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Introduction. The mechanism by which metabolic syndrome occurs in schizophrenia is not completely known; however, previous
work suggests that changes in DNA methylation may be involved which is further influenced by sex. Within this study, the DNA
methylome was profiled to identify altered methylation associated with metabolic syndrome in a schizophrenia population on
atypical antipsychotics. Methods. Peripheral blood from schizophrenia subjects was utilized for DNA methylation analyses.
Discovery analyses (n = 96) were performed using an epigenome-wide analysis on the Illumina HumanMethylation450K
BeadChip based on metabolic syndrome diagnosis. A secondary discovery analysis was conducted based on sex. The top hits from
the discovery analyses were assessed in an additional validation set (n = 166) using site-specific methylation pyrosequencing.
Results. A significant increase in CDH22 gene methylation in subjects with metabolic syndrome was identified in the overall
sample. Additionally, differential methylation was found within theMAP3K13 gene in females and the CCDC8 gene within males.
Significant differences in methylation were again observed for the CDH22 and MAP3K13 genes, but not CCDC8, in the validation
sample set. Conclusions. This study provides preliminary evidence that DNA methylation may be associated with metabolic
syndrome and sex in schizophrenia.

1. Introduction

Antipsychotics, in particular second-generation or atypical
antipsychotics (AAPs), increase the risk of metabolic syn-
drome 2-3-fold in patients with schizophrenia due to their
effects on weight and insulin resistance [1–4]. The metabolic
syndrome consists of a cluster of metabolic disorders that
include obesity, dyslipidemia, hypertension, and insulin resis-
tance [5]. Together these risk factors are predictive of cardio-
vascular disease, type 2 diabetes, and mortality [6, 7]. Despite
the risk of metabolic syndrome and other adverse events,
AAPs providemany beneficial, therapeutic benefits. Increased
awareness including enhanced metabolic monitoring and

pharmacologic treatment of metabolic disorders that arise
during AAP use (e.g., blood pressure medication use) has
helped to lower the risk of metabolic syndrome, yet this has
not completely removed it. Additionally, the use of AAPs
has expanded from schizophrenia to other populations such
as pediatric which are particularly sensitive to these metabolic
effects [8–10]. Therefore, a better understanding of themolec-
ular mechanisms underlying metabolic syndrome in patients
with schizophrenia is necessary so that personalized interven-
tions and/or newer therapies can be developed that will
minimize or remove the risk.

Previous work has linked aberrant genetic regulation of
the folate cycle to metabolic syndrome risk in schizophrenia
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patients treated with AAPs [11]. Additionally, treatment of
schizophrenia patients with folate may aid in improving
some aspects of metabolic syndrome [12]. These findings
suggest that a properly functioning folate system may be
important to minimizing the risk for AAP-inducedmetabolic
syndrome. Dysfunctional folate regulation could be causing
metabolic syndrome for several reasons [13, 14]. At the
molecular level, a product of the folate cycle is methyl
molecules used for various cellular reactions including
lipid, protein, and DNA methylation. Thus, it has been
suggested that altered gene regulation through changes to
DNA methylation may be responsible for AAP-associated
metabolic syndrome.

DNA methylation at the global level may be altered in
schizophrenia patients with metabolic syndrome in sex-
specific ways [15]. Despite this previously identified associa-
tion between global DNA methylation and AAP-induced
metabolic syndrome, only one study has examined gene-
specific methylation at the catechol-O-methyltransferase
(COMT) gene and reported a negative finding [16]. Within
the current study, we used an epigenome-wide strategy to
identify and potentially validate candidate genes or regions
that are associated with metabolic syndrome in a cohort of
well-characterized schizophrenia subjects while also deter-
mining any sex-specific effects that may be present.

2. Methods

2.1. Subject Population Recruitment and Assessment. Poten-
tial subjects were recruited from mental health clinics and
with public advertisements in the Southeastern Michigan
and neighboring areas. A preliminary phone screening was
used to assess for the following inclusion criteria: Diagnostic
and Statistical Manual IV diagnosis with a schizophrenia-
spectrum disorder, age 18 to 90 years, presently treated with
an antipsychotic medication with no dosage changes in the
past 6 months, and no known metabolic diseases such as
dyslipidemia, hypertension, or diabetes prior to starting
their antipsychotic treatment. Subjects were excluded if
they were pregnant or unable to give blood. Potential sub-
jects interested in participating were invited to the Michi-
gan Clinical Research Center (MCRC) which is supported
by the Michigan Institute for Clinical and Translational
Research (MiCHR) to undergo full informed consent as
approved by the University of Michigan Institutional
Review Board. The study was registered with Clinical-
Trials.gov (NCT00815854).

Following consent, subjects underwent a medical and
medication history questionnaire which captured current
and past medication use. Pharmacy and clinical records were
used to verify dosages. For the purposes of description, anti-
psychotics were grouped according to their potential to cause
metabolic side effects (i.e., high versus medium versus low)
[17, 18]. Subjects on olanzapine and clozapine were placed
in the high-risk metabolic group; subjects on quetiapine,
paliperidone, and risperidone were placed in the medium-
risk group; and subjects on aripiprazole and ziprasidone were
placed in the low-risk group. We have employed this
empirical categorization in previous metabolic studies [19].

Subjects underwent psychiatric screening by a trained clinical
research assistant using the Structure Clinical Interview for
DSM diagnoses (SCID-4) in order to confirm the diagnosis
of schizophrenia [20]. Vital signs and anthropometric data
including weight, height, hip circumference, and waist cir-
cumference were assessed by clinical research center nursing
staff. All subjects underwent a fasting blood draw that was
used for laboratory analyses (glucose and lipid panels) and
genomic DNA extraction. Glucose and lipid levels were ana-
lyzed by the University of Michigan Hospital System
(UMHS) laboratories. Samples for both the discovery and
validation groups described in the results were collected
using the above inclusion/exclusion criteria and protocol.
Ninety-six samples were chosen for the discovery analysis.
The discovery group was selected to include one-half with
metabolic syndrome equally matched based on age, race,
and sex (e.g., 48 subjects with metabolic syndrome matched
with 48 subjects without metabolic syndrome). The remain-
der of the recruited subjects (166 additional samples) were
used for validation of the discovery findings.

2.2. Genetics Analysis: Extraction and Preparation of
Genomic DNA. Genomic DNA was extracted by the salt
precipitation method [21] and cleaned using commercially
available kits. DNA was quantified on a Qubit fluorimeter
(Life Technologies) and 1μg of bisulfite was converted using
the Zymo EZ DNA Methylation-Gold kit (Zymo Technolo-
gies) according to manufacturer specifications.

2.3. Genetics Analysis: Discovery Analysis. For the discovery
analysis, converted samples were submitted to the University
of Michigan DNA Sequencing Core for analysis on the
Illumina HumanMethylation450 BeadChip (“450K”). The
core returned raw IDAT files for subsequent processing and
statistical analysis by investigators. Discovery analyses were
conducted in the combined samples (96 subjects) and within
each sex (49 male, 47 female).

2.4. Genetics Analysis: Validation Analysis. For the validation
analyses, primer sets were chosen based on the discovery
findings where the goal was to choose locations within the
same CpG island or the nearest CpG island to the top discov-
ery finding for the combined analysis and the sex-specific
analyses. Site-specific methylation was analyzed by the
method of pyrosequencing on a PyroMark MD 96. Com-
mercially available primer sets from Qiagen (Redwood City,
CA, USA) were utilized for the CDH22 (in a nearby CpG
island ~300 base pairs away) and CCDC8 genes (same
CpG island). The CDH22 primer set was designed to
obtain an amplicon of approximately 115 base pairs that
would analyze methylation in chromosome 20 at positions
44880277, 44880264, and 44880250 following pyrose-
quencing (genomic coordinates using GRCh37/hg19). The
CCDC8 primer set was designed to obtain an amplicon
of 189 base pairs and analyze methylation at four chromo-
some 19 locations (46915716, 46915706, 46915704, and
46915701). Finally, a primer set for the MAP3K13 gene was
designed using the Qiagen Assay Design 2.0 program (in
the same CpG island as the discovery finding). The resultant
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primers amplified a 146-base-pair region in the MAP3K13
gene on Chromosome 3 for methylation analysis at positions
185000790, 185000779, 185000774, and 185000760. Primers
for the self-designed MAP3K13 assay are available upon
request. All samples were performed in triplicate, and each
batch was normalized by constructing a standard curve with
samples of known methylation to account for bisulfite PCR
bias [22]. No samples were removed due to excess variation
amongst the replicates (defined as a coefficient of
variation> 5%).

2.5. Statistical Analysis. Values are reported in mean±
standard deviations (s.d.). Student t-, chi-square, or Fish-
er’s exact test was used for comparison of demographic
and clinical variables between metabolic syndrome groups
and discovery and validation groups. The epigenome-wide
analysis for the discovery of differentially methylated genes
associated with metabolic syndrome employed the use of
RnBeads [23]. RnBeads is a comprehensive R statistical
software package that enables users to utilize specific
workflows for processing, normalizing, and analyzing
DNA methylation data from the Illumina HumanMethyla-
tion450 BeadChip. Within RnBeads, our obtained data was
loaded in raw IDAT file form where it was preprocessed
and normalized according to published biostatistical and
bioinformatics workflows which included correction for
color bias, quantile normalization, probe-type bias, and
batch adjustment [24, 25]. Preprocessed and normalized
M values were then analyzed by CpG site (overall sample)
or CpG island (sex-specific analysis) using linear regression
with the limma package [26]. The CpG island analysis,
employed through the RnBeads package in R, uses annota-
tion data to group probes within the same CpG island and
constructs a “combined” p value to assess that CpG island’s
overall association with metabolic syndrome by regression
with the limma package. Three linear regressions were per-
formed for discovery of differential methylation based on
metabolic syndrome: (1) CpG sites (total of 393,193 sites)
in the overall discovery sample, (2) CpG islands (total of
25,352 CpG islands) in males within the discovery samples,
and (3) CpG islands in females within the discovery sample.
Each regression used metabolic syndrome as the indepen-
dent variable of interest while adjusting for other relevant
variables. For the CpG site analysis in the overall discovery
sample, regressions were adjusted for smoking status,
antipsychotic type, and estimated cell types using the
Houseman et al. method in R [27]. For the regional CpG
island analyses based on sex, both the male and female
regressions used age, smoking status, antipsychotic type,
and estimated cell-type compositions. All regressions used
the sva package within RnBeads to detect batch effects and
control them by adding estimated surrogate variables as
covariates to each model [28]. Top differentially methylated
CpG sites or CpG islands were corrected for multiple testing
using a false discovery rate (FDR, q value) cutoff of less
than 0.05. [29].

Validation analyses were conducted in a separate sample
of subjects to potentially replicate the top differentially meth-
ylated findings from the overall and sex-specific discovery

analyses. Validation analyses used linear regressions, in a
similar format to the epigenome-wide analysis, where each
methylation site (within the three genes assessed) served as
the dependent variable and metabolic syndrome status
served as the independent variable of interest while adjusting
for age, sex, race, smoking status, and antipsychotic type.
A p value< 0.05 was considered statistically significant for
the validation analyses.

2.6. Pathway Analysis. An exploratory pathway analysis
utilizing the discovery analysis data was performed with
Ingenuity Pathway Analysis (IPA) software build version:
430520M, content version: 31813283, release date: December
5, 2016 (Qiagen, Redwood City, CA, USA). Such an analysis
may reveal pathway or network perturbations not captured
by the top CpG site or CpG island approach employed in
the discovery analysis due to various reasons including a lack
of power. For the overall discovery analysis, the top 100
differentially methylated genes corresponding to the CpG
sites were analyzed in IPA. For the sex-specific discovery
analyses, the top 50 CpG islands genes were entered into
IPA for analysis. The top 100 or 50 genes were chosen as
an arbitrary cutoff that would include a representation of
potentially influenced pathways by metabolic syndrome in
the overall and sex-specific analyses. Alternate gene sets
(e.g., top 1000) in the pathway analysis did not result in the
identification of other pathways (data not shown). The IPA
reference set chosen was the Ingenuity Knowledge Base,
and the findings were restricted to humans only in the Core
Analysis module. Top canonical pathways with an FDR-
corrected p value below 0.05 were considered statistically
significant for each analysis.

3. Results

3.1. Discovery and Validation Group Characteristics. The dis-
covery sample, consisting of a total of 96 subjects, had an
average age of 49.5± 8.4 years, 51% were male, 60% were
Caucasian, and 35% were African-American. The distribu-
tion of antipsychotic type was similar between discovery
and validation groups. As designed, approximately 50% of
the discovery sample had a diagnosis of metabolic syndrome
matched for age and race and split evenly for sex. There was a
trend for a lower rate of smoking in females when compared
to males (p = 0 1) in the discovery sample. The validation
sample had a total of 166 subjects. The average age of the val-
idation sample was 43.9± 12.0 years, 64% were male, and
46% had metabolic syndrome. The discovery and validation
groups were similar except for a non-significant trend for
more males in the validation group (p = 0 08). Both samples’
demographic and clinical variables can be found in Table 1.
Additionally, a breakdown by sex for each sample can be
found in Table 2. Significant differences were not noted
between males and females in the validation group.

3.2. Discovery: Differentially Methylated Sites Based on
Metabolic Syndrome. As described in Methods, the included
covariates in the final model to estimate the top differentially
methylated CpG sites based on metabolic syndrome in the
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overall discovery sample were smoking status, antipsychotic
type, and cell composition. A Q-Q plot with inflation factor
was used to characterize the p value distributions and esti-
mate the appropriateness of the model. We compared the
model with and without the correction for batch effects
through the addition of estimated surrogate variables with
RnBeads. The comparisons can be found in Supplemental
Figure 1. The model without batch effect correction had an
inflation factor of 0.978 while correction for batch effects
improved the model’s visual fit and the associated inflation
factor to 1.006. This suggests that there were small, but
still present, sources of additional variation that were
unaccounted for by our included covariates. From the Q-Q
plot, the associations of methylation with respect to
metabolic syndrome deviate from the null at higher p values
as would be expected. Table 3 shows the top differentially
methylated CpG sites associated with metabolic syndrome at
a FDR less than 0.1. The top five CpG sites met a predefined
FDR cutoff of <0.05 and were found in the following genes:
cadherin-like 22 (CDH22), family with sequence similarity
19 (chemokine- (C-C motif-) like), member A2 (FAM19A2),
cadherin-like 22 (CDH5), casein kinase 1 (CSNK1E), and
Delta/notch-like EGF repeat (DNER). An expanded table
with proposed biological functions as well as previous
correlations from the literature for each site’s corresponding
gene can be found in Supplementary Table 1. For further
exploration, the top 100 differentially methylated CpG sites
based on metabolic syndrome in the overall discovery
sample can be found in Supplementary Table 2.

3.3. Discovery: Sex-Specific Differential Methylation in
Metabolic Syndrome. Following our analyses in the overall
discovery sample, we conducted a sex-specific analysis of
differential methylation based on metabolic syndrome. For
this secondary analysis, we chose to conduct analyses at the
regional level of CpG islands. This was done to increase
power in a limited sample size by decreasing the number of
statistical tests being conducted.

For the male population, the model to identify top differ-
entially methylated CpG islands based on metabolic syn-
drome included the following covariables: age, smoking
status, antipsychotic type, and cell-type composition. The
model that included the estimated surrogate variables had
an improved lambda based on a Q-Q plot (lambda without
surrogate variables = 0.889 versus lambda with surrogate
variables = 1.001). The CpG islands associated with meta-
bolic syndrome in males with an FDR p value< 0.1 can be
found in Table 4. The top result, in the coiled-coil domain
containing 8 (CCDC8) gene, was statistically significant after
FDR correction.

We performed the same analysis using the same regres-
sion variables in females. Including the surrogate variables
in the model improved the lambda from 0.893 to 1.021.
Table 4 also contains the female analysis results. The top
two CpG islands, found in the mitogen-activated protein
kinase kinase kinase 13 (MAP3K13) and transmembrane
phosphoinositide 3-phosphatase and tensin homolog 2
(TPTE2) genes, were statistically significant after FDR
correction. An expanded table, for further exploration,
showing the top 50 CpG islands for each sex can be found
in Supplementary Table 3.

3.4. Discovery: Pathway Analysis. The exploratory pathway
analysis of the overall sample results revealed that differential
methylation related to metabolic syndrome in schizophrenia
was enriched in the Wnt/β-catenin signaling pathway (FDR
p value = 6.21× 10−4). For the analysis in females only, the
axonal guidance signaling pathway was the most enriched
pathway (FDR p value= 6.22× 10−4). Finally, the FAK sig-
naling pathway was the top pathway for the male analysis
of CpG islands associated with metabolic syndrome (FDR
p value= 1.32× 10−4). The top ten pathways for each analy-
sis along with the identified genes that caused enrichment
can be found in Supplementary Table 4.

3.5. Validation Analyses of Top Differentially Methylated
Genes from Discovery. In the absence of access to a larger
sample set for the discovery analyses, we sought to validate
the top discovery findings in an additional sample of
schizophrenia subjects from the same recruitment pool. For
validation, methylation was analyzed by site-specific pyrose-
quencing at three sites: (1) the top differentially methylated
CpG site in the overall discovery sample (CDH22) and (2)
the top differentially methylated CpG islands for males
(CCDC8) and (3) females (MAP3K13). Significant associa-
tions at Chr20:44880277 and Chr20:44880264 in the CDH22
gene were identified in the overall sample which held when
adjusting for age, race, gender, smoking, and antipsychotic
type (both p = 0 04). At both sites, higher methylation
(hypermethylation) was observed in subjects with metabolic
syndrome. The third site Chr20:44880250, assessed in the
CDH22 gene, did not reach statistical significance (p = 0 7).

Three sites within the MAP3K13 gene at genomic
locations Chr3:185000779, Chr3:185000774, and Chr3:
185000760 were associated with metabolic syndrome
status in females after adjusting for age, race, smoking
status, and antipsychotic type (p = 0 01, 0.04, and 0.01, resp.).

Table 1: Demographic and clinical characteristics of discovery and
validation groups.

Discovery group
(n = 96)

Validation group
(n = 166)

Age (years± s.d.) 49.8± 7.4 43.9± 12.0

Sex (% male) 51 64

Caucasian (%)/
African-American (%)

60/35 53/32

Metabolic syndrome (%) 50 46

% currently smoking 50 51

Olanzapine/clozapine (%) 29 29

Quetiapine/paliperidone/
risperidone (%)

38 39

Aripiprazole/ziprasidone (%) 33 32

The table depicts the mean ± s.d. or % values for the discovery and validation
groups. No statistically significant differences were noted between the
groups. A nonsignificant trend for more males in the validation group was
observed (p = 0 08).
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Consistent with the discovery analysis, hypomethylation of
MAP3K13 was seen in female subjects with metabolic
syndrome. CCDC8 methylation did not show significant
differences based on metabolic syndrome within males. The
details of the unadjusted and adjusted validation analyses
are found in Table 5.

4. Discussion

The purpose of this study was to identify areas of the DNA
methylome that may be altered in subjects with AAP-
associated metabolic syndrome [15]. To this end, we

identified overall and sex-specific differentially methylated
genes in a discovery sample of 96 schizophrenia subjects.
Two of the three findings from the discovery group were
validated in an additional group of schizophrenia subjects.

4.1. DifferentiallyMethylatedGenes Associated withMetabolic
Syndrome. Differentially methylated CpG sites within the
overall discovery sample were locatedwithin genes with either
a known biological function in a cardiometabolic illness and/
or a previously reported association with a metabolic pheno-
type or disease (Supplementary Table 1). The top site, located
in the cadherin-like 22 (CDH22) gene, had increased

Table 2: Discovery and validation group broken down by sex.

Discovery group Validation group
Males (n = 49) Females (n = 47) Males (n = 100) Females (n = 66)

Age (years± s.d.) 49.4± 8.64 49.7± 8.29 42.9± 11.4 45.7± 13.1
Caucasian (%)/African-American (%) 55/40 65/30 53/36 53/25

Metabolic syndrome (%) 50 51 44 51

% currently smoking 57 43 55 56

Olanzapine/clozapine (%) 25 24 31 26

Quetiapine/paliperidone/risperidone (%) 35 38 44 31

Aripiprazole/ziprasidone (%) 40 38 25 43

The table depicts the mean ± s.d. or % values for the discovery and validation groups. No statistically significant differences were noted between males and
females for either group. There was a trend for decreased smoking in females in the discovery group (p = 0 1).

Table 3: Top differentially methylated sites based on metabolic syndrome.

CpG probe
ID

Gene Chromosome Position CpG type
Fold

changea
Raw p value

FDR-corrected
p value

cg04640913 Cadherin-like 22 (CDH22) 20 44880515 South shore 0.123 9.26× 10−07 0.02∗

cg12501957
Family with sequence similarity 19
(chemokine- (C-C motif-) like),

member A2 (FAM19A2)
12 62629234 Open sea −0.0266 1.05× 10−06 0.04∗

cg05086443 Cadherin-like 22 (CDH5) 16 66437349 South shore −0.0215 3.45× 10−06 0.04∗

cg16653173 Casein kinase 1 (CSNK1E) 22 38713453 South shore 0.0675 3.83× 10−06 0.04∗

cg16656316 Delta/notch-like EGF repeat (DNER) 2 230280621 Open sea −0.0764 7.85× 10−06 0.04∗

cg06378976 Transcription factor EB (TFEB) 6 41703613 South shore 0.135 1.05× 10−05 0.08

cg04457354 E2F transcription factor 3 (E2F2) 6 20447442 Open sea −0.0221 2.03× 10−05 0.08

cg04953503 Melanophilin (MLPH) 2 238420656 Open sea −0.00763 2.24× 10−05 0.08

Cg05434957 Islet autoantigen 1 (ICA1) 7 8301435 Island 0.118 2.26× 10−05 0.09

cg08464505 ATPase, class VI, type 11A (ATP11A) 13 113425982 South shore −0.0113 2.87× 10−05 0.09

Cg22158175
Proteosome subunit, beta type,

8 (PSMB8)
6 32809475 North sea −0.0162 3.10× 10−05 0.09

Cg17492940
Protein phosphatase 1, regulatory

subunit 12B (PPP1R12B)
1 202407102 Open sea −0.00380 3.30× 10−05 0.1

Cg04033559
Pyruvate dehydrogenase kinase,

isozyme 1 (PDK1)
2 173461819 Open sea −0.312 3.46× 10−05 0.1

Top differentially methylated sites based on metabolic syndrome status with an FDR p value < 0.1. Only FDR < 0.05 was considered statistically significant in
this study. Columns 1 and 2 give the probe ID and associated gene name. Columns 3 and 4 give the genomic location (GRCh37/hg19) of the CpG site and CpG
classification of the probe with respect to CpG islands (i.e., island versus shore versus sea). The final columns give the fold change with direction, unadjusted,
and FDR-corrected p values. aFold change calculated by log2 of the quotient in methylation in subjects with metabolic syndrome compared to subjects without
metabolic syndrome. Positive fold change indicates an increase in methylation (hypermethylation) in the metabolic syndrome group. ∗ indicates statistical
significance based on an FDR cutoff below 0.05
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methylation in subjects with metabolic syndrome (i.e.,
hypermethylation). A member of the cadherin superfamily,
this gene codes for a cell-adhesion protein that is
predominately expressed in the brain and is important for
tissue development and morphogenesis. This gene has been
associated with type 2 diabetes in a previous genetic
variation study [30]. Within this study, out of the top 5 most
significant single nucleotide polymorphisms associated with
type 2 diabetes, 3 were found in CDH22. It should be noted
that within this study, this finding was not replicated in a
separate data set. Nevertheless, it may be that CDH22
regulation, through both genetic and epigenetic mechanisms,
could point to a potentially important role for this gene in
metabolic disease. Additionally, differential methylation was
identified in the cadherin 5, type 2 (CDH5) gene, which is
also in the cadherin superfamily. This particular cadherin
isoform is highly important in the development of vascular
endothelium which our group has shown to be influenced
by AAP use, folate metabolism, and genetic variation
[11, 12, 31]. Specifically, we previously have shown that
genetic variation in the rate-limiting enzyme in folate
metabolism, methylenetetrahydrofolate (MTHFR), as well
as endothelial nitric oxide synthetase (eNOS) is associated
with a greater risk for endothelial dysfunction, a predictor
of cardiovascular morbidity and mortality. Additional work
may be needed to understand if genetic regulation at CDH5
confers additional risk. Altogether, these findings may add
further evidence of the complex links between altered
folate regulation, DNA methylation, and AAP-associated
metabolic syndrome and cardiovascular disease.

Within the top differentially methylated CpG sites in the
overall population, several genes related to protein regulation
and function were present (e.g., CSNK1E, E2F2, PSMB8,
PPP1R12B, and PDK1). Control of protein function and
action through phosphorylation and other modifications
play a central role in several disease states including diabetes,
lipid metabolism, insulin resistance, and metabolic syndrome
[32, 33]. Additionally, altered basal and insulin-stimulated
protein phosphorylation has been identified with AAP treat-
ment in both preclinical models and patients [34–36]. In
particular, the CSNK1E gene has been linked to the patho-
physiology of schizophrenia and bipolar disorder which
are the main conditions for which antipsychotics are used
[37, 38]. Further work incorporating the power of DNA
methylomics and proteomics in AAP treatment may yield
further insight into psychiatric disease and its treatment.

4.2. Sex-Specific Methylation in Metabolic Syndrome:
Females. In addition to looking at the associations between
the DNA methylome and metabolic syndrome in schizo-
phrenia in an overall manner, region-specific DNA methyla-
tion, at the CpG Island level, was performed within each sex
based on our previous findings suggesting that sex may play a
role [15]. The top differentially methylated CpG island asso-
ciated with metabolic syndrome in females was in the gene
encoding for the mitogen-activated protein kinase kinase
kinase 13 (MAP3K13) protein. This protein, a member of
the serine/threonine phosphatase kinase family, interacts
with and regulates other proteins through its ability to

phosphorylate specific mitogen-activated proteins including
MAP2K7/MKK7 and MAPK8/JNK [39, 40]. Epigenetic
regulation of this protein may play a role in MAPK and Jun
amino terminal kinase (JNK) signaling pathways, both
shown to play an important role in glucose homeostasis,
a defining feature of the metabolic syndrome [41–43]. Over-
all, female subjects with metabolic syndrome had lower
methylation in the investigated MAP3K13 CpG island (both
in the discovery and validation analyses) compared to female
subjects without metabolic syndrome which may suggest
higher expression and possibly activity of the kinase. Further
work is needed to understand the effect of epigenetic regula-
tion on MAP3K13 expression and activity.

4.3. Sex-Specific Methylation in Metabolic Syndrome: Males.
The top differentially methylated CpG island associated with
metabolic syndrome in males was found in the coiled-coil
domain containing 8 (CCDC8) gene, although this finding
was not replicated in our validation sample. The CCDC8 gene
(alias name protein phosphatase 1, regulatory subunit 20
(PPP1R20)) encodes a protein involved in cell apoptosis
following DNA damage as well as human growth and devel-
opment and genomic integrity [44, 45]. Notably, this protein
has been shown to modulate alternative splicing of the
insulin receptor (INSR) [46], which may have downstream
effects on MAPK/AKT signaling. Again, given that insulin
resistance is a key feature of metabolic syndrome, further
work with this gene and its effects on the MAPK/AKT
pathway may be warranted.

4.4. Exploratory Pathway Analyses. TheWnt/β-catenin path-
way, the most enriched pathway in the overall analysis,
involves molecules from other pathways to regulate cell-
specific processes including fate, proliferation, andmigration.
This pathway has been linked to insulin signaling and sensi-
tivity and lipid metabolism which all have been known to be
influenced by AAP treatment [47–52]. For females, the top
canonical pathway was the axonal guidance signaling path-
way which is involved in determining how nervous system
axons reach their target. Such a pathway may be of impor-
tance in a psychiatric disorder where significant overlap is
seen inmetabolic and nervous system processes when consid-
ering both the disease itself as well as the medications used to
treat the symptoms. Interactions between these pathways
have been identified in other models of metabolic disease
[53]. The FAK signaling pathways were the most enriched
pathways in themale analysis. This pathway is involved in cell
movement and adhesion and has also been linked to glucose
dysregulation and insulin signaling [54, 55]. In summary,
pathway analyses revealed sex-specific enriched pathways
when considering DNA methylation in the context of meta-
bolic syndrome. Despite the differences, an underlying theme
of involvement in insulin signaling was present in the identi-
fied pathways (see Supplementary Table 4).

4.5. Strengths and Limitations. The current study utilized a
sample of schizophrenia subjects who were stable in their
antipsychotic therapy for 6 or more months to identify
DNA methylation changes associated with metabolic
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syndrome. The sample was well characterized using detailed
medication histories as well as anthropometric and metabolic
assessments to diagnose metabolic syndrome. Some limita-
tions should be considered when interpreting the findings of
this study. DNAmethylation was assessed in peripheral blood
which is composed of multiple cell types. While we could use
statistical techniques to estimate cell-type composition and
control for it in the discovery analyses, we did not have access
to cell-type composition in the gene-specific validation analy-
ses. Validation analyses occurred by choosing methylation
sites within the same CpG island as the discovery sites or,
for the CDH22 validation, the nearest CpG island which was
within 300 base pairs of the original discovery site. We chose
to focus validation work within CpG islands due to their
known importance in gene regulation. Other sites may have
stronger associations with metabolic syndrome, or in the case
of theCCDC8 gene which was not validated, other areas of the
gene may have stronger associations with metabolic syn-
drome. Deeper, gene-specific methylation profiling within a
tissue of interest (e.g., adipose, muscle, or brain) in various
models should be considered to further understand the role
of epigenetics in antipsychotic-induced metabolic syndrome.
We did not have access to RNA samples to assess gene expres-
sion levels. Future work will need to functionally validate the
effect ofmethylation on gene expression or other downstream
products of the gene(s). Based on previous work establishing
sample sizes and effect sizes in epigenome-wide studies, the
discovery sample size was limited in its ability to detect
smaller changes (e.g., smaller effect sizes) in methylation;
however, DNAmethylation at two of our genes was validated
in an additional sample of schizophrenia subjects which does
strengthen the findings in its present form [56]. The study
includes a population on various AAPs. For the purposes of
our study, we were interested in capturing a population on
any AAP since all AAP increases cause weight gain and
increase the risk of metabolic syndrome [57]. Our analyses
(not shown) did not identify significant effects of AAP dosage;
however, these analyses may have been underpowered to
allow for appropriate interpretation. Future work may need
to begin to analyze specific antipsychotics in mechanistic
studies at specified dosages to better design interventions that
prevent this side effect. Finally, this study utilized cross-
sectional sampleswithout a healthy control group. Thismakes
determining cause and effect (e.g., if the medications are
inducing changes in DNA methylation which subsequently
causes metabolic syndrome or vice versa) and the effect of
the psychiatric disease itself difficult. Evidence exists suggest-
ing AAP effects on molecular features may be specific to spe-
cific psychiatric illnesses [58]. Nevertheless, the identification
of gene methylation associated with AAP-associated meta-
bolic syndrome will serve to direct further studies that look
at DNA methylation changes before and after antipsychotic
treatment coupled with a healthy control group to assess cau-
sation between metabolic syndrome and gene methylation.

5. Conclusion

Within our study, we identified gene methylation changes
that are associated with antipsychotic-associated metabolic

syndrome and changes that are specific to sex. The results here
are preliminary, and future work is needed to understand the
mechanistic role of these gene changes and possible therapies
that could target and potentially prevent the negative conse-
quences of antipsychotic-induced metabolic syndrome.
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Supplementary Materials

Supplementary Figure 1:Q-Q plot of overall discovery sample
epigenome-wide analysis. Q-Q plots for the model assessing
the association betweenmetabolic syndrome andmethylation
site using the Illumina HumanMethylation450 BeadChip for
the overall population. Both models included smoking status,
antipsychotic type, CD4T, CD8T, granulocytes, monocytes,
and natural killer cell counts as covariates. Plot (a) depicts
theQ-Q plot before performing surrogate variable adjustment
(lambda=0.978) and (b) after performing surrogate variable
adjustment (lambda= 1.0006). Supplementary Table 1: anno-
tated top differentially methylated CpG sites (FDR< 0.1)
associated with metabolic syndrome in the overall sample.
Top differentially methylated sites (FDR< 0.1) associated
with metabolic syndrome annotated with biological function
and previous links to cardiometabolic phenotypes in the
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literature. It expands Table 1 from the main manuscript
including a description of the known or proposed biological
function of the associated gene and previous literature
references investigating its role in cardiometabolic outcomes
(references listed at end of the supplementary file).
Supplementary Table 2: top 100 differentially methylated
CpG sites associated with metabolic syndrome in the overall
sample. Top 100 CpG results with annotated genes from
linear regression of methylation sites based on metabolic
syndrome adjusted for smoking status, antipsychotic type,
estimated cell types, and batch effects (components estimated
using the sva package) in the overall sample. Supplementary
Table 3: top 50 differentially methylated CpG islands associ-
ated with metabolic syndrome from the sex-specific analysis.
Top 50 annotated results from sex-specific linear regression of
CpG islands based on metabolic syndrome adjusted for
smoking status, antipsychotic type, estimated cell types, and
batch effects (components estimated using the sva package).
Supplementary Table 4: top 10 enriched pathways for each
discovery analysis. The 1000 CpG sites (or CpG islands
for sex-specific analysis) with the smallest p values from
the discovery analyses were entered into the Core Analysis
module of Ingenuity Pathway Analysis (IPA) software.
The top 10 canonical pathways are listed in the table for
each analysis along with FDR-correct p values, ratios,
and genes. (Supplementary Materials)
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