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ABSTRACT

Experimental and early clinical data suggest that, due to several unique properties, mesenchymal
stem cells (MSCs) may be more effective than other cell types for diseases that are difficult to treat
or untreatable. Owing to their ease of isolation and culture as well as their secretory and immuno-
modulatory abilities, MSCs are the most promising option in the field of cell-based therapies.
Although MSCs from various sources share several common characteristics, they also exhibit sev-
eral important differences. These variations may reflect, in part, specific regional properties of the
niches from which the cells originate. Moreover, morphological and functional features of MSCs
are susceptible to variations across isolation protocols and cell culture conditions. These observa-
tions suggest that careful preparation of manufacturing protocols will be necessary for the most
efficient use of MSCs in future clinical trials. A typical human myocardial infarct involves the loss of
approximately 1 billion cardiomyocytes and 2–3 billion other (mostly endothelial) myocardial cells,
leading (despite maximized medical therapy) to a significant negative impact on the length and
quality of life. Despite more than a decade of intensive research, search for the “best” (safe and
maximally effective) cell type to drive myocardial regeneration continues. In this review, we sum-
marize information about the most important features of MSCs and recent discoveries in the field
of MSCs research, and describe current data from preclinical and early clinical studies on the use of
MSCs in cardiovascular regeneration. STEM CELLS TRANSLATIONAL MEDICINE 2017;6:1859–1867

SIGNIFICANCE STATEMENT

This concise review discusses present and future applications of mesenchymal stem cells (MSC)
in therapy of cardiovascular disorders. It summarizes both preclinical and clinical trials con-
ducted in this area with strong emphasis on mechanisms of MSCs action. Its main impact lies
in comprehensive summary of ongoing and finished studies.

INTRODUCTION

Cardiovascular diseases (CVDs) are the number
one cause of death worldwide [1]. CVDs affect not
only elderly people but also middle-aged people
at the peak of their working and social capacities;
hence, CVDs are an enormous medical and eco-
nomic problem in society.

Recent decades have witnessed tremendous
progress in pharmacological and endovascular
therapies, as well as in surgical techniques, and
today, a great amount of effort is being directed
toward cardiac disease prevention [1]. Neverthe-
less, CVDs remain a chronic and progressive bur-
den in a significant proportion of patients, leading
to heart failure that requires heart transplantation
or permanent left ventricular support [1].

Among the experimental therapies of the
future, artificial (mechanical) heart replacement
[2] and cardiac regenerative approaches

(including biological hearts) remain the most
promising. Today, stem cells are a major focus in
regenerative therapeutic strategies.

Discovered in 1970 [3], mesenchymal stem
cells (MSCs) possess several specific features that
make them important candidates for future
regenerative cardiac therapies. Today, MSCs are
defined by the International Society for Cellular
Therapy as self-renewing, multipotent cells that
exhibit plastic adherence under standard culture
conditions and express CD73 and CD90 but not
CD45, CD34, CD14, CD11b, CD79a, CD19, or HLA-
DR surface markers, with in vitro multilineage dif-
ferentiation capacity [4]. MSCs are also known as
mesenchymal stromal stem cells, multipotent
adult progenitor cells, medicinal signaling cells,
and mesenchymal progenitor cells (MPCs); how-
ever, MPCs are also occasionally classified as a
separate population of cells [5].
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Among the sources of MSCs, bone marrow [3] and adipose tis-
sue [6] have been the most commonly studied to date. However,
MSCs are also found in umbilical cord blood [7], dental pulp [8],
synovial fluid [9], amniotic fluid [10], and urine [11]. Umbilical
cord Wharton’s jelly (WJ)-derived MSCs have recently been gain-
ing significant attention, owing to some of their unique properties
and their feasibility of use as an “unlimited” off-the-shelf source
of regenerative cells [12, 13].

Although MSCs from various sources share several character-
istics, they also exhibit several differences. These variations in
MSCs populations may reflect particular regional properties of the
niches from which they originate. MSCs features are also suscepti-
ble to variations in cell culture conditions and isolation protocols
[14–16].

Properties of MSCs derived from bone marrow (BM-MSCs),
adipose tissue (AT-MSCs) and WJ (WJ-MSCs) vary in different cul-
ture conditions and during differentiation [15–17]. For instance,
WJ-MSCs express the highest proliferative potential independently
of cell culture conditions [18, 19]. AT-MSCs and BM-MSCs, but not
WJ-MSCs, cultured in the presence of serum produce high
amounts of extracellular matrix components. Only AT-MSCs are
able to produce collagen (I, II, and III). Regardless of cell culture
conditions, BM-MSCs preserve high proangiogenic features
[15–17]. Other studies have shown that BM-MSCs are the most
immunosuppressive cells. These observations suggest that the
properties of MSCs strongly depend on cell source and culture
conditions [18, 20, 21] and might suggest the most efficient use of
various MSCs types in future clinical trials.

This review is intended to present concise information on
recent discoveries and the clinical use of MSCs in the field of
cardiovascular research.

ROLES OF MSCS IN CARDIOVASCULAR THERAPY

Direct Differentiation: Not the Primary Mechanism of
MSCs’ Action

The heart is a pump built of an extracellular matrix skeleton popu-
lated with cells, approximately 30% of which are cardiomyocytes
and 70% of which are endothelial cells [22]. MSCs have the poten-
tial to differentiate into several cell types, including cardiomyo-
cytes [23, 24]. MSC-like cells can be found in perivascular
adventitial niches [25]; moreover, these cells can be differentiated
epigenetically in vitro into cardiovascular precursors [26]. Some
authors have suggested even broader differentiation potential of
MSCs both in vitro—into neural and glial cells, skeletal myocytes,
hepatocytes, and endothelial cells [27]—and in vivo, because new
cardiomyocytes [28], vascular smooth muscle cells, and endothe-
lial cells have been found at sites of MSCs injections [29]. These
studies and other research [30] have shown that MSCs contribute
to neovasculogenesis via large and small vessel formation regard-
less of new muscle generation. Although MSCs are able to differ-
entiate into different cell types, including cardiomyocytes and
endothelial cells, this is probably not their primary mechanism of
action in cardiovascular regeneration [29].

Cardiac Retention versus Engraftment of MSCs

Effective delivery and enhanced retention of regenerative cells are
fundamental to produce a meaningful therapeutic effect [31–35]
because if the cells do not reach the target zone in the first place,

they have no chance to exert any effect. A further fundamental
issue is long-term engraftment of the therapeutic cells. The latter
may be, to some extent, evaluated in animal models [36] but not
yet systematically in humans due to technical and safety limita-
tions and label-specific limitations such as any potential toxic
effect on the cell [37] and/or excretion of the label from the thera-
peutic cell (that is, in most cases, time-dependent) and may pro-
vide a false signal of the cell presence (cell vs. label presence)
[38].

Engraftment rate of MSCs appears to be rather low [28]. This
phenomenon contradicts many preclinical and clinical observa-
tions in which robust beneficial effects of MSCs transplantation,
such as a decrease in fibrosis, the stimulation of angiogenesis, and
the restoration of contractile function, have been observed. Using
an improved delivery technique, our group has recently achieved
a high and reproducible retention rate (�30%) of 99Tc-labeled WJ-
MSCs in the peri-infarct zone in humans after recent myocardial
infarction [39].

Among the key MSCs mechanisms of action, paracrine secre-
tion [40–43] and cell–cell interactions [44–46] appear to be most
important. With these mechanisms, repeated administration of
the therapeutic cells may be far more relevant to the therapeutic
effect than the focus on long-term engraftment.

Secretion of Diverse Compounds is a Unique
Feature of MSCs

MSCs secrete various cytokines, including hematopoietic cell pro-
liferation and differentiation signals such as interleukin-6, fms-like
tyrosine kinase 3 ligand, a granulocyte and macrophage colony-
stimulating factors [47, 48]. They are able to induce cardioprotec-
tion via inhibition of cardiomyocyte apoptosis around the area of
administration through secretion of anti-apoptotic and angiogenic
factors, such as secreted frizzled-related protein 2, which modu-
lates the Wnt signaling pathway [41], and vascular endothelial
growth factor (VEGF), which stimulates angiogenesis [40]. The
secretion of proangiogenic molecules is crucial for neovasculogen-
esis in infarcted hearts, because MSCs lacking VEGF are less effec-
tive [40].

Importantly, beyond cytokine production, MSCs secrete met-
alloproteinases that reorganize the extracellular matrix in scar tis-
sue [49]. Reverse remodeling of scar tissue and antifibrotic effects
in necrotic myocardial tissue are required for the regeneration
and functional restoration of infarcted hearts. Moreover, MSCs
also directly stimulate the proliferation and differentiation of
endogenous cardiac stem cells (CSCs) [50], thus contributing to
muscle regeneration.

Interestingly, soluble cytokines and remodeling factors are not
the only agents secreted by MCSs. Exosomes are small extracellu-
lar vesicles that may contain microRNAs and induce biological
effects, even at distant locations. MSCs have been shown to
secrete exosomes that decrease infarct size in a mouse model of
myocardial ischemia/reperfusion injury [43].

Immunomodulation: A Key Attribute of MSC
Regenerative Potential

Both innate and adaptive immunity coordinate distinct and mutu-
ally nonexclusive events governing cardiac repair. Elimination of
the cellular debris, compensatory growth of the remaining cardiac
tissue, activation of resident or circulating precursor cells, quanti-
tative and qualitative modifications of the vascular network,
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formation of a fibrotic scar and the inflammatory response guide
the regenerative process following cardiac damage [51].

The most remarkable feature of MSCs is their moderate HLA
class I expression and their lack of HLA class II expression, thus
resulting in their immunoprivilege [4]. In many clinical trials MSCs
have been found not to trigger immunologic reactions for as long
as 12 months post-transplantation [52]. In contrast, they are
known to have immunosuppressive properties, for example, by
promoting monocyte maturation toward anti-inflammatory type
M2 macrophages and producing soluble mediators such as trans-
forming growth factor-b1, hepatocyte growth factor, prostaglan-
din E2, indoleamine 2,3-dioxygenase, heme oxygenase-1, soluble
HLA-G5, and anti-inflammatory interleukin 10 [53]. MSCs also
arrest B cell and dendritic maturation, downregulate the activat-
ing receptors of natural killer cells, suppress proliferation of both
T helper cells and cytotoxic T cells, and inhibit T cell production of
pro-inflammatory cytokines [54]. Owing to their immunomodula-
tory properties, MSCs are used to treat graft-versus-host disease
[55] and may resolve inflammation in infarcted hearts.

Direct MSC Communication with Target Cells

MSCs also interact with other cells directly through cell–cell con-
tacts involving gap junctions [46] and tunneling nanotubes. For
instance, MSCs are able to transfer mitochondria through nano-
tubes [45], thus achieving cardioprotection via respiratory chain
salvage in myocytes.

Through direct and indirect communication with cells at
injured sites, MSCs recruit other stem cells to facilitate regenera-
tion of injured tissue. One example of such interactions is the SDF-
1a/CXCR4 axis, which regulates homing of hematopoietic stem
cells to the injured myocardium [56]. Moreover, cardiomyocytes
can reenter the cell cycle after treatment with some cytokines
secreted by MSCs (e.g., TGFb). These observations suggest that
MSCs can trigger the repair of injured tissue. These intrinsic fea-
tures of MSCs make them ideal candidates for regenerative cardiac
therapy. Figure 1 sumarizes biological mechanisms of MSCs action.

PRECLINICAL CARDIOVASCULAR STUDIES INVOLVING MSCS

Most of the aforementioned cellular mechanisms through which
MSCs act in CVDs were originally identified in animal studies. The
potential of MSCs to differentiate into cardiomyocytes and engraft
into the myocardium has been shown in pioneering experiments
in mice [28], which have revealed expression of desmin, b-myosin
heavy chain, a-actin, cardiac troponin T, and phospholamban, as
well as sarcomeric organization of the contractile proteins, in the
left ventricles of mice injected with human BM-MSCs. That and
another animal study [57] have shown that the beneficial effects
after MSCs injection exceed those attributable to simple differen-
tiation and engraftment of MSCs. Owing to their immunosuppres-
sive properties, MSCs have been found to ameliorate conditions
related to non-ischemic cardiac disorders by resolving inflamma-
tion and improving cardiac function via paracrine actions in a rat
model of acute myocarditis [58].

The percutaneous injection of allogeneic MSCs into infarcted
swine hearts has been found to result in long-term engraftment,
improvement in the ejection fraction, decreased scar tissue for-
mation, and benefits to general cardiac function. Moreover, this
procedure has been found to be safe and to produce immunopri-
vilege effects in transplanted cells, because they are not rejected

by allogeneic recipients [59]. The beneficial effects of MSCs are
not restricted to animal models of acute and/or subacute myocar-
dial infarction. Promising results have also been observed in a
chronic model of ischemic heart disease in dogs in which MSCs
have been found to be able to differentiate into smooth muscle
cells and endothelial cells, thus causing increased vascularity and
improving cardiac function [60]. Autologous MSCs have also been
safely delivered into a chronic model of ischemia–reperfusion-
induced cardiomyopathy in pigs, thus resulting in structural and
functional reverse remodeling [61].

Large-animal models such as pigs are best for bridging the gap
between basic research and clinical application because their size,
anatomy and physiology are similar to those of humans. These
models aid in not only selecting the optimal number of trans-
planted cells and time of transplantation but also establishing the
best method (transendocardial vs. intracoronary vs. intravenous)
for delivering and imaging transplanted MSCs [62]. Although
results in preclinical studies are very promising, showing improve-
ment in a wide range of cardiac functions—increased ejection
fraction, decrease in scar tissue, reversed remodeling, improved
contractility, augmented heart perfusion, and increased blood ves-
sel density [28–30, 40, 43, 53, 58, 61, 63, 64]—the long-term
assessment of the safety and efficacy of MSCs is still needed.

TRANSLATION OF MSC REGENERATIVE POTENTIAL INTO

CARDIOVASCULAR CLINICAL TRIALS

Fundamental considerations in the clinical applications of cellular
therapies to stimulate myocardial repair and regeneration are
uncompromised safety and maximized clinical efficacy. A typical
human myocardial infarct involves the loss of approximately 1 bil-
lion cardiomyocytes and 2–3 billion other (mostly endothelial)
myocardial cells [65], leading (despite maximized medical therapy)
to a significant negative impact on the length and quality of life
[1], On a laboratory level, maximization of clinical safety involves
evaluation of chromosomal stability [66]. Maximization of the cell
potential for regenerative capacity involves cell type identification
or choice, potential cell pretreatment, and the delivery method to
ensure high uptake in the target zone.

Effect of MSCs Transplantation in Acute Myocardial
Infarction

In trials focused on the application of MSCs in acute/subacute
myocardial infarction, BM-MSCs have commonly been used
(Table 1). In one pioneering study, the short-term (6 months)
safety of intravenous injections of allogeneic MSCs has been ana-
lyzed. No arrhythmogenicity or tumorigenicity was observed, and
global symptom scores and ejection fractions tended to improve
versus the effects in the placebo group [67]. In another study, BM-
MSCs have been found to be safe for small group of patients with
acute myocardial infarction during a 5-year follow-up [68].

In addition to BM-MSCs, AT-MSCs have also been tested for
efficacy in myocardial regeneration (Table 1). In the APOLLO trial,
application of AT-MSCs resulted in improved cardiac function, ele-
vated perfusion, and a decrease in the extent of scar tissue [69].
On the basis of the results of this study, an ongoing phase III
ADVANCE (NCT01216995) trial was launched. MPCs are also being
tested for their safety, feasibility and efficacy in the treatment of
acute ST-elevation myocardial infarction after their intracoronary
administration in the AMICI trial (NCT01781390).
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WJ is also a promising source of MSCs for clinical application
in treating acute myocardial infarction.WJ-MSCs have been shown
to be safe and beneficial in two independent studies [13, 70], and
had also positive effects on infarct size and left ventricular con-
tractility [59].

In a study using a different design—CADUCEUS—the applica-
tion of cardiospheres (mixture of autologous MSCs with CSCs) has
been performed. This study has found a moderate decrease in
scar tissue and increased viable heart mass and contractility in the
treatment group; however, there was no change in ejection frac-
tion [71]. One-year follow-up showed that the safety and thera-
peutic effects of the intervention were maintained [72].

Efficiency of MSC Transplantation Is Highest in Chronic
Ischemic Cardiomyopathy

Chronic ischemic cardiomyopathy is another cardiovascular disor-
der in which MSCs are being intensively evaluated and are
thought to be highly efficient (Table 1). In the POSEIDON trial, allo-
geneic and autologous transendocardial applications of BM-MSCs
have been compared. Both types of cells delivered similar
effects—improvement in ejection fraction and a decrease in scar
size within 1 year after intervention [73].

In the TAC-HFT trial, the effects of BM-MSCs and bone mar-
row mononuclear cells (BMMNCs) have been compared. Neither
cell type triggered serious adverse effects; however, BM-MSCs,
but not BMMNCs, caused a decrease in infarct size and improve-
ments in contractility and overall quality of life; however, no
changes in ejection fraction have been observed [74].

BM-MSCs’ beneficial effects in treating chronic ischemic cardio-
myopathy are clear, but the effects tend to be limited and localized
to the injection site. In the PROMETHEUS study, patients under-
going coronary artery bypass grafting received autologous MSCs.
An 18-month follow-up showed improved contraction and perfu-
sion and decreased scar tissue size in injected segments. However,
the small number of participants and the lack of a placebo group
restricts the degree to which these results can be generalized [75].

The effects of MSCs transplantation may be limited not only
by the site of injection but also by the number of transplanted
cells. Most of the aforementioned trials used dose-escalation
approaches (ranging from 12.5 3 106 to 11 3 108), whereas the
ongoing TRIDENT trial—a phase II clinical trial (NCT02013674)—
intends to establish the optimal number of transendocardially
transplanted allogeneic MSCs, which should at least correspond
to the number of cells lost during myocardial infarction while still
being a number that is possible to culture and inject.

Bone marrow is not the only source of MSCs that has been
tested for treating chronic ischemic cardiomyopathy. AT-MSCs also
yield improvements in total left ventricular mass, heart contractil-
ity and perfusion in no-option patients with chronic ischemic car-
diomyopathy, as shown by the PRECISE study [76]. An ongoing
phase II trial (CONCERT-CHF) is testing the safety and efficacy of
transendocardial injections of autologous MSCs together with c-
kit-positive CSCs in patients with chronic heart failure.

A slightly different approach involves pretreatment of MSCs
with cytokines before transplantation. In the C-CURE study, MSCs
were preconditioned with a cardiogenic cytokine cocktail before
application. Increase in the ejection fraction, end-systolic volume,
6-minute walking distance and general quality of life were
observed, with no systemic toxicity or adverse effects within 2
years [77]. In this approach, MSCs with an increased commitment
to a cardiopoietic lineage are believed to be more promising than

unstimulated MSCs. The C-CURE results inspired the multinational
CHART-1 trial, conducted in 39 hospitals. A recent update from
this study has demonstrated the safety of cardiogenic conditioned
BM-MSCs from patients 39 weeks after transplantation [78].

A similar approach has been used in the MyStromalCell study,
in which patients received VEGF-stimulated AT-MSCs [79]. In that
study, prior to transplantation, AT-MSCs were stimulated to differ-
entiate toward an endothelial lineage by culturing for 7 days in
VEGF-A165-stimulation medium.

Interestingly, there are no current trials making direct compar-
isons of the effects of MSCs from different sources (e.g., AT-MSCs
vs. BM-MSCs) in the treatment of any cardiac disorder. Similarly,
no studies have compared cell delivery methods in this manner.
This lack of information complicates making assumptions about
optimal cell sources or delivery methods.

Studies to date have generally provided optimistic observa-
tions concerning the application of MSCs in the treatment of car-
diovascular disorders (acute or chronic).

In several models, MSCs have been shown to decrease scar
tissue size, increase perfusion and contractility of the injured
heart, induce neovasculogenesis and antifibrotic effects in dam-
aged cardiac tissue, and generally improve quality of life. However,
there is still a need for large, comprehensive, randomized con-
trolled multicenter studies comparing crucial features of MSCs
application in CVDs (e.g., source and number of cells, culture con-
ditions, time, and method of application). Several such studies are
in progress, thus warranting cautious optimism with regard to the
clinical application MSCs in the near future. Table 1 presents
selected clinical trials involving MSCs in cardiovascular disorders.

ENHANCING THE EFFICIENCY OF MSC THERAPY: FUTURE GOALS

Despite the promising results of clinical studies involving MSCs,
constant efforts to enhance MSC performance are being made,
primarily because effects observed in preclinical studies are stron-
ger than those in clinical trials. To achieve the best clinical results,
optimal conditions for transplantation must be established. These
conditions involve duration of the disease (acute or chronic disor-
der); the dose of cells applied; the overall patient condition, sex
and age of the patient; and the age of the cell donor in cases of
allogeneic transplants.

The method of cell delivery (intracoronary vs. transendocar-
dial vs. intravenous) is also being debated [37]. On the basis of the
conclusions of cardiovascular clinical trials, the transendocardial
application of 20–100 3 106 MSCs in treating chronic ischemic
cardiomyopathy may deliver the best results. However, there is a
lack of comprehensive studies discussing these issues and showing
a reliable efficacy of MSCs transplantation that exceeds the effi-
cacy of standard procedures alone. Ultimately, combined thera-
pies may prove most viable. An interesting concept is to test
MSCs as an adjunctive therapy in patients receiving left ventricular
assist devices [80].

There is also a lack of data showing the optimal source of
MSCs for transplantation. As shown in basic science studies, MSCs
can differ across sources in their regenerative potential, that is, in
their level of secreted trophic factors or propensity toward differ-
ent lineages. However, there are many discrepancies among pub-
lished data regarding the properties of BM-, AT-, and WJ-MSCs.
Therefore, comprehensive studies are needed to obtain consistent
results. Such studies may also improve cell preparation methods
for specific clinical trials.
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The absence of differences between the effect of autologous
and allogeneic BM-MSCs used in clinical studies for the treatment
of ischemic cardiomyopathy has previously been reported [73].
However, allogeneic cells have advantages over autologous cells in
that they can be prepared, expanded and characterized more
quickly as off-the-shelf-products that are ready to be applied
when needed. Our [13] and another group [70] have suggested
the use of an innovative source of allogeneic MSCs, WJ, for treat-
ing cardiac disorders. In the CIRCULATE study,WJ-MSCs will be iso-
lated from umbilical cords and characterized on the basis of their
molecular features and their ability to treat cardiac disorders both
in in vivo models and in a clinical trial. This approach may address
the unmet needs regarding the clinical application of MSCs, which
include but are not restricted to the poor availability of abundant
autologous cells in the short time period after heart failure. It has
been estimated that myocardial infarction is associated with loss
of approximately 109 cardiac myocytes [65]. Thus, that is the order
of magnitude of cells necessary for transplantation within days
after a cardiac incident. An off-the-shelf approach appears to be
more feasible than autologous cell expansion to meet this need.

Moreover, because cardiovascular disorders mainly affect
elderly people with comorbidities (e.g., diabetes), it is safe to
assume that their autologous cells would also suffer
“comorbidities,” thereby diminishing the long-term therapeutic
effects of transplanted autologous cells. This risk is overcome via
the application of “healthy, young” allogeneic cells.

Sophisticated methods for increasing MSCs efficacy involve (a)
cell transplantation in combination with pharmacotherapy [81]; (b)
MSCs genetic modification (e.g., increasing engraftment potential
[82]), which may be effective but also hazardous and nonphysio-
logical; (c) MSCs preconditioning (e.g., with VEGF, insulin-like
growth factor 1 , bone morphogenetic protein 2 or basic fibroblast
growth factor) [64, 79, 83] to induce their differentiation or

increase their paracrine properties; and d) application of MSCs on
scaffolds [84] or in microcapsules [85] to increase their retention.
Future studies are expected to reveal which of these approaches
provide the greatest treatment efficacy.

Despite numerous clinical studies showing beneficial effects of
MSCs in treating cardiovascular disorders, some authors have called
into question the nature of MSCs, and have even suggested that
MSCs and fibroblasts cannot be distinguished on the basis of mor-
phology, cell-surface markers, differentiation potential or immuno-
logic properties [86–88]. This highlights the importance of defining
MSCs properly and may reflect the trap of inaccurate nomencla-
ture, because no stem-cell nature would be expected in fibroblasts.

Interestingly, despite of all abovementioned concerns, the
level of improvement in left ventricular ejection fraction observed
in cell therapy trials is comparable to the levels observed with the
use of the most effective pharmacological treatments [39]. One
common criticism of cellular therapies to stimulate myocardial
repair and regeneration involves their seemingly small effect on
myocardial contractility, typically evaluated as the left ventricular
ejection fraction (LVEF). It needs to be noted that typically
reported improvements in LVEF in patients with heart failure by
�2%–4% [89] are not different from the typical effect of widely
recognized pharmacological therapies (e.g., beta-blockers 12.9%
[90], angiotensin receptor blockade 11.3% [91], aldosterone inhi-
bition 12.0% [92] or cardiac resynchronization therapy 12.7%
[93]. It is expected that improvements in cell therapy including
the use of unlimited cell sources, reproducible cell harvest, prepa-
ration protocols and standardized delivery methods taking advant-
age of the latest technology will translate into advancing beyond
the magnitude of the effect of contemporary pharmacotherapy.

CONCLUSION

A number of unique features of MSCs discussed above make them
unique and promising therapeutic agents, in the field of stem cell
research. Rather than being typical stem cells that differentiate into
effector cells, which directly trigger the regeneration of damaged
tissues (similar to construction workers at a construction site), they
act as governing cells that secrete mediators and/or directly interact
with other cells and subsequently stimulate or recruit those cells to
perform regenerative actions (similarly to construction site supervi-
sors). To conclusively demonstrate these effects, additional well-
designed randomized multicenter studies are needed before MSCs
treatment can become a therapy of choice for the fundamental
health problem worldwide, CVDs. Allogeneic MSCs are particularly
interesting as therapeutic agents because they are not only free of
fundamental biologic limitations of autologous cells [94] but also
can be used as “off-the-shelf” therapeutic agents [13].

In a mutual relationship to clinical trials, important issues that
need to be addressed at the pre-clinical and early clinical stage of
MSCs applications involve (a) reduction or elimination of cell anti-
genicity to reduce or eliminate rejection [54], (b) continued devel-
opment of improved delivery techniques to enhance myocardial
retention and engraftment [62], and (c) cell engineering and /or
preconditioning [95] to enhance regenerative capacities and
enhance survival. Recent study in subacute myocardial infarction
in humans indicates an unprecedented high-grade (systematically
30%–35%) myocardial uptake of transcoronary-administered natu-
rally low-immunogenic WJ-MSCs [39]. This exceeds by�5-fold the
myocardial uptake of other cell types (such as unselected or
selected bone-marrow hematopoetic or mesenchymal cells) [96]

Figure 1. Mesenchymal stem cells mechanisms of action in cardiovas-
cular diseases. Abbreviation: GVHD, graft-versus-host disease. Source:
Servier Medical Art, modified (https://creativecommons.org/licenses/
by/3.0/legalcode).
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in subacute human myocardial infarction, indicating an important
clinical research direction [97].
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