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Pancreatic 𝛽 cells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion.While pyruvate
and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the
roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial
complex I (NADH/ubiquinone oxidoreductase). It is known that normal complex I function is absolutely required for episodic
insulin secretion after a meal, but the role of complex I in 𝛽 cells in the diabetic pancreas remains to be investigated. In this paper,
we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the
pathogenesis of𝛽 cell dysfunction in the diabetic pancreas.This hypothesis is based on the establishment that chronic hyperglycemia
overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic
pathways are impaired in diabetes, understanding how complex I in the 𝛽 cells copes with elevated levels of NADH in the diabetic
pancreas may provide potential therapeutic strategies for diabetes.

1. Introduction

Complex I (NADH-ubiquinone oxidoreductase) is the pri-
mary electron entry point in mitochondrial electron trans-
port chain [1, 2] and is absolutely required for glucose-
stimulated insulin secretion [3]. Inmammalian cells, complex
I has at least 45 subunits with a molecular weight close to
1000 kDa [4–6].This huge complex has threemajor functions
in mitochondrial bioenergetics and oxygen consumption
(Figure 1). First, it is the major enzyme that oxidizes NADH
to NAD+; thus, it is responsible for regenerating the majority
of NAD+ for continued glycolysis and for the function of
NAD+-dependent enzymes such as sirtuins, CD38, and poly
ADP ribose polymerases (PARPs) [7–11]. Second, complex I
is the major proton pumping machine in the mitochondrial
inner membrane [2, 12], which drives mitochondrial ATP

production needed by nearly all cells. Third, complex I is the
major site for cellular production of reactive oxygen species
(ROS) [13, 14] that have been demonstrated to be involved
in cell survival and death mechanisms [15, 16]. Interestingly,
despite numerous studies on complex I and its implications
in a variety of diseases [17–22], the role of complex I in
𝛽 cells in the diabetic pancreas remains unknown, albeit
normal function of complex I [3] and a basal level of complex
I-generated ROS are needed for insulin secretion under
physiological conditions [23]. In this review, we discuss the
fate of glucose, mechanisms of insulin secretion, and the roles
of glucose metabolic pathways including pyruvate cycling
and NADH cycling in insulin secretion under physiological
conditions. We propose the hypothesis that complex I is a
key player in maintaining redox balance for 𝛽 cell insulin
secretion and that its dysfunction impairs 𝛽 cell function.
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Figure 1: The three key roles of mitochondrial complex I: NADH
oxidation and recycling, superoxide production, and proton pump-
ing. Electrons from NADH are transported to CoQ via seven Fe-S
clusters with the terminal one being N2 [6]. Superoxide could be
produced at both the FMN-dependent site and the CoQ-dependent
site [132].

2. Fate of Glucose under
Physiological Conditions

Glucose can be metabolized to form numerous biomolecules
[24, 25] (Figure 2). It is used for ATP synthesis via the gly-
colytic and oxidative phosphorylation pathways. It generates
the reducing equivalent NADPH for anabolism and ribose 5-
phosphate for nucleotide synthesis via the pentose phosphate
pathway [26]. It can be converted via pyruvate to alanine
and can also be converted to lactate when the oxygen supply
is limited [24]. Furthermore, ketone bodies, sterols, and
fatty acids can all be synthesized from glucose via pyruvate-
derived acetyl-CoA [24].

3. 𝛽 Cell Glucose Sensing and
Insulin Secretion

In 𝛽 cells, glucose not only is a fuel, but also stimulates insulin
secretion [27–30]. Because 𝛽 cells have a high-Km glucose
transporter 2 (Glut2) and high-Km glucokinase, they can
respond to elevated levels of blood glucose, which is known as
supply-driven metabolism [31, 32]. Therefore, there is a tight
link between glucose metabolism and insulin secretion [33–
35]. The canonical events that trigger insulin secretion after a
meal are outlined in Figure 3 [35–38]. Glucose is transported
into 𝛽 cells by the glucose transporter 2 (Glut2). Once
inside the cells, glucose is phosphorylated by glucokinase
to yield glucose-6-phosphate (G-6-P) [39, 40], which is
then converted to 2 molecules of pyruvate by the glycolytic
pathway. Pyruvate is then transported into mitochondria
and converted to acetyl-CoA by the pyruvate-dehydrogenase
complex. Acetyl-CoA then enters the tricarboxylic acid
(TCA) cycle and electrons derived from it are donated to
NAD+ and FAD, leading to generation of intramitochon-
drial NADH and FADH

2
. Electrons stored in these two

molecules are further donated to coenzyme Q (CoQ) via
complex I and complex II, respectively.The eventual electron
transportation to O

2
leads to a proton gradient formation

across the inner mitochondrial membranes, which drives
ATP synthesis via complex V. When blood glucose levels are

elevated, more NADH and ATP are produced, leading to
closure of ATP-sensitive potassium channels, which in turn
depolarizes cell membranes and consequently opens volt-
age-gatedCa2+ channels, resulting inCa2+ influx into the cells
[30]. It is this Ca2+ influx that triggers the initial phase of
insulin secretion from prestored insulin granules after nutri-
ent ingestion (Figure 3) [28, 35, 41].

Once stored insulin is depleted, a second phase of insulin
release is initiated [42, 43]. This phase of insulin release is
KATP channel-independent [29] and this phase is prolonged
as insulin has to be synthesized, processed, and released for
the length of time of elevated blood glucose. This phase also
regenerates stores of insulin depleted in the first phase of
insulin secretion and is likely stimulated by metabolites such
asNADPHand𝛼-ketoglutarate produced by pyruvate cycling
pathways involving TCA cycle intermediates such as citrate,
malate, and oxaloacetate [29, 37, 44].

4. Pyruvate Cycling, Conversion of NADH to
NADPH, and Insulin Secretion

As an intermediate of glucose metabolism in 𝛽 cells, pyruvate
plays an important role in redox cycling between NADH and
NADPH [41, 45, 46]. This is reflected by the three pyru-
vate cycling pathways across the mitochondrial membranes
(Figure 4). The first is pyruvate-malate pathway. In this
pathway, pyruvate is converted to oxaloacetate by pyruvate
carboxylase. The latter is converted to malate by mitochon-
drial malate dehydrogenase. Malate is then shuttled out of
mitochondria to the cytosol whereby it is converted back to
pyruvate.This process results in the net formation ofNADPH
from NADH. The second pathway is the pyruvate-citrate
pathway, in which citrate is transported out of mitochondria
into the cytosol whereby it is split by citrate lyase to yield
acetyl-CoA and oxaloacetate. Acetyl-CoA can be used as the
carbon source for fatty acid synthesis and oxaloacetate can be
converted by malic enzyme 1 to pyruvate that then reenters
mitochondria. Similar to the pyruvate-malate pathway, the
pyruvate-citrate pathway also results in the net formation
of NADPH from NADH. The third pathway is pyruvate-
isocitrate pathway involving cytosolic isocitrate dehydroge-
nase that uses NADP as its cofactor [47]. Therefore, reducing
equivalents again are transferred from NADH to NADPH.

Evidence supporting the role of the three pyruvate cy-
cling pathways and NADPH in insulin secretion comes
mainly from the following studies. (A) Both pharmacological
inhibitors and siRNA-mediated suppression of mitochon-
drial pyruvate carrier severely impair insulin secretion [48].
(B) siRNA-mediated suppression of malic enzyme 1 impairs
insulin secretion [49]. (C) 𝛽 cells have high levels of pyruvate
carboxylase activity [44, 50].Unlike liver and kidney cells that
have phosphoenolpyruvate carboxykinase (PEPCK) used for
gluconeogenesis, 𝛽 cells do not have detectable PEPCK
[44, 51]. Therefore, 𝛽 cell pyruvate carboxylase must have
a purpose other than gluconeogenesis, which is thought to
replenish oxaloacetate in the TCA cycle when oxaloacetate
is removed for the pyruvate-malate pathway to generate
NADPH [52]. It has been reported that in 𝛽 cells nearly
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Figure 2: Fate of glucose. The major pathways shown in this diagram are glycolysis, the TCA cycle, and the pentose phosphate pathway.
Additionally, glucose can be used as sources for fatty acid synthesis and lactate and alanine formation and can also be stored as glycogen
in liver and skeletal muscle (not shown in the diagram). The pathways in blue (the polyol pathway and the hexosamine pathway) can be
significant ones for glucose utilization under diabetic conditions.

50% of the pyruvate pool derived from glucose is converted
to oxaloacetate [53]. Oxaloacetate not only replenishes the
TCA cycle intermediates, but also drives the pyruvate-malate
cycling pathway for NADPHproduction.Therefore, pyruvate
and NADPH are thought to be essential triggers for 𝛽 cell
insulin secretion [54–57].

5. Production and Recycling of NADH

5.1. NADH Production Pathways. Electrons derived from
glucosemetabolism are stored inNADHand FADH

2
, respec-

tively. In terms of glucose combustion, NADH is mainly gen-
erated by the glycolytic pathway, by pyruvate dehydrogenase
complex via dihydrolipoamide dehydrogenase [58], and by
the TCA cycle [59]. As shown in Figure 5, degradation of
one molecule of glucose can yield 8 molecules of NADH and
two molecules of FADH

2
(note that one molecule of glucose

drives two cycles of the TCA cycle).

5.2. Redox Shuttles for NADH Transportation. For 𝛽 cells,
NADH produced during glycolysis is required for glucose
sensing [60] and has to be transported into mitochondria for
oxidation by complex I. This is because, while in most tissues
lactate dehydrogenase can regenerate NAD+ for glycolysis to
continue, 𝛽 cells have very low lactate dehydrogenase activity
[61]. The translocation of NADH from cytoplasm to mito-
chondria is achieved by two redox shuttles (Figure 6): the
malate-aspartate shuttle and the glycerol phosphate shuttle
[62–64]. While the malate-aspartate shuttle can directly feed

NADH to complex I, the glycerol phosphate shuttle only
transports electrons from NADH to FADH

2
that donates

its electrons to CoQ via complex II. Therefore, the glycerol
phosphate shuttle is less efficient in terms of energy produc-
tion [24]. Another difference between the two redox shuttles
is that the malate-aspartate shuttle is a reversible process
that can only be activated by high level cytosolic NADH,
while the glycerol phosphate shuttle is an irreversible process
that can transport NADH into mitochondria even when the
cytosolic NADH level is low [24]. The two redox shuttles
have been shown to be important for glucose-induced insulin
secretion [63–65] as blocking of both shuttles abolished glu-
cose-induced insulin secretion although deficiency of either
shuttle singly did not alter the response to glucose stimulation
[28].

5.3. Complex I and NADH Recycling. Under aerobic oxi-
dation, nearly all NADH molecules generated by glycolysis
in 𝛽 cells will need to be recycled by complex I (Figure 1)
so that further glucose degradation can continue. It is known
that even under resting conditions the rates of NADH and
pyruvate generation are faster than the rates they are used
[66]. Therefore, we propose that complex I is the major en-
zyme maintaining NAD+/NADH redox balance and should
be under constant electron pressure. While complex I’s
oxidation of NADH is the major pathway for NADH/NAD+
recycling, part of NADH can also be used for reducing
equivalent transfer to NADPH via the pyruvate cycling
pathways as shown in Figure 4. However, whether there is
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Figure 3: Mechanisms of 𝛽 cell glucose sensing and insulin secretion. Shown is the first phase of insulin secretion stimulated by glucose
derived ATP. When glucose levels are high, ATP levels are high, which depolarizes cell membranes, triggers the closure of the KATP channels,
and induces opening of the Ca2+ channel. Consequently, insulin granules are infused with membranes and insulin is released. Complex I
plays a key role in this process as ATP production is driven by its oxidation of NADH and transportation of electrons to CoQ that accompany
proton pumping needed for ATP synthesis by complex V.

any crosstalk between complex I and the pyruvate cycling
pathways remains unknown at the present time.

6. Fate of Glucose in Diabetes

Under diabetic conditions, the glycolytic pathway is usually
impaired, not only due to inhibition by elevated levels of
NADH resulting from overnutrition or fuel excess [25, 67],
but also due to impairment of glycerol-3-phosphate dehy-
drogenase that is very vulnerable to oxidative and post-
translational modifications [68–71]. The consequence of this
impairment is that the flux of glucose through otherwise
insignificant glucose metabolic pathways is increased. These
include the polyol pathway and the hexosamine pathway
(Figure 2, the pathways in blue), PKC activation, and the
advanced glycation pathway [72]. Each of these pathways has
been demonstrated to be involved in ROS production and
induction of oxidative stress [71]. Therefore, oxidative stress
has been postulated to be a unifying mechanism by which
diabetes and its complications develop [73, 74].

7. The Polyol Pathway and NADH/NAD+

Redox Imbalance

Since the polyol pathway generates NADH that can be fed
into complex I via the malate-aspartate shuttle, we would like
to discuss the role of this pathway in diabetes in a little more
detail. The pathway involves two steps (Figure 7(a)). The first
reaction is glucose reduction by aldose reductase to form
sorbitol. This step consumes NADPH, so NADP+ is formed.
In certain tissues, sorbitol can accumulate and impair cellular
function by altering osmolarity [75, 76]. The second reaction
is sorbitol oxidation by sorbitol dehydrogenase to form fruc-
tose. This reaction uses NAD+ as the oxidant and generates
NADH and has been thought to be a major contributing
factor to NADH/NAD+ redox imbalance and pseudohypoxia
as it can compete with GAPDH for NAD+ [77], thereby
decreasing cytosolic level of NAD+ [78–80]. Intriguingly, the
rates of both glycolysis and the polyol pathway are known to
be increased in diabetic hyperglycemia [76], but how complex
I handles the additional amount of NADH produced by
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the polyol pathway is unknown.Moreover, it should be noted
that the accumulation of fructose has been suggested to be
more deleterious than that of glucose [75, 81] as fructose
metabolism by fructokinase bypasses key-regulated steps of
the glycolytic pathway [82] and thus can deplete intracellular
phosphate and ATP, thereby inducing oxidative stress and
inflammation [83].

Interestingly, as the first reaction consumes NADPH, it
has been suggested that consumption of NADPH by the
polyol pathway can also contribute to oxidative stress because
a lower level of NADPH would impair glutathione synthe-
sis by NADPH-dependent glutathione reductase. However,
conclusive evidence that NADPH levels or alterations in
NADPH/NADP+ ratios are lower in diabetes has yet to be
established. In fact, it has been reported that NADPH levels
in certain diabetic tissues are higher [75, 76, 84], though the
underlying mechanisms remain unknown. It is likely that
the pyruvate cycling pathways could generate the majority of
NADPH in diabetes.

8. Complex I and 𝛽 Cell Dysfunction in
the Diabetic Pancreas

During diabetes, many metabolic pathways are impaired due
to persistent hyperglycemia. At the early stages of hyper-
glycemia, elevated levels of NADH are mainly produced by
the conventional glucose metabolic pathways including gly-
colysis and the TCA cycle. AsmoreNADH is produced,more
electron pressure would be imposed on complex I. In this
sense, complex I dysfunction would likely mean increased
complex I activities as more NADH needs to be handled
by complex I. Indeed, it has been reported that complex I
activity is elevated in streptozotocin-induced diabetic rats
[85, 86]. Furthermore, as NADH oxidation by complex I
is accompanied by electron flow associated with electron
leakage and partial oxygen reduction [87, 88], more NADH
oxidation would thus lead to more ROS production [89].
This would eventually impair the glycolytic pathway due to
inhibition of glycerol-3-phosphate dehydrogenase by reduced
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availability of NAD+ [68, 69, 71, 90–94], leading to diversion
of glucose to other disposal pathways such as the polyol
pathway [95, 96]. It has been estimated that under diabetes
approximately 30%of the glucose ismetabolized by the polyol
pathway [93]. As this pathway generates NADH fromNAD+,
the ratio of NADH to NAD+ is highly elevated and perturbed
[73, 79, 97], leading to enhanced ROS production [98, 99]
and establishment of a chronic pseudohypoxic condition that
can cause chronic inflammation known to be contributing
to 𝛽 cell dysfunction [100–102]. Hence, there is a problem
in NADH and NAD+ recycling in diabetes, suggesting that
complex I function is impaired. We incline that complex
I activity would be elevated in diabetic pancreas as more
NADH has to be recycled by complex I. Nonetheless, how
complex I function is indeed impaired (either an increase or
a decrease in activity) by diabetic hyperglycemia in 𝛽 cells
has yet to be investigated. It is our belief that, under diabetic
conditions, a smooth flow of NADH via complex I could
help fight diabetes. On one hand, NADH is overproduced

due to overnutrition and hyperglycemic activation of the
polyol pathway [81, 103]. On the other hand, the NAD+
level is getting lower and possibly facing depletion due to
potential impairment in complex I activity and activation
of NAD+-dependent enzymes such as sirtuins, CD38, and
poly ADP ribose polymerase [10, 104–106]. Indeed, it has
been established that overactivation of the NAD+-dependent
PARP can trigger cell death due to NAD+ depletion [69, 107,
108].Therefore, an efficient NADH oxidation by complex I in
diabetes would be beneficial for diabetic individuals.

Based on the above discussions, we postulate that com-
plex I represents a potential therapeutic target for diabetes.
Specifically, as proposed in a hypothetical model shown in
Figure 7(b), if a protein or a small molecule target could
be designed under diabetic conditions to reduce metabolic
pressure on complex I, that is, relaying excess electrons
from NADH to CoQ, such a target could serve as a poten-
tial therapeutic approach by restoring NADH/NAD+ redox
balance in the absence of enhanced proton pumping and
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ROS production. Future studies should be directed toward
exploring these strategies.

Finally, it should be pointed out that while ROS have
been thought to be involved in impairment of 𝛽 cell function
and insulin secretion, no clear evidence that antioxidants
lower blood glucose in clinical settings has been reported.

Nonetheless, in animal models of diabetes induced by strep-
tozotocin, many compounds, particularly those from plants
and herbs, have been shown to be able to lower blood glucose
by scavenging ROS and attenuating oxidative stress [109–
118].The hypoglycemic effects of these compounds in human
diabetes, however, remain to be fully evaluated. Additionally,
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it should also be pointed out that while both metformin and
berberine have been shown to lower blood glucose levels by
inhibiting complex I function [119–125], how they exert their
actions on 𝛽 cell complex I also remains to be investigated.

9. Summary

In this paper, we have summarized the glucose metabolic
pathways and the roles of metabolic intermediates pyruvate
and NADH in 𝛽 cell function and insulin secretion. While
the role of pyruvate recycling has been well established in 𝛽
cell insulin secretion, the roles of NADH and complex I are
yet to be fully elucidated. We thus focus our perspectives in
this review on mitochondrial complex I that may contribute
to redox balance under normal conditions and imbalance
in diabetic conditions. We point out the fact that while
complex I regulates NADH/NAD+ recycling [126] and ROS
production under physiological conditions [127], its role in
diabetes whereby redox balance between NADH and NAD+
is perturbed remains unexplored. We indicate that NADH
overproduction due to chronic hyperglycemia would over-
load complex I, causing elevated levels of ROS production
that has been previously postulated to contribute to the
impairment of 𝛽 cell function and insulin secretion [128–
131]. Finally, we propose a hypothetic model of correcting
this complex I-associated problem by alleviating complex I
electron pressure that would also diminish complex I ROS
production (Figure 7(b)). Future testing of this hypothesis
may provide a potential therapeutic strategy for diabetes.
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