
New Algorithm and Software (BNOmics) for Inferring

and Visualizing Bayesian Networks

from Heterogeneous Big Biological and Genetic Data

GRIGORIY GOGOSHIN,1 ERIC BOERWINKLE,2,3 and ANDREI S. RODIN1

ABSTRACT

Bayesian network (BN) reconstruction is a prototypical systems biology data analysis ap-
proach that has been successfully used to reverse engineer and model networks reflecting
different layers of biological organization (ranging from genetic to epigenetic to cellular
pathway to metabolomic). It is especially relevant in the context of modern (ongoing and
prospective) studies that generate heterogeneous high-throughput omics datasets. However,
there are both theoretical and practical obstacles to the seamless application of BN modeling
to such big data, including computational inefficiency of optimal BN structure search algo-
rithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in
general, limited scalability in both reconstruction and visualization of BNs. To overcome these
and other obstacles, we present BNOmics, an improved algorithm and software toolkit for
inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems
biology—type data exploration, including both generating new biological hypothesis and
testing and validating the existing ones. Novel aspects of the algorithm center around in-
creasing scalability and applicability to varying data types (with different explicit and implicit
distributional assumptions) within the same analysis framework. An output and visualization
interface to widely available graph-rendering software is also included. Three diverse appli-
cations are detailed. BNOmics was originally developed in the context of genetic epidemiology
data and is being continuously optimized to keep pace with the ever-increasing inflow of
available large-scale omics datasets. As such, the software scalability and usability on the less
than exotic computer hardware are a priority, as well as the applicability of the algorithm and
software to the heterogeneous datasets containing many data types—single-nucleotide poly-
morphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemi-
ological variables, endpoints, and phenotypes, etc.
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1. BACKGROUND

Continuous progress in the development of high-throughput genotyping and sequencing technologies

led to the information overload problem that is likely to get exacerbated as the tools become even more

accessible. Translated into the data analysis vernacular, the challenge is essentially threefold: (1) increasing

the scalability of the data analysis methodology to accommodate large-scale datasets and (2) incorporating

many heterogeneous data types into the analysis framework, while (3) being able to account for, and interpret,

nonadditive interactions between the variables (genetic and otherwise). These three components are closely

interrelated, in that trying to build more complex and expressive models (containing many data types and

allowing for high-order variable interactions) necessarily and severely compromises scalability. Indeed, baseline

analysis of a typical genetic epidemiology dataset, for example, one million univariate single-nucleotide poly-

morphism (SNP)–phenotype tests corrected for multiple comparisons, generated by a genome-wide association

study (GWAS) is computationally undemanding, but does not even begin to address the latter two issues, while

more sophisticated analysis methods tend to be NP-hard and therefore computationally infeasible for the datasets

containing large numbers of variables.

Many of such methods belong to the domain of systems biology data analysis. Their primary goal is to

grasp the underlying biological system in its entirety, including the high-order interactions between the

variables contained in the data, potentially leading to the generation of new biological hypotheses of

varying levels of complexity. Coincidentally, additional challenges arise in (1) presenting the output of the

systems biology data analysis method in a format that can be understood and interpreted by a human expert

in a specific biomedical research field (e.g., genetic epidemiology of particular trait/disease in case of

GWAS genotype–phenotype mapping) and (2) guarding against overfitting/overparameterization (learning

spurious relationships from the datasets of unfavorable dimensionality, that is, the too many variables—too

few observations problem).

A prototypical systems biology data analysis method is Bayesian network (BN) modeling, in which a

graphical model (BN) of joint probability distribution of random variables contained in the dataset is

reconstructed directly from the data. All observed biological variables and measurements are understood to

have a probabilistic nature. Thus, in BNs, nodes correspond to random variables and edges to dependencies.

The edges are directed, reflecting (sometimes arbitrary, strictly for the purposes of mathematical conve-

nience) ancestor–descendant relationships between the variables. This directionality is important as it

defines a unique representation for the multiplicative partitioning of the joint probability and, subsequently,

a direction of inference in the BN once a BN structure (topology) is inferred. The absence of an edge

between the two variables indicates conditional independence (although this cannot be strictly guaranteed

in practice).

BN modeling, and network implementation in general, has been extensively used in genetics, bioin-

formatics, and computational biology since the turn of the century (Friedman et al., 2000; Pe’er, 2005;

Rodin et al., 2005; Djebbari and Quackenbush, 2008; Rodin et al., 2012; Liu et al., 2014; Lo et al., 2015;

Tasaki et al., 2015; Li et al., 2016, to name but a few). A detailed treatment of BN methodology, while

outside of the scope of this communication, can be found in Pearl (1988), Pearl (2000), Heckerman (1995),

and Chickering et al. (2004). We also refer the reader to Rodin et al. (2012) and references therein for

interpretation of ancestor–descendant relationships, causality, directionality, and BN validation in the

genetic epidemiology context (defined by datasets containing many SNP variables and phenotype and

epidemiological variables, among others). Briefly, the advantages of the BN modeling over simpler, less

expressive, data analysis methods are (1) the ability to incorporate many different data types into analysis,

(2) the ability to account for high-order variable interactions (e.g., epistatic and gene environment), and (3)

an output (a graphical network model) that is easily understood and interpreted by a human expert. In

addition, unlike certain other methods operating in Euclidean space, the BN approach is context inde-

pendent and has a number of attractive theoretical properties allowing mixing of different data types in a

theoretically sound probabilistic framework.

In addition, due to the natural sparseness of biological systems (i.e., each node in a network being

directly connected with a limited number of other nodes), the resulting BN models are relatively easy to

compartmentalize, which augurs well for both reconstruction and visualization scalability. Thus, BNs are

an excellent biological modeling and hypothesis generation tool. Three major practical difficulties asso-

ciated with BN modeling in our research context are (1) limited scalability, at least compared with the more

simplistic analyses, (2) absence of the readily available software aimed primarily at the biomedical data
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that can take advantage of the known genetic data type structures and various omics formats, and (3)

interpretation, validation (e.g., using statistical resampling), and visualization of larger BNs. A specific, but

persistent, challenge, on both theoretical and practical levels, is combining continuous and discrete vari-

ables together into a comprehensive hybrid probability model within the same BNs.

2. EXISTING ALGORITHMS AND SOFTWARE PACKAGES

Two useful BN reconstruction software lists can be found at (http://www.cs.ubc.ca/*murphyk/Software/

bnsoft.html and http://www.kdnuggets.com/software/bayesian.html). These include both commercial and

free general-purpose BN modeling software and BN-based classifiers. A more selective list of free pack-

ages, compared in the bioinformatics application context, is compiled in Paluszewski and Hamelryck

(2010), with a special emphasis on the dynamic BNs (DBNs). pwOmics (Watcher and Beisbarth, 2015) is

the most recent implementation of DBN modeling in omics data context. Another recent BN reconstruction

algorithm ( Jiang et al., 2010a, 2010b; Jiang and Neapolitan, 2012) is of special interest as the authors

attempted to increase the scalability of BN modeling to make it directly usable with the large-scale genetic

epidemiology datasets. However, it has limitations related to the constraints imposed on the general BN

structure and/or on the variables effectively preselected for BN analysis. This work had been followed up in

Neapolitan et al. (2014), Jiang and Neapolitan (2015), and Jiang et al. (2015), but remains subject to these

and related limitations. Large-scale genetic epidemiology dataset BN analysis was also pursued in Han

et al. (2012) at the cost of specifying a single target variable. BN Webserver (Ziebarth et al., 2013) is a

comprehensive biological BN analysis tool, which, among other things, efficiently deals with hybrid

models (heterogeneous variables/data types) in a biological user-friendly manner; unfortunately, its scal-

ability is essentially nonexistent (<20 nodes).

Constructing multilevel gene regulatory networks (Guan et al., 2014) aims at ChiP-seq and gene ex-

pression data, but suffers from the same major shortcoming (limited scalability). A more theoretically

rigorous approach of effectively reducing BN to a Markov neighborhood of a variable of interest (Gao and

Ji, 2016) is intriguing, but has not been deployed in actuality. Similarly, a theoretically attractive approach

to inferring causality via intervention data (Cho et al., 2016) suffers, once again, from low scalability and

limited deployment. In general, theoretical rigor and distributional flexibility on one hand and scalability on

the other tend to be mutually exclusive (see Yin et al., 2015a, for another recent example).

As an important aside, when developing BNOmics, complete code transparency was a priority. This

makes it much easier to change and augment the BN reconstruction engine (local search/optimization

algorithm) on the fly. Therefore, BNOmics is explicitly designed to be sufficiently flexible to incorporate

different variations of baseline search algorithms, network scoring functions, and discretization and im-

putation approaches. As such, BNOmics engine is ideally suited to be incorporated into a typical com-

parative simulation study framework. It should be emphasized that first and foremost, BNOmics is a

prototype/proof-of-concept design of a research platform prioritizing simplicity, flexibility, and adaptability

to various biomedical data analysis applications rather than an overly complex production-level software

package with all imaginable options and extensions.

3. ALGORITHM AND IMPLEMENTATION

BNOmics is realized as a series of Python scripts, including the data formatting and storage facilities,

actual BN reconstruction engine, output interface, and various optional support routines (data reformatting

plug-ins). A Python interpreter with a standard set of modules as well as additional numerical libraries

(numpy) is required to run the software. Help (readme) files and the example input data files (see section 4

for the example application) are provided as part of the distribution. Computationally, most intensive parts

of BN reconstruction engine are implemented in C++ using ctypes interface.

3.1. Data storage and input format

The input data file is a plain, flat (variables by observations/individuals) text file in a format similar to the

typical comma-delimited spreadsheet export file. Loading from other common file formats, streams, and

strings is also supported. Because the basic BN reconstruction algorithm uses multinomial local probability
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model, in the baseline implementation, discretization of continuous variables is necessary (but see section

3.2). Optional scripts are available for automated input file generation, including common discretization

procedures (equal size bins, equal value ranges, entropy-based discretization, etc.). In the context of genetic

epidemiology datasets, most variables are discrete by nature (e.g., SNPs, allelic states); however, one

should be careful when discretizing continuous phenotypes or, for example, metabolomic measurements.

Therefore, if possible, user-driven manual or semimanual discretization is advised (and can be easily

accomplished on the fly within the Python environment—it is precisely the flexibility of such nature that

led us to choose Python over other languages). Similarly, we advise carrying out user-driven missing value

imputation before engaging the BNOmics software—although optional imputation routines (using ma-

jority, frequency, and proximity rules) are available, sensible imputation is highly dependent on the specific

data type and quality control procedures implemented during the data generation stage.

For example, when analyzing metabolomic data, it is difficult to distinguish between the metabolite

measurement value missing due to a technical error, low metabolite concentration, or the actual metabolite

absence in the sample. Such technical artifacts have to be dealt with manually or semimanually, and with

large datasets, the only practical way to do so is to algorithmically parse the data (which, again, is easily

achieved by using a Python interpreter as a universal control interface). A more advanced imputation

algorithm, based on the local probabilistic inference in the immediate network neighborhood of a variable

in question (with missing values), is also available, but its properties have not been comprehensively

assessed yet and it will be described in detail elsewhere (A potential concern with such approaches is their

general susceptibility to overfitting.).

There is no explicit algorithmic or software limit imposed on the input dataset size (number of variables

and observations/individuals); however, data files larger than 2–3 GB are not recommended for a typical

workstation (16 GB memory or less) installation without certain modifications (to keep it in perspective,

500K variables-strong GWAS dataset containing *2000 case/controls fits in just under 1.5GB). To opti-

mize the data storage, retrieval, and memory I/O access in these situations, the actual data (single-type

variable values) have to be stored separately from the annotation file, row-wise, following the approach

espoused by Nielsen and Mailund (2008) to compensate for disk-bound I/O latency. When dealing with

extremely large data files, some form of batch data access may be required, with the whole segments of the

file loaded directly into RAM (which explains the need for row-wise data structure). It should be noted that

these issues are very architecture and problem specific and are best addressed on a case-by-case basis

within Python interface.

Among the implemented speed/scalability improvement measures is the integer-type encoding and

representation of the data in memory, which leads to a smaller footprint, a faster access, and an ability to

directly apply a number of efficient numerical operations. The input dataset entries are coded in 0, 1, 2,.
format. Further improvements are a result of an optimized algorithm design (section 3.3). Together, these

measures increase computational efficiency by approximately an order or two of magnitude (depending on

the data and compared with a typical BN software implementation) without imposing restrictions on BN

structure. It remains to be mentioned that current limit on the number of samples is flexible and depends on

hardware. In a recent application, for example,*107 samples (by 100+ variables), dataset analysis (results

not shown) was completed in under 24 hours. While the algorithm is, in principle, linear with respect to the

number of samples, at some point it becomes a bottleneck (see section 4.2).

3.2. Continuous and discrete variables

In baseline implementation, due to the limitations of linear Gaussian (for continuous variables) and

hybrid BN local probability models (Friedman et al., 2000; Pe’er, 2005), continuous variables in the dataset

have to be discretized. This is customary not just for BN modeling but also for many other data analysis

methods. However, there are no commonly agreed upon discretization guidelines or standards in bioin-

formatics, and existing research tends to be very microarray data-centric (Vass et al., 2011). This paucity

can, in large part, be attributed to our limited understanding of the theoretical motivation behind the

discretization. Indeed, the actual purpose of discretization is twofold: first, to come up with the partitioning

(into bins or events) that best reflects characteristic features of the distribution of a continuous variable, and

second, to preserve the intervariable relationships (correlation, dependency) and their relative strengths for

subsequent data analysis by the algorithms or statistical tests developed for discrete variables. While these

two goals obviously overlap, our primary interest lies with the latter and not the former. For example, in the
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context of genetic epidemiology, we should aim to discretize the continuous variables, such as quantitative

trait (QT) endpoints and intermediate phenotypes, in a manner that maintains true relative strengths of

SNP-phenotype associations.

Consequently, our considerations are motivated by the fact that partitioning is equivalent to selecting

only a few events from the sigma algebra of events associated with the distribution in question, and no

selection is any more representative than any other when it comes to establishing conditional independence

because it has to be established across all events. Another way of looking at it is while any Borel

measurable (reasonable and deterministic) partitioning function is independence-preserving, sensu stricto

independence of partitioned variables implies nothing with regard to the independence of original variables.

On the other hand, to falsify the independence assumption, it is sufficient to have at least one dependent

event, which, however, is not known a priori. Hence, the only reasonably efficient way to approach the

problem is from the perspective of falsification of the independence assumption, which is significantly less

time-consuming than verifying independence over all possible events.

In general, our principal proposition for manual or semimanual discretization is that the simplest dis-

cretization method (that satisfies basic common sense data type-specific requirements) should be chosen.

While partitioning into the fewer bins potentially might be perceived as leading to increased information

loss, this is, in fact, only an illusion generated by poor interpretability of often complicated conditional

independence, which does not care about the finer features nearly as much as about the change in the

conditional distribution over multiple scales (when conditioned on new variables). What matters the most is

how the bins/events of one variable intersect/interact with bins/events of another variable or a set of

variables. Moreover, any fears associated with coarser partitioning over the finer partitioning should be

counterbalanced by the corresponding decrease in random noise and natural variation customary for the

biological variable measurements. At the same time, it has been observed by us and others that partitioning

into lower number of bins tends to lead to higher edge density in reconstructed BNs (Clarke and Barton,

2000; Rodin et al., 2005), possibly because BN scoring metrics are biased toward fewer variable values.

Regardless, coarser binning can be considered as boosting sensitivity, while finer binning as boosting

specificity. Technically, this is due to the fact that the conditional probability distributions with fewer states

carry fewer constraints, which are therefore easier to satisfy when it comes to conditional entropy mini-

mization (or conditional probability maximization).

Such moderate overfitting, especially in the Markov locality of the continuous variables (e.g., QT

phenotype variables in GWAS datasets), is actually beneficial for the purposes of exploratory data analysis

(automated hypothesis generation). Typically, discretizing into two or three bins with entropy-based par-

titioning points (Fayyad and Irani, 1993), as long as it does not explicitly conflict with the observed nature

of the continuous variable, is to be preferred. It is also more favorable from the computational and memory

utilization efficiency viewpoint. This is the default option in BNOmics (maximum entropy clustering-based

discretization into a minimal number of bins). However, there is also a novel option of treating both

continuous and discrete variables simultaneously. It is fully functional, but at this time does not scale up as

well as purely discrete variable design (see section 4.3).

3.3. BN reconstruction algorithm

BN reconstruction is generally a two-stage process, involving model selection (search of the network

structure or topology that best fits the data) and probabilistic inference propagation given the fixed network

structure. The former is NP-hard and therefore some local or heuristic search algorithm is usually employed

(instead of exhaustive search) for any dataset of nontrivial size (starting with *20 nodes/variables, exact

algorithms and computations become infeasible). The candidate network structures, or models, are eval-

uated using an objective scoring function (metric). These often incorporate, explicitly or implicitly, a model

complexity penalty to prevent overfitting. In addition, an initial search state (network structure prior) has to be

specified—selection of an optimal (or biologically meaningful) prior has received much attention (e.g.,

Friedman et al., 1999; Steele et al., 2009; Keilwagen et al., 2010; Zhang et al., 2014), in part, because it may

alleviate the scalability problem to a degree. The default BNOmics algorithm is completely agnostic in regard to

the BN structure and prior and therefore is entirely data driven. However, restrictions on the network structure

(i.e., forbidding or forcing edges between the network nodes) can easily be accommodated if desired.

Once the input data file is initialized, the BNOmics algorithm works as follows: given the data D = {x1,., xN},

where N is the number of variables, we aim to assign these variables to the N nodes of a BN (Fig. 1).
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Let I = {1,.,N} be the index set of nodes and pi be the parent set of the i-th node xi. We also introduce a real-

valued objective (scoring) function F(xi, pi) that has two parameters, the node and its ancestor set. By changing

the ancestor set, we can evaluate different subnetworks centered around the node. The simplest (first-order)

operator would be an addition of a node xj to the ancestor set pi of the node xi. By varying j over

fk 2 I : xk =2pi; k 6¼ ig, we can score each configuration sij = F(xi, pi [ xj). Procedure 1 (Fig. 1) details the

process of finding the best single ancestor addition to a node. It returns jmax, the index of a node that (when added

as an ancestor) maximizes the scoring function. Thus, it generates the best edge to be added to the network in the

immediate Markov neighborhood of xi (in its upper part—the parents of xi), the edge representing a pair of nodes

(i,jmax). We call this first-order search as the only allowable operator is adding a single edge. After the addition of

an edge, a search for an optimal edge to remove from the ancestor set is performed. If such an edge is found, it is

dropped and the necessary changes are propagated through the structure.

This combination of add and drop searches allows to maintain a relatively optimal ancestor set (the task

of finding an optimal ancestor set is one of the fundamentally difficult problems, and a principal contributor

to NP-hardness of network reconstruction, and as such is solved only approximately). Similarly, second-

order search allows adding two new edges, evaluating sijk = F(xi, pi [ xj [ xk), and so on. Such higher-order

searches are obviously more computationally intensive, and the baseline BNOmics implementation uses

a

b

FIG. 1. BN reconstruction algorithm kernel pseudocode (Procedures 1 and 2). BN, Bayesian network.
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first-order search only, although stochastic second-order search has been implemented and tested (second-

order search is quadratic O(n2) in the number of variables, and if *n pairs of variables are sampled at

random from (n2-n)/2 total pairs, the second-order search becomes O(n)).

It should be noted that first-order search is still capable of discovering higher-order interactions in the

general sense as well as in the more specific biological sense (e.g., epistatic interactions between multiple

SNPs in a Markov neighborhood of a phenotype node). Not only that, it is possible to arrive to the same

ancestor set using different methods as the only thing that matters from the perspective of the order of

accounted for interactions is the ancestor set itself. However, higher-order searches do bring us closer to the

exhaustive search ideal (although in practice, they provide only marginal improvement, reflected in finer

detail, over other search strategies).

Because no network structure (topology) priors are assumed, we start with the empty network; all

ancestor sets are initialized to the empty sets, pi ) B, ci2 I. Equivalently, we assume independence of all

nodes and then try to falsify this assumption by establishing edges. Then, Procedure 1 is applied to each

node to obtain a set of N candidate best edges (i, j) with associated scores (first loop in Procedure 2, Fig. 1).

The second loop in Procedure 2 (Fig. 1) selects the highest scoring edge and rearranges the current state of

the network accordingly (performs bookkeeping). In effect, Procedure 2 reconstructs the network topology

by incremental edge addition (forward selection), creating a partial ordering of the nodes along the way. In

that respect, it is an elaborate extension of the basic greedy search (hill-climbing) local search/optimization

algorithm. It remains to be noted that different stopping criteria (in addition to the scoring function

improvement-based one shown in Fig. 1) can be used; in practice, the second loop of Procedure 2 can be

bound by the preset iteration limit (i.e., CPU time) or, for smaller networks, the search can continue until

full exhaustion (defined by the largest possible increase of the scoring function being commeasurable with

the machine epsilon/precision). In addition to the default gradient descent with constraints, stochastically

perturbed restarts are also available as an option (to deal with local minima). Optionally, stochastically

perturbed restarts are performed as stochastic relaxation over the structure and subsequent reconvergence

until a more optimal structure is found.

This algorithm compares favorably with other recent attempts to scale up the BN reconstruction (see

section 2 above; also Friedman et al., 1999), in that it does not limit the BN structure flexibility by treating

the SNPs, gene expression measurements, or other subgroups of variables separately and testing them for

pairwise correlation (implying, for example, linkage disequilibrium or first-order epistatic interaction in

case of SNPs) before reconstructing the BN. This said, majority of BN reconstruction algorithms (Nea-

politan, 2004), including the one detailed in this communication, reside somewhere in between basic

greedy search and exhaustive search (much closer to the former for any sufficiently large datasets), and

comprehensive simulation studies are necessary to ascertain their relative performance and robustness

within different application domains.

The default scoring measure used by BNOmics is MDL/BIC K2 (Cooper and Herskowitz, 1992), a

metric directly proportional to the probability of observing the data given the BN structure (i.e., mar-

ginal likelihood) that also penalizes explicitly for the model complexity (Schwarz, 1978). Alternatives

include AIC (Akaike, 1974) and different flavors of MDL/BIC (Rissanen, 1978; Suzuki, 1999). In brief,

AIC and BIC are both MDL with the difference in the complexity (penalty) term, while K2 is BDM

(Bayesian Dirichlet Metric) due to the dirichlet distributional assumption, which makes it potentially

not as robust as assumption-free MDL. These are realized in BNOmics as C++/ctypes modules. A novel

entropy-based scoring function, similar to MDL, but more flexible with respect to the model complexity

penalty, is also available, but it has not been extensively tested yet and will be described in detail

elsewhere.

3.4. Output format and visualization

BNOmics outputs reconstructed BNs in DOT graph description markup language format. Subsequently,

DOT files can be edited manually and visualized using Graphviz (open-source graph visualization software,

http://www.graphviz.org). Graphviz can apply numerous network layouts to generate publication-quality

illustrations. It is also possible to visualize smaller fragments of a BN (e.g., an immediate Markov

neighborhood of a certain radius of a node of interest, such as phenotype), which is essential when

visualizing BNs reconstructed from large datasets. In parallel, this allows Markov set-based classification

(serving as both a variable selection routine and a classifier similar to Naı̈ve Bayes).
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4. RESULTS AND DISCUSSION

4.1. Example applications

Three applications below illustrate various aspects of BN analyses using BNOmics (namely exhaustive

BN structure search, scalability, and visualization, and combining heterogeneous omics data and data

types). The 2nd and 3rd applications relate to the Atherosclerosis Risk in Communities (ARIC), a com-

prehensive epidemiologic study of coronary heart disease (CHD), and its risk factors (ARIC investigators,

1989) and are detailed strictly from the analysis methodology prospective, with the biological results to be

discussed elsewhere.

4.1.1. Variation in apolipoprotein E gene and plasma lipid and apolipoprotein E levels. This

application illustrates exhaustive search in smaller BNs. Two datasets are included with the software dis-

tribution (available directly from the authors), both in self-explanatory .csv comma-delimited format and with

SNP values recoded in 0,1,2,.format. These datasets were generated in a genetic epidemiology study of

variation in the apolipoprotein E (APOE) gene and plasma lipid and APOE levels and were described

in detail in Nickerson et al. (2000) and Stengård et al. (2002). Briefly, 20 SNPs in the APOE gene were

genotyped in 702 African Americans from Jackson, Mississippi, and 854 non-Hispanic whites from

Rochester, Minnesota. The datasets also contain plasma lipid and lipoprotein measurements and basic epi-

demiological variables. Three SNPs (designated #3937, #4075, and #4036 in the datasets) located in the

coding region of the gene are associated with various phenotypes of interest. Importantly, SNPs, #3937 and

#4075, code for the E2, E3, and E4 APOE isoforms. Plasma APOE level was the primary phenotype of

interest in the original study. Therefore, the immediate Markov neighborhood of the BN node associated with

the APOE plasma level variable received most scrutiny after the network reconstruction. The reconstructed

BNs are shown in Figure 2 (Fig. 2a, African Americans; Fig. 2b, non-Hispanic whites). We refer the reader to

Rodin et al. (2005) and Rodin et al. (2012) for the biological interpretation of the networks and will remark

instead on the technical aspects of the network reconstruction and visualization.

The BNs in Figure 2 were reconstructed using MDL scoring metric. The continuous variables were

discretized in three bins using entropy-based discretization with MDL stopping criterion. MDL scoring

metric imposes a relatively high penalty on the model complexity, resulting in the reconstructed BNs being

comparatively sparse (i.e., slightly underfitting). By varying the coefficients in the MDL/AIC metrics,

degree of overfitting can be adjusted. The search continued until full exhaustion (bound by the machine

epsilon, *2-53). The absence of any edges (hanging nodes at the top of Fig. 2a, b) indicates that the

corresponding nodes are independent of other variables. A number next to the edge is proportional to the

ratio of the model score of the BN with the edge to that of the BN without and quantifies the edge strength

(also reflected in the edge color or thickness, which are some of the output options).

In both networks, the Markov neighborhoods of the node, APO_E, are consistent with what is known

about the biology of ApoE and genetic epidemiology of APOE variation. In fact, the primary reason behind

using these two datasets as a benchmark example application throughout the BNOmics development is that

the APOE system can serve as a well-established true positive control with effects of known strength. As

we change different algorithmic parameters and software settings, it is possible to study the robustness,

sensitivity, and specificity of BN reconstruction by comparing the resulting APOE networks. For example,

while similar BNs were obtained by us previously using different scoring metric and search engines (Rodin

et al., 2005; Rodin et al., 2012), current BNs (Fig. 2) show improvement in robustness due to the exhaustive

model selection process.

On a related note, we also applied BNOmics to the commonly used benchmark datasets, Alarm (Beinlich

et al., 1989), Asia (Lauritzen and Spiegelhalter, 1988), and other well-known small datasets (see http://

www.bnlearn.com/for repository), resulting in networks similar or identical to the actual BNs and BNs

reconstructed by comparable software packages (results not shown).

4.1.2. GWAS analysis in ARIC study. This application demonstrates BNOmics’ scalability in both

BN reconstruction and visualization. The ARIC study is a population-based prospective cohort study of

CHD and its risk factors (ARIC Investigators, 1989). ARIC recruited 15,792 non-Hispanic white and

African American individuals aged 45–64 years at baseline (1987–89), chosen by probability sampling.

The phenotypes of interest to the ARIC study include (among many others) CHD endpoint events (CHD
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a

b

FIG. 2. BNs reconstructed from the APOE datasets. (a) African Americans from Jackson, Mississippi, (b) non-

Hispanic whites from Rochester, Minnesota. Numbers next to BN edges indicate edge strengths. See text for inter-

pretation of edge strength and disconnected notes. APO_E, APO_A, APO_B, TRIG, CHOL, and HDL stand for levels

of apolipoproteins E, AI, and B, triglycerides, cholesterol, and high-density lipoprotein cholesterol, respectively.

Number nodes indicate corresponding APOE SNPs. APOE, apolipoprotein E; SNP, single-nucleotide polymorphism.
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deaths, myocardial infarction, and hospitalized congestive heart failure), stroke events, metabolic syn-

drome, diabetes, blood pressure, and blood lipids. DNA samples (*900,000 SNPs genotyped using the

Affymetrix 6.0 chip) have been collected on all members of the ARIC cohort.

When reconstructing BNs from the ARIC GWAS data, we were particularly interested in blood lipid

phenotypes, thus concentrating on visualization of the subnetworks containing third-, second-, and first-

order (radius) Markov neighborhoods of blood lipid variables (shown in Fig. 3a–c). It should be empha-

sized that the single reconstructed BN was built from all *900,000 SNP variables available—it is not

shown for obvious reasons as third-order Markov neighborhood subnetwork is already almost impossible to

visualize. Figure 3d shows a subnetwork containing non-SNP variables only.

FIG. 3. (a–c) Visualization of the subnetworks of a BN reconstructed from the ARIC GWAS dataset. (a) Third-order

(radius) Markov neighborhoods of blood lipid and epidemiological variables (nodes 1–8). Other number nodes cor-

respond to the working SNP designations. Such fine scale does not permit for sensible visualization and is for

methodology illustration purposes only. (b) Second-order (radius) Markov neighborhoods of blood lipid and epide-

miological variables. (c) First-order (radius) Markov neighborhoods of blood lipid and epidemiological variables.

Numbers next to BN edges indicate edge strengths. Sex, v1age01, hdl01, totchol, ldl02, trigs, bmi01, and glucos01

stand for gender, age, high-density lipoprotein cholesterol, total cholesterol, low-density lipoprotein cholesterol, tri-

glycerides, BMI, and plasma glucose, respectively. Number nodes indicate corresponding SNPs. (d) BN reconstructed

from eight non-SNP variables only, for comparison purposes. GWAS, genome-wide association study.
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4.1.3. Metabolomic analysis in ARIC study. This example illustrates BNOmics’ ability to deal

with heterogeneous (mixed) and unknown data types. One of the major challenges with data of this nature

is that most variables are continuous with largely unknown (and different) distributions. Detailed de-

scription of metabolomic profile capture in a subset of ARIC study participants can be found in Zheng et al.

(2014). Briefly, biochemical profiles of human sera (*600 metabolites) from *2000 ARIC African

American individuals were obtained using current Metabolon platform (untargeted mass spectrometry).

Approximately 350 known and *250 unknown metabolites were measured.

For the purposes of this application, primary phenotypes of interest were hypertension and heart failure

(common in this subcohort). Analysis goals were to reconstruct the complete BN, to investigate the

immediate network neighborhoods of hypertension and heart failure nodes, and to possibly assist in

identifying the unknown metabolites; 208 reliably reproducible metabolites were included in the final BN

analysis, together with relevant epidemiological variables. The full BN is shown in Figure 4a; Figure 4b

depicts immediate (first-order) Markov neighborhood of hypertension phenotype variable. One unknown

metabolite (X–11372) was indicated and is currently being followed up.

FIG. 3. (Continued).
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4.2. Scalability

We have successfully applied BNOmics to various large-scale GWAS and metabolomic datasets,

scalability being limited only by the hardware (memory) and preset computational time limits. Specifically,

constructing a robust (converged) BN from a 900,000 SNP GWAS dataset took about 7 days on a regular

16GB 8-core workstation; a dataset with *100,000 variables required *27 hours, *10,000 variables

required *10 hours (note that all of the efficiency improvements outlined above in the Data Storage and

Input Format section were implemented in a manner specific to each dataset). Therefore, we suggest that

potential users experiment with maxing out BNOmics on their respective hardware platforms. We also

found scipy weave package (that allows inclusion of C/C++ into Python code) to be potentially useful when

dealing with extremely large datasets.

At this time, there is only limited provision for parallelization, but an improved version of the algorithm

that can take advantage of parallel computing is currently in the works. This becomes especially relevant

with the number of samples >106. Currently, coarse multithreading/parallelization at the ancestor search

level does not seem to provide significant benefit due to the fact that data passing to threads dominate the

FIG. 3. (Continued).
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process for large sample sizes, and the resulting process tends to be even less efficient than the serial

version of the algorithm. A finer granularity level for multithreading/parallelization is necessary. Con-

currently, in future, we plan to switch to the contiguous C arrays for improved data storage and retrieval.

In general, we intend to recode the BNOmics prototype completely in C and maintain two versions—

Python version for BN modeling research and methods testing and C version for the actual data analyses.

This said, BNOmics is already more efficient than commonly used general-purpose BN reconstruction

packages (e.g., bnlearn, http://www.bnlearn.com/and pebl, http://code.google.com/p/pebl-project/).

It should be reemphasized that while BNOmics outputs (in DOT language) a complete BN, for suffi-

ciently large networks, it is impractical to deal with the output in its entirety (indeed, it makes no sense to

generate a .pdf file visualizing a network with more than 100–200 nodes). Therefore, users are advised to

concentrate on the smaller subnetworks by generating and visualizing lists of parents and children (i.e.,

immediate ancestors and descendants, respectively) of certain nodes of interest, such as phenotypes (see

typical examples in preceding section), or subgraphs defined by the order/radius of relationship (a certain

number of generations up and down family tree). In future, we plan to extend this feature by adding the

adjacency matrix representation of the ancestor–descendant relationships.

4.3. Future directions

We are committed to the continuing open-source flexible code development of BNOmics. While the

basic modular organization of the package will remain intact, we plan to introduce major improvements in

usability and efficiency in response to the increasing availability of very large-scale datasets (that are

presently being generated as part of our ongoing research projects). We are also soliciting ideas and

suggestions for improvements from the greater community of potential users, with a special emphasis on

(but certainly not limited to) automated format conversion for diverse datasets. We are currently carrying

out the analyses of epigenetic (methylome) and immune system datasets, to name just a couple. Another

area of future concentration is using BNOmics to vary and compare, in the context of comprehensive

FIG. 3. (Continued).
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simulation studies, different BN reconstruction alternatives with respect to scoring functions/metrics, local

search/optimization algorithms, and discretization procedures. The Python code was developed from the

very beginning with such simulation studies in mind as various changes in the reconstruction scheme can be

incorporated on the fly. In this sense, BNOmics can be used not only as a data analysis tool but also as a

platform for the investigation, and improvement, of different aspects of the BN modeling process. Work

currently in progress is itemized in Table 1.

a

b

FIG. 4. (a) BN reconstructed from the ARIC metabolomic profile dataset. (b) Visualization of a first-order (radius)

Markov neighborhood subnetwork of hypertension phenotype node (HYPERT05). Numbers next to BN edges indicate

edge strengths. Epidemiological and known metabolite node designations are largely self-explanatory (e.g., V1AGE01,

glycerol). X—<.> nodes indicate unknown metabolites. See Zheng et al., 2014, for more detail.
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5. CONCLUSIONS

Three features of BNOmics set it apart from comparable alternatives—first, its high computational

efficiency and scalability; second, flexibility and open nature of the source code; and third, its immediate

applicability to the large-scale datasets generated by the omics studies. BNOmics has been very useful in

our own research projects and collaborations. Currently, there is a substantial interest in applying systems

biology thinking and analysis methods to the large-scale omics data (Qi et al., 2014; Agostinho et al., 2015;

Sherif et al., 2015; Marini et al., 2015; Yin et al., 2015b; Kaiser et al., 2016). However, the assortment of

workable systems biology data analysis tools is very limited especially if the ultimate goal is reverse

engineering of biological networks from the massive flat datasets. BN is a useful paradigm for biological

network reconstruction and modeling, and BNOmics is a powerful implementation thereof.

6. AVAILABILITY AND REQUIREMENTS

Project name: BNOmics

Project home page: TBA (City of Hope), available directly from the authors or at Bitbucket (baseline

implementation)

Operating system(s): Source code is available for any standard Python implementation

Programming language: Python, C/C++
Other requirements: Python interpreter, linear algebra libraries (numpy), and optional C/C++ code

inclusion libraries (scipy)

License: Worldwide nonexclusive, standard open-source
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