Mat

In Experiment 2, a Zeno™ Walkway pressure mat and PKMAS gait analysis software (by
ProtoKinetics, Havertown, PA, USA; [37,38]) were used, consisting of a 40 × 800 cm2 pressure sensing
carpet, measuring body pressure data during walking. Pressure coordinates were recorded during
walking, mapping step patterns from which the Center of Pressure (COP) trajectory was calculated,
along with step cadence and step length. The Center of Mass (COM) trajectory can be extrapolated
from the COP, based on the correlation between the two parameters (COM, COP) [32,39,40] but the
extrapolation process may introduce errors and yield an inaccurate COM parameter.

Four healthy adults (three males and one female of age 33.5 ± 3.9) participated in 30 TUG trials
(n = 15 tests, two trials per test) of 8 m, with the smartphones strapped to the sternum (Figure 2B)
during all trials, and while involving different walking patterns (as in Experiment 1).

Raw data from the pressure mat contains time stamps of the pressure (force) produced by the
subjects’ feet. Given that the durations of the TUG phases do not depend on feet contact with the mat,
TUG temporal biomarkers could not be extracted from this system. Without the information pairing
specific steps to the beginning/end of each phase, it is very difficult to detect which steps refer to each
phase (e.g., to differentiate between SU and WA phases). The inability to place a chair on the pressure
mat makes it impossible to measure the duration of the SU and SD phases. The mat is also not sensitive
enough to properly identify the Rot phase because the output force signals in this short event are
performed over a small area of the mat, making it difficult to detect separate steps as well as accurately
identify the start and end points of the rotation movement. Altogether, only four of the 10 biomarkers
extracted from EncephaLog were also extracted from the pressure mat. It is important to mention that
the pressure mat can provide other biomarkers that cannot be extracted from EncephaLog, like toe
angle in each step, etc. [11,38].

2.4. Wearable Sensors

The Opal™ system (by APDM, Portland, OR, USA [41] consists of wireless movement sensors to
record and store data of functional mobility, including gait and balance. The system uses Micro Electro
Mechanical Systems (MEMS) technology to record movement with triaxial accelerometers, gyroscopes,
and magnetometers. The system wirelessly synchronizes simultaneous sensors. One Opal wearable
sensor (WS; sampling rate of 128 Hz) was positioned on the subjects’ sternums, alongside the two
smartphones. The procedure of Experiment 3 was the same as that of Experiment 2 (see Figure 2B).

We conducted two types of comparisons between EncephaLog and Opal WS data. First, given that
both methods are based on the same types of sensors, we compared the raw data (from three
accelerometers and three gyroscopes) between the two methods using cross-correlation and NRMSE.
Signal pre-processing included the detection of matching axes from the two methods based
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on the similarity of the signal’s general behavior, followed by several signal processing steps.
First, we temporally aligned the raw signals based on the torso’s first bending forward movement
during the Stand-Up phase, as detected by the gyro ML signal. Second, we resampled both signals to
103 Hz. Finally, we reduced the bias/DC components. After these steps, there were still differences
between the signals in the SI direction (especially during the SU and SD phases), presumably due to
different handling of the gravitation component in the different devices.

Following pre-processing, data from both resources was processed through the same processing
pipeline (by synthetically entering WSs data into EncephaLog’s CSV data format) to extract the same
biomarkers. We then tested the agreement between WSs and EncephaLog’s produced biomarkers,
as was done for the two other methods.

3. Results

Tables 1 and 2 summarize the comparison between biomarkers extracted from EncephaLog and
biomarkers extracted from each of the three standard motion sensors used in this study. We obtained
the mean of differences (Table 1) and the maximum relative error (Table 2) between the two methods
for Android (top row) and iPhone (bottom row) devices separately. All temporal biomarkers show
mean differences lower than 1.045 s. The maximal relative errors are not higher than 33% and 13%
for the MCC and WS methods, respectively (note that the pressure mat does not provide temporal
biomarkers). It is not surprising that EncephaLog shows higher agreement with the WS than with the
MCC, as both EncephaLog and the WS uses a similar type of sensors (accelerometers and gyroscopes),
while the MCC is based on joint position in space.
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Table 1. Bland–Altman agreement results between EncephaLog biomarkers and biomarkers from each of the three technologies used (top row—Android, bottom
row—iOS) across all trials, including Mean of differences (d), confidence intervals (95%), and the p value for two tailed t-test comparing the differences to zero. (-)
Marks biomarkers that could not be derived from the pressure mat. All confidence intervals include 0, and all p-values > 0.05, indicating that we cannot reject H0,
therefore we can state that the biomarkers are similar and there is a fine agreement between EncephaLog and each of the three methods.

Motion Capture Cameras n = 17 Pressure Mat n = 15 Wearable Sensors n = 15

¯
d

Agreement
Limits p-Value ¯

d
Agreement

Limits p-Value ¯
d

Agreement
Limits p-Value

Completion Time (s) −1.044 [−6.327,4.238] 0.833 - - - −0.858 [−4.938,3.222] 0.409
−0.026 [−5.184,5.132] 0.996 - - - 0.039 [−3.945,4.024] 0.496

Stand-Up Time (s) −0.024 [−0.903,0854] 0.855 - - - −0.051 [−0.350,0.249] 0.299
0.031 [−0.848,0.910 0.812 - - - −0.003 [−0.305,0.298] 0.485

Walk-Away Time (s) −0.350 [−3.568,2.868] 0.874 - - - −0.307 [−2.543,1.928] 0.424
0.018 [−3.144,3.179] 0.994 - - - 0.003 [−2.193,2.198] 0.424

Rotation Time (s)
0.319 [−0.908,1.545] 0.481 - - - −0.082 [−0.533,0.369] 0.308
0.401 [−0.801,1.603] 0.369 - - - 0.005 [−0.481,0.490] 0.488

Walk-Back Time (s)
−0.970 [−3.706,1.766] 0.656 - - - −0.286 [−2.147,1.574] 0.429
−0.532 [−3.146,2.083] 0.804 - - - 0.026 [−1.730,1.781] 0.499

Sit-Down Time (s)
−0.014 [−1.414,1.387] 0.962 - - - −0.038 [−0.899,0.823] 0.422
0.061 [−1.279,1.402] 0.828 - - - 0.082 [−0.678,0.842] 0.334

Rotation Steps (#) 1.912 [−1.200,5.024] 0.243 - - - 0.031 [−0.911,0.974] 0.407
1.912 [−1.200,5.024] 0.243 - - - 0.000 [−0.943,0.943] 0.500

Walking Steps (#) −2.454 [−9.771,4.864] 0.633 −1.103 [−6.301,4.096] 0.637 −0.092 [−5.646,5.462] 0.484
−2.485 [−9.723,4.753] 0.628 −1.035 [−6.255,4.185] 0.665 −0.025 [−5.431,5.381] 0.496

AVG. Steps Frequency
(Cadence) (#/s)

−0.102 [−0.316,0.111] 0.352 0.030 [−0.026,0.086] 0.691 0.026 [−0.028,0.079] 0.367
−0.130 [−0.354,0.093] 0.381 −0.001 [−0.026,0.086] 0.958 −0.003 [−0.062,0.055] 0.483

AVG. Steps Length (m) −0.015 [−0.087,0.058] 0.849 0.036 [−0.049,0.121] 0.556 0.002 [−0.073,0.077] 0.488
−0.015 [−0.086,0.057] 0.849 0.033 [−0.052,0.117] 0.596 −0.002 [−0.066,0.063] 0.488
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Table 2. Maximum relative error % between EncephaLog biomarkers and biomarkers from each of the
three technologies used (top row—Android, bottom row—iOS). (-) Marks biomarkers that could not be
derived from the pressure mat.

Motion Capture
Cameras n = 17 Pressure Mat n = 15 Wearable Sensors n = 15

Completion Time (s) 11.192 - 4.959
7.930 - 2.737

Stand-Up Time (s) 21.324 - 7.957
20.956 - 5.263

Walk-Away Time (s) 21.313 - 6.381
16.794 - 1.725

Rotation Time (s)
34.112 - 13.302
37.617 - 6.400

Walk-Back Time (s)
32.904 - 3.896
28.860 - 3.506

Sit-Down Time (s)
22.203 - 10.961
15.734 - 8.511

Rotation Steps (#) 50.000 - 20.000
50.000 - 0.000

Walking Steps (#) 40.450 22.124 18.771
41.466 16.628 2.258

AVG. Steps Frequency
(Cadence) (#/s)

49.564 7.204 4.996
50.646 3.874 2.500

AVG. Steps Length (m) 19.586 13.308 6.627
17.347 14.159 2.256

The maximal mean over all step related biomarkers is 2.5 steps, and the maximal relative errors
found are in the range of 50% (MCC) and 20% (WS and pressure mat). We assume that the larger
maximal relative errors of the steps related parameters as opposed to the temporal parameters (from
the same devices), result from intra rater biases, which are larger for the steps related parameters.
A common disagreement can be influenced by the decision of which steps to include in the Rotation
phase vs. which steps to relate to straight walking phases. A difference of even one single step, out of
3–4 steps typical to the Rotation phase or out of 6–8 steps typical to the WA phase, strongly affects the
step biomarkers, and thus yields high relative errors. Moreover, this difference is enlarged by the fact
that different raters and algorithms extracted the biomarkers from MCC and EncephaLog.

Specifically, Step Frequency and Step Length biomarkers showed high agreements between
EncephaLog and each of the three motion sensors methods used: maximal mean difference of
0.656 steps/s and 0.036 m, respectively. The relative errors of Pressure walkway and WS were lower
than 14.2% but for MCC there were maximal errors of 49%, pointing to disagreement between
EncephaLog and MCC, and highlighting the need for additional experiments with more subjects
and samples.

Overall, EncephaLog and Opal WS were most similar; an expected results given that both measure
movement accelerations (linear and angular) taken from the same position (sternum). These results
add to those we previously showed, that EncephaLog provides accurate measurements of the standard
TUG biomarker reported by neurologists using a stopwatch, the total Completion Time (where the
EncephaLog – neurologists’ correlation coefficient was R > 0.99 per rater [29]).

3.1. Experiment 1: EncephaLog vs. MCC

In this experiment, one subject performed n = 17 TUG tests, with different smartphone locations.
Three trials were not properly recorded by the MCC system and therefore only a single repetition
was analyzed for those tests, as opposed to the average over two repetitions (trials) for all other tests.
Signals from the two methods resemble each other (Figure 3A), and the highest agreement was seen
for the Completion Time, where the maximal relative error was 11.192%. This biomarker is the only
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quantitative outcome in conventional TUG, classically measured by a stopwatch (Figure 3B). Note that
the results were almost the same regardless of smartphone position.

Figure 3. MCC results. (A) Example of a visual comparison of MCC (top) and EncephaLog (bottom)
signals. Note the similarity in the number and duration of steps during TUG Walk Away (WA) and Walk
Back phases (WB), despite the different recourses: Superior-Inferior (SI) coordinates in 3D space in the
MCC, and acceleration-SI in EncephaLog. (B) Bland–Altman plot, reflecting the degree of agreement
between MCC and EncephaLog for TUG Completion Time (n = 17 samples). Presented here is data
from an Android (blue) and iOS (green) devices. Dashed lines represent 95% confidence intervals of
Bland–Altman (B&A) for Android (magenta) and iOS (red). Similar results and graphs were obtained
for all biomarkers in this experiment.

3.2. Experiment 2: EncephaLog vs. Pressure Mat

In this experiment, four subjects performed n = 15 TUG tests, all with with the smartphones placed
on the sternum. Out of the 10 biomarkers EncephaLog can extract, the pressure mat can extract only
four biomarkers, as it contains temporal information only for the walking sections and is not sensitive
enough to properly identify the rotation phases (see Materials and Methods). Despite the different
types of data, similar walking patterns were captured by both methods (Figure 4A). Mean differences
between EncephaLog and pressure mat biomarkers are small, with correspondingly small relative
errors. The lowest maximal relative error between the two methods was seen for Step Frequency
(i.e., Cadence; Figure 4B), which is one of the most important gait parameters, used as an indicator for
neurological classification and disease progression [1,12,42].
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Figure 4. Pressure mat results. (A) Example of a visual comparison of pressure mat (bottom) and
EncephaLog signals (top). Note the similar walking patterns captured simultaneously by both methods.
(B) B&A plot, an agreement measurement for Average Steps Frequency between pressure mat and
EncephaLog (n = 15 samples), performed on Android (blue) and iOS (green) devices.

3.3. Experiment 3: EncephaLog vs. Other Wearable Sensors

In the third experiment, we first compared the preprocessed accelerometer and gyroscope signals
(three axes each; see Materials and Methods) between the smartphones and ‘Opal’ WS (per trial; n = 30).
This analysis can be conducted only in this experiment given the similarity between the signals. As can
be seen in the example presented in Figure 5A (from one representative test; see additional examples
in Figure A2), most of the signals highly overlap, except for some short intervals such as the SU or SD
phases in Acc AP signal, or Rot in Gyro AP, overall leading to high agreements between biomarkers
(Figure 5B). We assume that these differences emerge from different filtering processes of the gravity in
the SI direction between the sensors of EncephaLog and Opal. For example, during SU, subjects bend
their torso forward, causing a large change in sternum position along the AP direction, evident by
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large Acc AP and Gyro ML signals. As a result, in some trials the correlations between the signals
are low and the normalized root mean square error (NRMSE) is high, leading to unsatisfying average
values (Table 3) of AccAP and GyroML (R = 0.568 and NRMSE = 0.271) relative to the other signals (R
> 0.86 and NRMSE < 0.13 for AccSI, AccML, GyroSI, GyroAP).

Figure 5. Wearable sensor results. (A) Comparison between EncephaLog and Opal WS of linear and
angular accelerations. Correlation coefficient (R) and Normalized Root Mean Square Error (NRMSE)
between signals of the two methods are presented above each graph. (B) B&A plot, an agreement
measurement of Average Step Length between Opal and EncephaLog (n = 15 samples) performed on
Android (blue) and iOS (green) devices.

Table 3. Experiment 3—correlation of raw signals between EncephaLog and ‘OPAL’ wearable sensors.
Average cross-correlation coefficients (R) and normalized root mean squared error (NRMSE) between
sensors signals (n = 30 trials).

Acc SI(X) Acc ML(Y) Acc AP(Z) Gyro SI(X) Gyro ML(Y) Gyro AP(Z)

R NRMSE R NRMSE R NRMSE R NRMSE R NRMSE R NRMSE

AVG 0.907 0.062 0.881 0.13 0.568 0.271 0.861 0.071 0.787 0.068 0.875 0.069
STD 0.14 0.049 0.121 0.082 0.097 0.058 0.225 0.07 0.243 0.046 0.208 0.069

Overall, as presented in Tables 1 and 2, there is high agreement between EncephaLog and ‘Opal’
biomarkers, expressed by only small mean differences between the two methods for all biomarkers,
and a maximal relative error of 20% for # Rotation Steps, reflecting substantial similarity between
EncephaLog (Android and iOS) and Opal wearable sensors.

4. Discussion

This pilot study demonstrated preliminary results for validating EncephaLog, a new smartphone
application for gait analysis, against standard medical devices used in movement labs that can be used
for iTUG. Our results show that EncephaLog can provide accurate biomarkers as other, more expensive
and complicated, methods. On top of the gold standard Completion Time, EncephaLog provides
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nine additional biomarkers. All 10 quantitative biomarkers are much easier and faster to obtain from
EncephaLog, than from representative technologies, which are not necessarily dedicated for TUG.
With the rising popularity and ubiquitous usage of smartphones [43], EncephaLog is expected to
provide a more accessible, and therefore scalable, tool for TUG-based gait analysis.

4.1. EncephaLog vs. Other Methods

In a previous study [29] we showed that EncephaLog Completion Time and conventional TUG
Completion Time evaluated by experienced movement disorder neurologists, highly correlate (R = 0.982
and R = 0.999 for n = 50 normal pressure hydrocephalous (NPH) and n = 50 healthy controls samples,
respectively). Here we expanded the scope of the previous study, by comparing the agreement between
EncephaLog and three other conventional gait measuring technologies for 10 TUG biomarkers in
a small sample of subjects.

We found that despite the high sensitivity and accuracy of motion capture cameras [44],
this technology is not ideal for TUG, given the cameras’ restricted field view, preventing simultaneous
capture of all body sensors throughout all TUG phases. In a previous study using the Qualisys™
MCC, subjects repeated the TUG test six times, prioritizing different TUG phases during distinctive
test repeats, and while wearing approximately 50 body markers [45]. Despite the robust procedure,
the physical field of views of the cameras made it impossible to analyze biomarkers such as the
complete gait cycle [45]. MCC further require a large physical space to house the system, cumbersome
procedures (e.g. attaching multiple body sensors [11,45]) and professionals to calibrate and operate
the system, analyze the data, and extract the TUG biomarkers; altogether making MCC expensive,
time consuming, and less accessible for iTUG.

Similarly, pressure mats also require large designated spaces [11,45]. These systems mainly focus
on straight walking and cannot provide Stand-Up and Sit-Down information, limiting the ability of
pressure mats in measuring TUG.

The last experiment showed that raw data from smartphone sensors is very similar to raw data
from designated movement tracking body sensors [46], which were used in a previous study and
demonstrated high within-session reliability over three iTUG repetitions [47]. The simultaneous Opal
and EncephaLog measurements we report here are more strongly correlated than the within-session
Opal correlations previously reported [47], reflecting the synchrony of the measurements despite
being acquired from different systems, which in turn highlights the accuracy of EncephaLog relative
to other commercially available wearable systems. The main advantages of EncephaLog over other
wearable systems is that EncephaLog does not require neither dedicated and expensive wearable
sensors, nor separate software to run the TUG test and/or to see the results, thus allowing the test to be
performed in any neurological clinic as well as in the community.

4.2. EncephaLog Benefits for iTUG

Despite TUG’s popularity, the conventional test faces a few drawbacks that EncephaLog addresses.
First, EncephaLog provides an objective assessment of the subjectively measured gold standard
outcome of the test, Completion Time. EncephaLog simultaneously records nine signals from the
beginning of the countdown, throughout the test, till a few seconds after sitting down on the chair.
Following the initiation of the test, all recordings are automatic, including the decision when the test
is completed, and when to terminate the recording (when all accelerometers are below a predefined
threshold for a couple of seconds). Thus, EncephaLog eliminates any subjective decisions and therefore
improves the quality of the data in general, and of the completion time in particular.

EncephaLog applies a fixed TUG protocol to address these inconsistencies, and its large (and
growing) normed Big Data database allows clinicians to compare a new patient to a subset of subjects
with similar age, gender, or disease, or to compare repeating tests from the same subject over time in
order to monitor disease progression.
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Third, EncephaLog provides nine additional biomarkers to the gold standard TUG outcome,
objectively and quantitatively expanding the clinical coverage of gait biomarkers. Rotation time
and step length provide information on medication-induced dyskinesia that worsens PD patients’
gait [26,48] and are used for assessing PD progression (characterized by slower rotation and smaller
step length [12]). Elders and those with Parkinson’s disease who fall have a tendency toward
a lower cadence, especially when combined with shorter stride [49,50]. Therefore cadence is used as
a quantifying measure for disease monitoring and rehabilitation as well as the assessment of fall risk [1].
It is therefore important to measure multiple biomarkers to monitor disease status and treatment side
effects, to gain a more complete clinical gait picture.

4.3. Study Limitations

This study was conducted on a small number of healthy subjects. In order for EncephaLog to
replace the traditional and standard TUG method in clinical settings, we must validate it on typical
clinical populations, not only on healthy controls. Moreover, while EncephaLog accurately provides
multiple biomarkers, it does not provide all possible iTUG-related biomarkers. The other methods
against which we compared EncephaLog biomarkers can provide other important biomarkers, such as
toe angle, Plantar/Dorsi flexion, etc. [11,24,51,52] We are currently developing algorithms to analyze
such additional biomarkers, that will be presented in future work.

5. Conclusions

This study presents that by using the EncephaLog app, a standard smartphone can be used for
providing quantitative TUG analysis which includes temporal and step-related biomarkers. The results
from this study show promising preliminary validation results on a pilot dataset, and warrant further
validation work on larger patient populations. The results also point to the advantage of having an
accessible iTUG solution that does not require a dedicated laboratory and equipment, as well as being
able to conduct the test and extract the results by anyone, rather than by trained medical personnel.
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Appendix A

Table A1. EncephaLog biomarkers and events definitions.

Completion Time (s)
Completion time of entire TUG sequence. Taken from the "Go" command until

the subject re-sits with his/her back leaning on the chair’s backrest, identified by
flattening of all signals (mostly identified by the Gyro ML signal).

Stand-Up time (s)

Begins when the subject stands up until the first step forward. Mostly identified
from the Gyro-ML signal, which dramatically increases during the initial bending

forward of the torso during stand-up, and then decreases dramatically at the
straightening of the torso and return of the signal to baseline.

Walk-Away time (s)
From the first step forward (end of SU phase) until the first rotation step.

During this phase, all accelerometers and gyroscopes are characterized by
a harmonic, cyclic pattern, while the Yaw, Pitch, and Roll are flat.

Rotation Time (s)

When the subject turns around, until the first walking backward step.
Clearly evident by a 180 degrees Yaw shift. Gyros SI and AP also change

dramatically, while the accelerometers become quite flat, lacking the rhythmic
pattern of straight walking.

Walk-Back Time (s)

Between rotations – from the first step backward after the end of the Rotation
phase, until the last second before the turning part of the Sit-Down phase.
Similarly to the WA phase, characterized by harmonic accelerometers and

gyroscopes pattern, while the Yaw, Pitch, and Roll are flat.

Sit-Down Time [s]

Incudes a turn to orient the body to the chair and sitting down on the chair. Starts
with the first turning step, indicating the intention to sit down, until the subject
sits "fully" on chair with his/her back leaning on the chair’s backrest. As in the

Rotation phase, the Yaw changes dramatically from 180 degrees back towards 0,
and the Gyros perform a dramatic change.

Walking Steps (#) Average number of steps during the straight walking phases (WA and WB;
excluding steps while rotating).

Rotation Steps (#) Number of steps during the Rotation phase.

AVG. Steps Frequency (Cadence) (#/s) Cadence, i.e. the AVG. number of steps per second, during straight walking
(WA and WB).

AVG. Steps Length (m) Average of step length, defined as one heel strike followed by the other heel strike
(half a cycle). Taken from straight walking phases (WA and WB) only.

Motion Capture Cameras (MCC) Data Analysis

Signal extraction: As mentioned in the Materials and Methods section, some infrared markers
are blocked from the cameras’ view during some TUG movements, requiring the combination of
signals from multiple markers in order to obtain a full signal required for the biomarker’s extraction
process. Experts working in the MCC lab manually conducted this initial analysis with Visual 3D
software. For example, when standing up, the upper body bends forward, hiding the sternum marker
for 1-2 sec. To overcome missing data, data from 3 other markers (back, left and right shoulder) needs
to be combined (see example Figure A1). For all steps-related parameters (Steps Average Length,
Steps Cadence (frequency), Number of Steps), signals were combined from three markers: Sternum SI
and 2 feet markers (one from each foot) in AP direction.



Sensors 2019, 19, 5179 15 of 18

Figure A1. MCC data analysis. MCC signals are composed from multiple sensors. Top: An example of
MCC “SI signal” composed from data of 3 infrared markers (sternum SI, left shoulder SI, right shoulder
SI, marked in cyan, red, and orange lines, respectively) combined in order to obtain one full SI signal
that was used in this study. Bottom: Equivalent data from EncephaLog is captured by a single sensor
(gyro ML, marked in blue). Shaded backgrounds represent the five TUG phases detected offline, as in
Figure 1.

Figure A2. Examples for Opal (a) vs. EncephaLog (b) Raw Signals Correlation. Results from two
different walking patterns.

References

1. Hausdorff, J.M. Gait variability: methods, modeling and meaning. J. Neuroeng. Rehabil. 2005, 2, 19. [CrossRef]
[PubMed]

2. Lee, L.W.; Kerrigan, D.C. Identification of kinetic differences between fallers and nonfallers in the elderly.
Am. J. Phys. Med. Rehabil. 1999, 78, 242.

3. Mortaza, N.; Abu Osman, N.A.; Mehdikhani, N. Are the spatio-temporal parameters of gait capable of
distinguishing a faller from a non-faller elderly? Eur. J. Phys. Rehabil. Med. 2014, 50, 677–691. [PubMed]

4. Morris, S.; Morris, M.E.; Iansek, R. Reliability of measurements obtained with the Timed “Up & Go” test in
people with Parkinson disease. Phys. Ther. 2001, 81, 810–818.

http://dx.doi.org/10.1186/1743-0003-2-19
http://www.ncbi.nlm.nih.gov/pubmed/16033650
http://www.ncbi.nlm.nih.gov/pubmed/24831570


Sensors 2019, 19, 5179 16 of 18

5. Stolze, H.; Kuhtz-Buschbeck, J.; Drucke, H.; Johnk, K.; Illert, M.; Deuschl, G. Comparative analysis of the
gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry
2001, 70, 289–297. [CrossRef]

6. Singer, C.; Sanchez-Ramos, J.; Weiner, W.J. Gait abnormality in essential tremor. Mov. Disord. 1994, 9, 193–196.
[CrossRef]

7. Yeung, T.S.M.; Wessel, J.; Stratford, P.; Macdermid, J. The Timed Up and Go Test for Use on an Inpatient
Orthopaedic Rehabilitation Ward. J. Orthop. Sports Phys. Ther. 2008, 38, 410–417. [CrossRef]

8. Di Stasi, S.L.; Logerstedt, D.; Gardinier, E.S.; Snyder-Mackler, L. Gait patterns differ between
ACL-reconstructed athletes who pass return-to-sport criteria and those who fail. Am. J. Sports Med.
2013, 41, 1310–1318. [CrossRef]

9. Podsiadlo, D.; Richardson, S. The timed “Up & Go”: a test of basic functional mobility for frail elderly
persons. J. Am. Geriatr. Soc. 1991, 39, 142–148.

10. Koyama, S.; Tanabe, S.; Itoh, N.; Saitoh, E.; Takeda, K.; Hirano, S.; Ohtsuka, K.; Mukaino, M.; Yanohara, R.;
Sakurai, H.; et al. Intra- and inter-rater reliability and validity of the tandem gait test for the assessment of
dynamic gait balance. Eur. J. Physiother. 2018, 20, 135–140. [CrossRef]

11. Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: an overview
of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394.
[CrossRef] [PubMed]

12. Zampieri, C.; Salarian, A.; Carlson-Kuhta, P.; Aminian, K.; Nutt, J.G.; Horak, F.B. The instrumented timed up
and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J. Neurol.
Neurosurg. Psychiatry 2010, 81, 171–176. [CrossRef] [PubMed]

13. Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility Lab to Assess Balance
and Gait with Synchronized Body-worn Sensors. J. Bioeng. Biomed. Sci. 2011, Suppl 1, 007.

14. Salarian, A.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Aminian, K. iTUG, a sensitive and
reliable measure of mobility. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 303–310. [CrossRef] [PubMed]

15. Dubois, A.; Bihl, T.; Bresciani, J.-P. Automating the Timed Up and Go Test Using a Depth Camera. Sensors
2017, 18. [CrossRef]

16. Sheridan, P.L.; Solomont, J.; Kowall, N.; Hausdorff, J.M. Influence of executive function on locomotor function:
divided attention increases gait variability in Alzheimer’s disease. J. Am. Geriatr. Soc. 2003, 51, 1633–1637.
[CrossRef]

17. Weiss, A.; Herman, T.; Plotnik, M.; Brozgol, M.; Maidan, I.; Giladi, N.; Gurevich, T.; Hausdorff, J.M. Can an
accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s
disease? Med. Eng. Phys. 2010, 32, 119–125.

18. Blin, O.; Ferrandez, A.M.; Serratrice, G. Quantitative analysis of gait in Parkinson patients: increased
variability of stride length. J. Neurol. Sci. 1990, 98, 91–97. [CrossRef]

19. Najafi, B.; Aminian, K.; Loew, F.; Blanc, Y.; Robert, P.A. Measurement of stand-sit and sit-stand transitions
using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng.
2002, 49, 843–851. [CrossRef]

20. Mancini, M.; Carlson-Kuhta, P.; Zampieri, C.; Nutt, J.G.; Chiari, L.; Horak, F.B. Postural sway as a marker of
progression in Parkinson’s disease: a pilot longitudinal study. Gait Posture 2012, 36, 471–476. [CrossRef]

21. Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: reference data for normal subjects, 10-79 years of
age. J. Rehabil. Res. Dev. 1993, 30, 210–223. [PubMed]

22. Whittle, M.W. Clinical gait analysis: A review. Hum. Movement Sci. 1996, 15, 369–387. [CrossRef]
23. Mummolo, C.; Mangialardi, L.; Kim, J.H. Quantifying dynamic characteristics of human walking for

comprehensive gait cycle. J. Biomech. Eng. 2013, 135, 91006. [CrossRef] [PubMed]
24. Mirelman, A.; Weiss, A.; Buchman, A.S.; Bennett, D.A.; Giladi, N.; Hausdorff, J.M. Association between

performance on Timed Up and Go subtasks and mild cognitive impairment: further insights into the links
between cognitive and motor function. J. Am. Geriatr. Soc. 2014, 62, 673–678. [CrossRef]

25. Jovanov, E.; Frith, K.H.; Madhushri, P.; Hunter, A.; Coffey, S.S.; Milenkovic, A. Chapter 44 - Gender
Differences in Mobility of Elderly: Measurements and Interventions to Improve Mobility. In Principles of
Gender-Specific Medicine, 3rd ed.; Legato, M.J., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 639–653.
ISBN 978-0-12-803506-1.

http://dx.doi.org/10.1136/jnnp.70.3.289
http://dx.doi.org/10.1002/mds.870090212
http://dx.doi.org/10.2519/jospt.2008.2657
http://dx.doi.org/10.1177/0363546513482718
http://dx.doi.org/10.1080/21679169.2017.1414304
http://dx.doi.org/10.3390/s140203362
http://www.ncbi.nlm.nih.gov/pubmed/24556672
http://dx.doi.org/10.1136/jnnp.2009.173740
http://www.ncbi.nlm.nih.gov/pubmed/19726406
http://dx.doi.org/10.1109/TNSRE.2010.2047606
http://www.ncbi.nlm.nih.gov/pubmed/20388604
http://dx.doi.org/10.3390/s18010014
http://dx.doi.org/10.1046/j.1532-5415.2003.51516.x
http://dx.doi.org/10.1016/0022-510X(90)90184-O
http://dx.doi.org/10.1109/TBME.2002.800763
http://dx.doi.org/10.1016/j.gaitpost.2012.04.010
http://www.ncbi.nlm.nih.gov/pubmed/8035350
http://dx.doi.org/10.1016/0167-9457(96)00006-1
http://dx.doi.org/10.1115/1.4024755
http://www.ncbi.nlm.nih.gov/pubmed/23775488
http://dx.doi.org/10.1111/jgs.12734


Sensors 2019, 19, 5179 17 of 18

26. Dibilio, V.; Nicoletti, A.; Mostile, G.; Toscano, S.; Luca, A.; Raciti, L.; Sciacca, G.; Vasta, R.; Cicero, C.E.;
Contrafatto, D.; et al. Dopaminergic and non-dopaminergic gait components assessed by instrumented
timed up and go test in Parkinson’s disease. J. Neural. Transm. 2017, 124, 1539–1546. [CrossRef]

27. Zampieri, C.; Salarian, A.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B. Assessing mobility at home in people
with early Parkinson’s disease using an instrumented Timed Up and Go test. Parkinsonism Relat. Disord.
2011, 17, 277–280. [CrossRef]

28. Herman, T.; Weiss, A.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. Identifying axial and cognitive correlates in
patients with Parkinson’s disease motor subtype using the instrumented Timed Up and Go. Exp. Brain Res.
2014, 232, 713–721. [CrossRef]

29. Yahalom, G.; Yekutieli, Z.; Israeli-korn, S.D.; Elincx-Benizri, S.; Livneh, V.; Fay-Karmon, T.; Rubel, Y.;
Tchelet, K.; Zauberman, J.; Hassin-Baer, S. AppTUG - A Smartphone Application of Instrumented ‘Timed Up
and Go’ for Neurological Disorders. EC Neurol. 2018, 10, 689–695.

30. Wall, J.C.; Bell, C.; Campbell, S.; Davis, J. The Timed Get-up-and-Go test revisited: measurement of the
component tasks. J. Rehabil. Res. Dev. 2000, 37, 109–113.

31. Weiss, A.; Mirelman, A.; Buchman, A.S.; Bennett, D.A.; Hausdorff, J.M. Using a Body-Fixed Sensor to Identify
Subclinical Gait Difficulties in Older Adults with IADL Disability: Maximizing the Output of the Timed Up
and Go. PLoS ONE 2013, 8. [CrossRef]

32. Lee, S.W.; Verghese, J.; Holtzer, R.; Mahoney, J.R.; Oh-Park, M. Trunk Sway during Walking among Older
Adults: Norms and Correlation with Gait Velocity. Gait Posture 2014, 40, 676–681. [CrossRef]

33. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical
measurement. Lancet 1986, 1, 307–310. [CrossRef]

34. Kim, K.J.; Gimmon, Y.; Millar, J.; Schubert, M.C. Using Inertial Sensors to Quantify Postural Sway and Gait
Performance during the Tandem Walking Test. Sensors 2019, 19. [CrossRef] [PubMed]

35. Human Biomechanics | Qualisys. Available online: https://www.qualisys.com/applications/human-
biomechanics/ (accessed on 26 August 2019).

36. Sprint, G.; Cook, D.; Weeks, D. Towards Automating Clinical Assessments: A Survey of the Timed Up and
Go (TUG). IEEE Rev. Biomed. Eng. 2015, 8, 64–77. [CrossRef] [PubMed]

37. Gait Analysis Software For Medical Device Manufacturers » ProtoKinetics. Available online: https:
//www.protokinetics.com/medical-device-manufacturers/ (accessed on 13 November 2019).

38. Zeno Walkway Gait Analysis System » ProtoKinetics. Available online: https://www.protokinetics.com/zeno-
walkway/ (accessed on 13 November 2019).

39. Shumway-Cook, A.; Anson, D.; Haller, S. Postural sway biofeedback: its effect on reestablishing stance
stability in hemiplegic patients. Arch. Phys. Med. Rehabil. 1988, 69, 395–400. [PubMed]

40. Hof, A.L. The “extrapolated center of mass” concept suggests a simple control of balance in walking.
Hum. Mov. Sci. 2008, 27, 112–125. [CrossRef]

41. Comprehensive Gait and Balance Analysis - APDM Wearable Technologies. Available online: https:
//www.apdm.com/mobility/ (accessed on 13 November 2019).

42. Danion, F.R.; Varraine, E.; Bonnard, M.; Pailhous, J. Stride variability in human gait: the effect of stride
frequency and stride length. Gait Posture 2003, 18, 69–77.

43. Kooistra, J. Newzoo’s 2018 Global Mobile Market Report: Insights into the World’s 3 Billion Smartphone
Users. Available online: https://newzoo.com/insights/articles/newzoos-2018-global-mobile-market-report-
insights-into-the-worlds-3-billion-smartphone-users/ (accessed on 13 November 2019).

44. Kwon, D.Y.; Gross, M. Combining body sensors and visual sensors for motion training. In Proceedings of the
ACM SIGCHI International Conference on Advances in Computer Entertainment Technology - ACE ’05; ACM Press:
Valencia, Spain, June 2005; pp. 94–101.

45. Ansai, J.H.; Farche, A.C.S.; Rossi, P.G.; de Andrade, L.P.; Nakagawa, T.H.; Takahashi, A.C.M. Performance of
Different Timed Up and Go Subtasks in Frailty Syndrome. J. Geriatr. Phys. Ther. 2019, 42, 287–293. [CrossRef]

46. Gouwanda, D.; Senanayake, S.M.N.A. Emerging Trends of Body-Mounted Sensors in Sports and Human
Gait Analysis. In Proceedings of the 4th Kuala Lumpur International Conference on Biomedical Engineering,
Kuala Lumpur, Malaysia, June 2008; Abu Osman, N.A., Ibrahim, F., Wan Abas, W.A.B., Abdul Rahman, H.S.,
Ting, H.-N., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 715–718.

47. Sankarpandi, S.K.; Baldwin, A.J.; Ray, J.; Mazzà, C. Reliability of inertial sensors in the assessment of patients
with vestibular disorders: a feasibility study. BMC Ear Nose Throat Disord. 2017, 17. [CrossRef]

http://dx.doi.org/10.1007/s00702-017-1794-8
http://dx.doi.org/10.1016/j.parkreldis.2010.08.001
http://dx.doi.org/10.1007/s00221-013-3778-8
http://dx.doi.org/10.1371/journal.pone.0068885
http://dx.doi.org/10.1016/j.gaitpost.2014.07.023
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
http://dx.doi.org/10.3390/s19040751
http://www.ncbi.nlm.nih.gov/pubmed/30781740
https://www.qualisys.com/applications/human-biomechanics/
https://www.qualisys.com/applications/human-biomechanics/
http://dx.doi.org/10.1109/RBME.2015.2390646
http://www.ncbi.nlm.nih.gov/pubmed/25594979
https://www.protokinetics.com/medical-device-manufacturers/
https://www.protokinetics.com/medical-device-manufacturers/
https://www.protokinetics.com/zeno-walkway/
https://www.protokinetics.com/zeno-walkway/
http://www.ncbi.nlm.nih.gov/pubmed/3377664
http://dx.doi.org/10.1016/j.humov.2007.08.003
https://www.apdm.com/mobility/
https://www.apdm.com/mobility/
https://newzoo.com/insights/articles/newzoos-2018-global-mobile-market-report-insights-into-the-worlds-3-billion-smartphone-users/
https://newzoo.com/insights/articles/newzoos-2018-global-mobile-market-report-insights-into-the-worlds-3-billion-smartphone-users/
http://dx.doi.org/10.1519/JPT.0000000000000162
http://dx.doi.org/10.1186/s12901-017-0034-z


Sensors 2019, 19, 5179 18 of 18

48. Smulders, K.; Dale, M.L.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B. Pharmacological treatment in Parkinson’s
disease: Effects on gait. Parkinsonism Relat. Disord. 2016, 31, 3–13. [CrossRef]

49. Creaby, M.W.; Cole, M.H. Gait characteristics and falls in Parkinson’s disease: A systematic review and
meta-analysis. Parkinsonism Relat. Disord. 2018, 57, 1–8. [CrossRef] [PubMed]

50. Shimada, H.; Kim, H.; Yoshida, H.; Suzukawa, M.; Makizako, H.; Yoshida, Y.; Saito, K.; Suzuki, T. Relationship
between Age-Associated Changes of Gait and Falls and Life-Space in Elderly People. J. Phys. Ther. Sci.
2010, 22, 419–424. [CrossRef]

51. O’Brien, K.; Culham, E.; Pickles, B. Balance and Skeletal Alignment in a Group of Elderly Female Fallers and
Nonfallers. J. Gerontol. A Biol. Sci. Med. Sci. 1997, 52A, B221–B226. [CrossRef] [PubMed]

52. Sutherland, D.H. The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 2001, 14, 61–70.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.parkreldis.2016.07.006
http://dx.doi.org/10.1016/j.parkreldis.2018.07.008
http://www.ncbi.nlm.nih.gov/pubmed/30041848
http://dx.doi.org/10.1589/jpts.22.419
http://dx.doi.org/10.1093/gerona/52A.4.B221
http://www.ncbi.nlm.nih.gov/pubmed/9224428
http://dx.doi.org/10.1016/S0966-6362(01)00100-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	EncephaLog 
	Motion Capture Cameras (MCC) 
	Pressure Mat 
	Wearable Sensors 

	Results 
	Experiment 1: EncephaLog vs. MCC 
	Experiment 2: EncephaLog vs. Pressure Mat 
	Experiment 3: EncephaLog vs. Other Wearable Sensors 

	Discussion 
	EncephaLog vs. Other Methods 
	EncephaLog Benefits for iTUG 
	Study Limitations 

	Conclusions 
	
	References

