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Advancements in AI enable personalizing healthcare, for example by investigating disease origins at the ge-
netic or molecular level, understanding intraindividual drug effects, and fusing multi-modal personal physi-
ological, behavioral, laboratory, and clinical data to uncover new aspects of pathophysiology. Future efforts
should address equity, fairness, explainability, and generalizability of AI models.
Introduction
Personalized medicine is a novel app-

roach to understanding health, disease,

and treatment outcomes based on per-

sonal data, including medical diagnoses,

clinical phenotype, laboratory studies, im-

aging, environmental, demographic, and

lifestyle factors. Precision medicine often

overlaps with this concept and also in-

cludes utilizing genomic data to tailor a

plan of treatment or prevention of a partic-

ular disease. Personalized and precision

medicine promise a better understanding

of health and medicine, improvements in

the early detection of diseases, and better

long-term health and chronic disease

management. The multi-modal informa-

tion originating from multiple domains

can be collected from individuals because

of recent advancements in sensing, cloud

infrastructure, medicine, genetics, me-

tabolomics, and imaging technologies,

among others. However, with such inno-

vations in sensing and diagnostic testing

capabilities, an incredible amount of per-

sonal data can now be generated for

each patient. Appropriately storing and

analyzing this voluminous personal data

can be a challenging and daunting task.

Thankfully, advances are also being

made in these directions to increase the

capabilities and efficiency with which we

can digitize, store, and analyze these

large volumes of personal and popula-

tion-level data. Ultimately, the combined

advancements in biomolecular, imaging,

and sensing technologies, along with

hardware, software, and data science,
This is an open access ar
and the ability of the medical community

to leverage these technologies effectively,

have together enabled personalized/pre-

cision medicine.

Personalized/precision medicine
The human genome project (https://www.

genome.gov/human-genome-project) sp-

urred an entirely new way of thinking

about the role of biology in healthcare.

Completed in 2003, the fully sequenced

human genome was anticipated to add-

ress a large proportion of open issues in

our understanding of health and disease.

However, two decades later, it had decid-

edly not delivered on that promise.1 This

is because biomolecular pathways are

more complex than were appreciated at

the time, and the many layers of interac-

tions between the genome, phenome,

and environment mean that the one

gene, one disease (i.e., Mendelian dis-

ease) framework is surprisingly infrequent

and that more complex relationships

within the genome itself (e.g., non-coding

regions) and between the genome and

other biomolecular species remain to be

uncovered.

The advent of new technologies for

high-throughput biomolecular measure-

ments over the past two decades has

increased our knowledge of the biomole-

cular milieu, which is a snapshot of the en-

tirety of biomolecules existing in any one

compartment at any one point in time.

One such technology, next-generation

sequencing (NGS), enables transcripto-

mic analyses through RNA-seq, as well
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scriptomic analyses to characterize the

microbial milieu and its activities. Further,

proteomic and metabolomic profiling

spawned from mass spectrometry tech-

nologies enable profiling of the biom-

olecules that are the machines and

byproducts of life-sustaining processes.

New knowledge generated by these

methods has enabled a move from exp-

ensive and dirty ‘‘shotgun’’ approaches

that capture a broad but poorly annotated

set of biomolecules to fast, low-cost, and

targeted panel profiling approaches (e.g.,

genotyping arrays). Further, new labora-

tory methods to profile various configura-

tions of biomolecules have emerged (e.g.,

protein post-translational modifications;

epigenomic histone and DNA methylation

alterations; chromatin conformations,

etc.). These methods have uncovered

new knowledge about the importance of

not only the biomolecules themselves,

but also the role of their spatial arrange-

ments and modifications.

Through these emerging technologies

and integration of the data generated by

them, the promise of a truly ‘‘multi-omics’’

approach to research and medicine is

increasingly being realized.2 Examples of

the multi-omics approach in practice

include: (1) gut microbiome relationships

to health and disease, as mediated and

characterized by the human metabolome

and microbial meta-omes (i.e., metage-

nome, metatranscriptome, and meta-me-

tabolome), (2) applications of machine

learning to large multi-modal multi-omic
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datasets to uncover new relationships,

and (3) variations on sequencing-based

technologies to uncover higher-order in-

formation, including epigenetics and chr-

omatin configuration (e.g., ATAC-Seq,

RRBS, Hi-C). Further, a new appreciation

for the key role of drug-metabolizing

genes has come to light. Specifically, a

host of genes in the Cyp (Cytochrome

P450) family have been found to control

the metabolism of a vast array of drugs,

which in turn enables a precision app-

roach to drug dosing on an individualized

level. Applying these approaches com-

plementarily will be key to a more

comprehensive assessment of the bio-

molecular milieu.

Collection and computational process-

ing of these samples remains expensive

and sometimes challenging. As costs

decreases, we can obtain improved tem-

poral resolution of the biomolecular dy-

namics, for example by dense sampling

in time, which will enable us to better un-

derstand how this symphony evolves

over the lifespan and during health or dis-

ease. As these new data become avail-

able, new complementary time series

methods development will be needed.

Further, methods for multi-modal data

fusion remain relatively rudimentary and

can be advanced through new AI

methods that will support more data-

driven rather than hypothesis-driven ap-

proaches. A contributor to the bottleneck

on this front is the lack of samples on such

high-dimensional data, which will be

solved by decreasing cost and increasing

accessibility of technologies, as well as

continued pushes toward open science

including the deposition of new data into

public repositories.

Artificial intelligence and machine
learning
Artificial intelligence (AI) and related tec-

hnologies (machine learning [ML]) are

becoming increasingly prevalent across

diverse sectors including business, soci-

ety, and healthcare. These technologies

have the potential to transform many as-

pects of patient care, as well as adminis-

trative processes within provider, payer,

and pharmaceutical organizations. Wear-

able sensor development and the wide

adoption of these devices in people’s

day-to-day lives provides a unique oppor-

tunity to monitor the physiology and
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behavior of an individual and to generate

an unprecedented amount of personal-

ized data in real-world settings. This

opportunity is further enabled by comple-

mentary technological advancement in

analyzing this enormous amount of data

(a.k.a. ‘‘big data’’) using AI/ML algorithms.

Machine learning (ML), a branch of AI,

has gained popularity in the past few

decades due to advances in computing

machinery which make previously inac-

cessible methods within practical reach.

ML is a method of data analysis that auto-

mates analytical model building, which

evolved as a way to recognize patterns

in data without explicitly programming

for that particular task. Although many of

today’s top-performing ML algorithms

were invented more than half a century

ago, the computational power and re-

sources required were unavailable to

make this process practical and feasible.

Advancements in the semiconductor

industry, for example, has reduced

computation times, lessened power re-

quirements, and improved the cost effec-

tiveness of computing, all of which has

rejuvenated the field of ML in the last two

to three decades. New ML applications

have ranged from social networking to

financial services, transportation, he-

althcare, and more. The advantages of

ML are adaptability, scalability, automa-

tion, and the capability of leveraging

multi-dimensional and multivariate data

to learn new aspects of systems. ML can

be divided into four overarching types of

learning: supervised, semi-supervised,

unsupervised, and reinforcement (Figure

1). Supervised learning is most common

because of its utility for prediction. In su-

pervised learning, the prediction target

value (i.e., outcome variable, or label) is

known, and the algorithm attempts to

learn the relationship between it and

other, often more easily measured, vari-

ables. For example, one may attempt to

predict the size of a tumor after a drug

treatment based on genetic characteris-

tics of the patient. Supervised learning

can be further classified for the intended

tasks of either regression (where the

target variable is continuous, e.g., heart

rate) or classification (where the target

variable is discrete, e.g., the presence or

absence of arrhythmias). Its methods

range from simple linear regression to

random forests to neural nets and beyond.
r 20, 2022
Often, simpler methods are preferred

because they are understandable and

generalize more readily. Unsupervised

learning is used to uncover groups or pat-

terns in data where there is no obvious

outcome of interest or where the label is

not known. Such methods include clus-

tering and dimension reduction. Often,

unsupervised learning can be used as a

precursor to supervised learning to

generate labels for prediction targets.

Semi-supervised learning is used in pla-

ces where labels are known for only a

part of the data. Reinforcement learning

algorithms learn from trial and error, where

the model learns from past experiences

and adapts its approaches to achieve

the lowest possible prediction error.

In recent years, deep learning (DL)

models, a branch of ML, have become

more and more popular, achieving great

performance in biomedical applications,

including diagnoses of tumors from radi-

ology images.3 DL models are in general

more complex in nature and structure of

the algorithm and generally consist of

many artificial neural network and recur-

rent neural network, which is relatively

opaque and hard to interpret. In addition

to that, DL models require a lot more

data for training purposes compared to

traditional ML algorithms (e.g., support

vector machine, random forest) and tend

to overfit.

There are already a number of research

studies suggesting that ML, and more

specifically DL models, can perform as

well as or better than humans at key

healthcare tasks, such as diagnosing dis-

eases and detecting malignant tumors

from radiology images.3 While some

algorithms can outperform humans, for

example in disease detection (e.g., dis-

covering arrhythmias like atrial fibrilla-

tion from longitudinal electrocardiogram

data) and guiding researchers in how to

best construct cohorts for costly clinical

trials, AI technologies are most effective

for augmenting rather than replacing hu-

mans. For example, AI can reduce human

errors, augment knowledge capacity, and

free up time consumed by menial tasks.

However, it is important that we consider

both the potential of AI/ML as well as the

challenges and concerns in general and

in areas that are specific to health care

before applying these tools and models

in clinical decision support system.



Figure 1. Pipeline of data analysis in healthcare using artificial intelligence
Multi-modal personal ‘‘big data’’ are curated from diversified sources and integrated with electronic health
records that are analyzed using artificial intelligence, more specifically machine learning or deep learning
algorithms (e.g., supervised, semi-supervised, unsupervised, and reinforcement learning).
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AI andML in personalized/precision
medicine
AI/ML models have been successfully

applied to a wide variety of genomics

data, particularly in cases with high

dimensional and complex data that are

challenging to process using traditional

statistical methods. Genome-wide asso-

ciation studies, which involve rapidly

scanning markers across the genomes

of thousands or more people to discover

genetic variants associated with a partic-

ular disease, have benefitted substantially

from ML. One example is in Type 1 dia-

betes, where there is an improved risk

assessment using ML algorithms that

can account for interactions between a

large collection of biomarkers.4

Using treatment outcomes data gener-

ated from previous patients treated for a

disease, ML models can identify which

future patients may benefit from a specific

treatment based on their characteristics.
An example of this is genetically informed

therapeutic planning (using support vec-

tor machine-based anti-cancer drug

sensitivity prediction method using gen-

omic data5) for patients with pharmaco-

genomically actionable variants, where

titrated prescription and dosing are

critical. This advancement can avoid un-

necessary treatments in non-responders

and support titrated prescription and

dosing to maximize the anti-cancer effect

in responders.

ML algorithms have also demonstrated

remarkable performance in identifying

novel biomarkers that can support early

disease detection, prediction of treatment

response, and provide indicators of dis-

ease progression. A recent comprehen-

sive integrative molecular analysis of a

complete set of tumors in The Cancer

Genome Atlas (TCGA) employed unsu-

pervised clustering to learn similarities

and differences in tumors across 33
Cell Reports
different cancer types.6 Further explora-

tion into the resulting tumor subgroups

has improved our understanding of, for

example, how cancers mutate and the

various factors that modulate these

tumors.6

Similar to its applications in genomics,

the application of ML algorithms and in

particular DL to radiology and histopa-

thology have improved the accuracy of

image analysis while also reducing the

time required. Currently, radiologists visu-

ally assess radiological images to detect,

characterize, and monitor diseases—this

work is manual, tedious, subjective, and

prone to human error. Deep learning

models, including convolutional neural

networks and variational autoencoders,

have automated such tasks via quantita-

tive assessment of radiographic charac-

teristics, e.g., cancer diagnosis, staging,

and segmentation of tumors from neigh-

boring healthy tissue.3 These methods

fall under radiomics, a data-centric, radi-

ology-based research field. Radiogenom-

ics is a new and complimentary field in

precision medicine that uses ML/DL to

combine radiology images (e.g., cancer

imaging) with gene expression signatures

to stratify patients’ risk, guide therapeutic

strategies, and perform prognoses.7

Similar to radiologic images, ML/DL mod-

els have been used to examine histopa-

thology images which can contain billions

of pixels and are difficult to process

without computer-aided diagnosis.8 The

utility of AI-assisted precision medicine

has been demonstrated in other areas of

precision medicine, including cardiovas-

cular and neurological disease. Here, it

has been used to identify novel genotypes

and phenotypes in heterogeneous cardio-

vascular diseases and to improve genetic

diagnostics in neurodevelopment disor-

ders. For example, recent work has

demonstrated methods to predict heart

failure and other serious cardiovascular

diseases in asymptomatic individuals,9

which can be acted upon with personal-

ized prevention plans to delay disease

onset and reduce negative health out-

comes.

Overall, the current value and future

potential of AI in personalized health

care, early detection of disease, tracking

disease progression, and as a clinical

decision support tool have been am-

ply demonstrated (Figure 2). AI-assisted
Medicine 3, 100861, December 20, 2022 3



Figure 2. Overview of incorporation of artificial intelligence into precision medicine
The incorporation of artificial intelligence into precision medicine has demonstrated tremendous potential
and progress in personalized care, clinical decision support systems, early disease detection, and
tracking disease progression. However, there are technical and ethical challenges (e.g., fairness and bias,
transparency and liability, trust, safety, and security) that may hinder the progress and reliability of the field
and delay clinical implementation.
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precision medicine has demonstrated

promise not only for personalization of

therapies for existing diseases, but also

for individual risk prediction and personal-

ized prevention plans.

Challenges and considerations
Although tremendous progress has been

made using AI techniques and high-vol-

ume data, there is substantial room for

improvement. While the potential of AI/

ML in personalized/precision medicine is

clear, there are many remaining concerns

and challenges, both technical and

ethical, that may hinder progress and reli-

ability of the field and delay clinical imple-

mentation. Some examples of this are:
4 Cell Reports Medicine 3, 100861, December 20
(1) Fairness and bias: Data and algo-

rithms can reflect, reinforce, and

perpetuate biases. When the data

utilized to train AI is either incom-

plete (e.g., lack of representation

from underserved and underrepre-

sented communities) or inherently

biased (e.g., collected in settings

where existing stereotypes affect

the data itself), the models built

will be problematic and can serve

to further exacerbate disparities

and biases.

(2) Limited data availability: In recent

years, DL models have become

increasingly popular, achieving

great performance in many areas
, 2022
of biomedical applications. How-

ever, due to their data-hungry na-

ture, DLmodels cannot easily learn

from small datasets, and available

datasets are often insufficient in

size to train deep learning models.

(3) Data deluge: As a society we are

generating ever more data both in

and out of clinical settings, with

healthcare data storage projected

to exceed 2,000 exabytes by

2020.10 Collecting such multi-

modal data on a large scale opens

new data storage and organization

challenges and costs.

(4) Transparency and liability: DL and

other high complexity ML models

may demonstrate greater accuracy

than simpler models, but are opa-

que and do not provide users with

insights as to how the algorithm ar-

rives at its conclusions. This ‘‘black

box’’ nature of the technology is

particularly concerning in health-

care where lives are on the line.

Additionally, where the responsi-

bility for AI-assisted medical deci-

sions lies is not always clear.

(5) Data drift: A common assumption

in AI (particularly ML) algorithms is

that data from the past (used for

the model training) is a representa-

tion of the data from the future (for

which the model will eventually be

deployed). Unfortunately, this is

rarely the case in real-world set-

tings and so changes in the data

may affect the model’s behavior

and accuracy in a real-world de-

ployment.

(6) Data safety and privacy: AI algo-

rithms use significant amounts of

personal data for their decision

making. However, software and

corresponding hardware may

have security flaws which can

lead to theft of personal and health

information.

(7) Trust: Similar to other technologies,

early mistakes and failures in tech-

nologies can lead to general mis-

trust which can reduce adoption

and utilization of the technology.

Current advances to overcome the
challenges
Recent advances in sensing and mea-

surement technologies and novel data
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science and AI methods have the poten-

tial to mitigate many of the challenges

described above. The wide adoption of

wearables in the general population (1 in

4 Americans has a wearable) enables

continuous collection of large volumes of

personal physiological and behavioral

data in addition to environmental informa-

tion (e.g., location, ambient condition) in

real-world settings at minimal cost. This

has been aided by advancements in

miniaturization and improvements in

hardware including better signal-to-noise

ratios, battery life, compute power, and

more. Investing in ways to intelligently

reduce the sampling rates and developing

computationally efficient data compres-

sion tools to store a large volume of data

without losing key information can reduce

the costs of data storage as well as

computation. Another recent advan-

cement in AI, federated learning,11 int-

roduces a decentralized data usage

infrastructure for training the algorithms,

which can mitigate challenges associated

with data safety and privacy. In traditional

ML methodology, datasets from multiple

sources would be centrally combined

and then used to train an algorithm,

whereas in federated learning, an algo-

rithm is trained locally on edge devices

or local servers without sharing that data

and later only the model parameters are

combined centrally and optimized itera-

tively. As only model parameters are

shared, not the actual data, data safety

and privacy remain intact in federated

learning.

Recent initiatives from multiple stake-

holders including researchers, policy-

makers, clinicians, and ethicists empha-

size inclusivity and inference-centered

explainability of AI algorithms in health

care12 as opposed to the traditional pre-

diction-centered black box approach of

the past. These new tools and frame-

works can enable dissection and interpre-

tation of predictionsmade by an algorithm

and may even improve model perfor-
mance further by allowing for the injection

of domain knowledge into their design.

These new tools can help detect and

resolve bias, drift, and other gaps in data

and models.

Conclusions
Technological advancements in sensor

hardware and AI algorithms equipped

with personalized/precision medicine

have already resulted in an unprece-

dented acceleration of personalized

therapy, early disease detection, and

personalized disease prevention strate-

gies. Overall, the synergy between AI

and personalized/precision medicine

could ultimately decrease the disease

burden for the public at large, and, there-

fore, the cost of preventable health care

for all. However, we should remain vigilant

with an ethics and equity lens to ensure

that these advancements are not

increasing health-related disparities and

exacerbating existing inequities or cre-

ating new divides in care or health-related

outcomes.
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