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Abstract
Introduction: Trigeminal neuralgia (TN) is a chronic, debilitating facial pain disease causing stabbing pain attacks in the sensory
distribution of the trigeminal nerve. The underlying pathophysiology of TN is incompletely understood, although microstructural
abnormalities consistent with focal demyelination of the trigeminal nerve root have been shown in patients with TN. Studies of the
cerebrospinal fluid (CSF) in patients with TN suggest an increased prevalence of inflammatory mediators, potentially implicating
neuroinflammation in the pathophysiology of TN, as it has been implicated in other chronic pain conditions.
Objectives: This study aimed to further assess the inflammatory profile of CSF in TN.
Methods:Cerebrospinal fluid was collected from 8medically refractory patients with TN undergoingmicrovascular decompression
surgery and 4 pain-free controls (2 with hemifacial spasm; 2with normal pressure hydrocephalus). Cerebrospinal fluid was collected
from the cerebellopontine angle cistern intraoperatively in the patients with TN. Inflammatory profiles of CSF samples were analyzed
using a 71-plex cytokine and chemokine multiplex assay.
Results: Ten inflammatory markers were found to be significantly higher in TN CSF, and no analytes were significantly lower.
Elevated factors can be classified into pro-inflammatory cytokines (IL-9, IL-18, and IL-33), chemokines (RANTES and ENA-78), the
tumor necrosis factor superfamily (TRAIL and sCD40L), and growth factors (EGF, PDGF-AB/BB, and FGF-2).
Conclusion: This study further supports the notion that neuroinflammation is present in TN, and that multiple molecular pathways
are implicated.
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1. Introduction

Trigeminal neuralgia (TN) is a debilitating neuropathic facial pain
disorder characterized by unilateral, recurrent, severe electric shock-

like pains, abrupt in onset and termination, limited to the sensory

distribution of one or more divisions of the trigeminal nerve, and

triggered by innocuous stimuli.22 Trigeminal neuralgia is subclassi-

fied into: classical TN, developingwithout apparent cause other than

neurovascular compression (NVC) of the trigeminal nerve root entry

zone (TREZ) and frequently treated with surgical microvascular

decompression (MVD); secondary TN, caused by an underlying

disease (eg, multiple sclerosis [MS] or brain tumor); and idiopathic

TN, occurring in the absence of NVC or another underlying lesion.
Although pain symptoms are similar across TN categories, to date,
no universal pathophysiological features of the disease have
conclusively been identified. Brain MRI studies suggest that
morphological changes to the TREZ occur on the symptomatic
side in classical TN, with diffusion tensor imaging (DTI) studies in
particular showing disruptions to trigeminal nerve microstructure,
presumably by dysmyelination or demyelination.4,19,23,29 The TREZ
is where the trigeminal nerve enters the brainstem and represents
a transition zone from peripheral Schwann cell–mediated myelina-
tion to central oligodendrocyte-mediated myelination, making the
area susceptible to pressure-induced lesions.20,38 Biopsies of the
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TREZ taken during surgery show axonal loss, axonal degradation,
demyelination, andcollagendeposition.24,41Additionally,DTI studies
in idiopathic TN found that nerve microstructural abnormalities exist
irrespective of NVC.17,50 This may imply that neuroinflammation
could be a common pathophysiological factor causing trigeminal
nerve injury and contributing to the development of TN.6,17,50

Cerebrospinal fluid (CSF) regulates electrolyte balance, circulates
active molecules, and eliminates catabolites in the neuronal
environment.43 Cerebrospinal fluid protein alterations in disease
reflect involvement of various biological pathways in disease
pathophysiology.49 Early TN CSF studies focused primarily on
neurotransmitters and neuropeptides,21 finding neurochemical
changes including decreased norepinephrine and somatostatin,
and increased substance P and neuropeptide Y (NPY).5,21,45

Ericson et al.18 identified significant increases in 21 inflammatory-
related proteins in patients with TN compared with healthy controls,
which appeared to normalize after successful MVD surgery. Abu
Hamdeh et al.1 identified significant increases in apolipoproteins and
proteins involved in the complement cascade in TN patients
compared with control participants undergoing minor urological
surgery. They also found that patients with TN exhibited increased
CSF markers of peripheral demyelinating injury, immune tolerance,
myelin destruction, neuronal cell death, and myelin clearance.46

These studies highlight the utility of further examining CSF
inflammatory markers in TN to better understand the mechanisms
underlying initiation and maintenance of pain in TN.

We therefore assessed the inflammatory profile of CSF in
a cohort of TN patients undergoing MVD surgery compared with
a pain-free control group, hypothesizing that there would be
increased levels of CSF inflammatory markers in the former.
Uniquely, we examined CSF immediately bathing the trigeminal
nerve in the cerebellopontine angle cistern, as opposed to CSF
collected through distant lumbar puncture.

2. Material and methods

2.1. Ethical approval

This study received ethical approval from the Health Research
Ethics Board of the University of Alberta.

2.2. Inclusion/exclusion criteria

Patients with TN were eligible for this study if they fit the following
inclusion criteria: adult patients (18–80 years, male or female) with
a confirmed TN diagnosis, preoperative MRI evidence of NVC, and
who had provided informed consent to undergo MVD for surgical
treatment of TN. Microvascular decompression is a surgical
treatment option in medically refractory patients with classical TN
that aims to resolve neurovascular compression (NVC) at the
trigeminal nerve root by separating offending blood vessels from the
trigeminal nerve.8 Control participants were eligible for this study if
they matched the following inclusion criteria: adult patients
(18–80 years, male or female) admitted to hospital for reasons other
than TN and either (1) having in place a lumbar drain or (2)
undergoing MVD surgery for a non-TN condition (eg, hemifacial
spasm) as part of their care. Patients were ineligible for this study if
they had a concurrent chronic pain condition or if their CSF was
being analyzed for concern of infection.

2.3. Participants

Eight patients diagnosed with medically refractory classical TN
scheduled to undergo MVD surgery at the University of Alberta
Hospital were recruited and provided informed consent to

participate in the study. Four additional control participants with
diagnoses other than TN were also recruited: 2 undergoing MVD
for hemifacial spasm (HFS) and 2 with normal pressure
hydrocephalus (NPH) having in place a lumbar drain for CSF
sampling. Hemifacial spasm and NPH are nonpainful conditions.
A summary of participant demographics can be found in Table 1.

2.4. Cerebrospinal fluid collection

During MVD, after craniotomy and durotomy are performed, the
underlying arachnoid membranes are opened to gain access to
the cerebellopontine angle and the TRE.15 The opening of the
arachnoid membrane releases CSF (which relaxes the brain and
allows for better visualization) that is normally drawn off and
discarded as medical waste. In the 8 MVD patients and 2 control
patients undergoing MVD for HFS, CSF samples of 0.6 to 3.5 mL
were collected during this step in a sterile fashion and transported
on ice from the operating room to the laboratory. Collection of
cisternal CSF from the region of the trigeminal nerve is a novel
approach in comparison with previous studies of CSF in patients
with TN, which have collected CSF solely via lumbar punc-
ture.1,18,46 For control patients with NPH and an implanted
lumbar drain, CSF samples of 2.5 to 5 mL were collected using
a sterile collection apparatus and transported on ice from the
ward to the laboratory. All samples were immediately centrifuged
at 1800 rpm for 5 minutes to remove any contaminant cells.
Supernatant was collected as aliquots in 1.5-mL Eppendorf
tubes and frozen at 280˚C until analysis.

2.5. 71-plex cytokine and chemokine multiarray

Multiplex assays are an accurate and efficient way to characterize
numerous proteins in a low-volume sample.47 Aliquots of each
TN and control sample were sent to Eve Technologies (Calgary,
AB, Canada) where the Human Cytokine/Chemokine 71-Plex
Discovery Assay Array was performed. Samples were kept frozen
throughout the shipping process. Designed for extracellular
protein analysis in biological samples, including CSF, this
multiplex assay detects 71 relevant cytokine and chemokine
biomarkers found in humans: 6CKine, BCA-1, CTACK, EGF,
ENA-78, Eotaxin, Eotaxin-2, Eotaxin-3, FGF-2, Flt3L, Fractalkine,
G-CSF, GM-CSF, GROa, I-309, IFNa2, IFNg, IL-1a, IL-1b, IL-
1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p40,
IL-12p70, IL-13, IL-15, IL-16, IL-17A, IL-17E/IL-25, IL-17F, IL-
18, IL-20, IL-21, IL-22, IL-23, IL-27, IL-28A, IL-33, IP-10, LIF,
MCP-1, MCP-2, MCP-3, MCP-4, M-CSF, MDC, MIG, MIP-1a,
MIP-1b, MIP-1d, PDGF-AA, PDGF-AB/BB, RANTES, sCD40L,
SCF, SDF-1a1b, TARC, TGFa, TNF-a, TNF-b, TPO, TRAIL,
TSLP, and VEGF-A. Some samples had analyte-specific con-
centrations that were out of range (OOR) of the assay. For
samples lesser than OOR, a value of 0 pg/mL was substituted,
and for samples greater than OOR, the highest detected
concentration for that analyte was substituted, as per manufac-
turer’s instructions. Final analyte concentrations were expressed
in pg/mL.

2.6. Statistical analyses

To reduce the number of comparisons required to analyze this
dataset, the data were filtered for analytes that had a mean fold
change .1.5 or ,0.5 in the TN group compared with the control
group. Fold change was calculated as: Concentration Sample/Mean
Concentration Control group. In total, 19 and 21 analyteswere identified
as having a mean fold change.1.5 or,0.5, respectively, in the TN
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group. Using the ROUT method (Q 5 1%),34 2 outliers were
identified for the analyte RANTES in the TN group (TN 2: 241.24 pg/
mL; TN 5: 1384.43 pg/mL) and 1 outlier was identified for ENA-78 in
the control group (C 3: 0.870 pg/mL). These outliers were removed
before analysis. Welch t tests were conducted in RStudio (Version
1.4.1106) to analyze the remaining data by looking for between-
group differences in mean concentration of each biomarker. Sex
differences were compared between male and female samples
within the TN group. Multiple comparisons were addressed using

false discovery rate (FDR) 5% correction, with significance set at q,
0.05. A cluster analysis was run to identify groupings among
significantly elevated proteins in the TN group. Similarity between
proteins was measured using Spearman pairwise correlation
coefficients, then a bottom-up hierarchical clustering algorithm
was run using the complete linkage method, which assigns each
object to its own cluster then iteratively joins the 2 most similar
clusters until a single cluster remains. Figures were created in
RStudio and GraphPad Prism 9 (Version 9.3.0).

Table 1

Individual participant and group characteristics.

Patient ID (condition) Age in years Sex CSF collection method CSF volume collected (mL)

TN 1 76 M MVD 2.5

TN 2 60 F MVD 0.6

TN 3 65 M MVD 2

TN 4 66 F MVD 3

TN 5 32 F MVD 3

TN 6 54 M MVD 3

TN 7 50 F MVD 3

TN 8 42 M MVD 3.5

TN (group) 55.6 6 14.2 4 M; 4 F 2.6 6 0.9

CTL 1 (HFS) 70 F MVD 2

CTL 2 (HFS) 52 M MVD 3

CTL 3 (NPH) 70 M Lumbar drain 2.5

CTL 4 (NPH) 75 F Lumbar drain 5

CTL (group) 66.8 6 10.1 2 M; 2 F 3.1 6 1.3

Each control participant’s condition is shown in parentheses in the Patient ID column. Group age and CSF volume are shown as mean 6 SD.

CSF, cerebrospinal fluid; CTL, control; HFS, hemifacial spasm; MVD, microvascular decompression; NPH, normal pressure hydrocephalus; TN, trigeminal neuralgia.

Figure 1. Inflammatorymarkers significantly higher in the TN group. Concentrations (in pg/mL) of the 10 inflammatorymarkers found to be significantly higher in TN
CSF comparedwith non-TN control CSF. Error bars show the SEM. Individual data points are assigned as: HFS (triangle), NPH (square), andN (circle). Significance
stars are assigned as: *P, 0.05, **P, 0.01, ****P, 0.0001. CSF, cerebrospinal fluid; HFS, hemifacial spasm; PH, normal pressure hydrocephalus; TN, trigeminal
neuralgia.
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3. Results

Ten analytes were found to be significantly higher in the TN
group compared with the control group after FDR correction:
sCD40L (q 5 0.033), EGF (q 5 0.033), FGF-2 (q 5 0.049), IL-9
(q 5 0.036), IL-18 (q 5 0.036), PDGF-AB/BB (q 5 0.006),

RANTES (q5 4.82E-6), ENA-78 (q5 0.033), IL-33 (q5 0.041),
and TRAIL (q 5 0.006) (all significant after FDR correction,
Fig. 1). M-CSF (P 5 0.033; q 5 0.057) was nominally higher in
the TN group but failed to survive FDR correction. Of the 21
analytes with a mean fold change ,0.5 in the TN group, none

Figure 2. Heatmap of standardized concentrations for the 19 analytes with a mean fold change of .1.5 in the TN group. Each row corresponds to a specific
analyte, whereas each column corresponds to a sample. C1 to C4 are from the control group and TN1 to TN8 are from the TN group. Concentrations have been
standardized. TN, trigeminal neuralgia.

Figure 3. Clustered dendrogram and heatmap overlay of significantly elevated inflammatory markers in TN samples. Five main clusters were identified: ENA-78,
PDGF-AB/BB, and IL-18 (blue); RANTES and TRAIL (purple); IL-9 (green); sCD40L and IL-33 (pink); EGF and FGF-2 (brown). The heatmap is formed from
a pairwise Spearman correlation matrix. The dendrogram is labelled on the horizontal axis with its respective proteins, with a mirrored copy on the vertical axis to
assist visualization of where clusters fall within the matrix. TN, trigeminal neuralgia.
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were found to be significantly lower in the TN group compared
with the control group. A heatmap of standardized concen-
trations of the 19 analytes with a mean fold change .1.5 in the
TN group across study subjects is shown in Figure 2. Sample
“TN 2” had uniquely elevated concentrations for several
analytes, including TSLP, TPO, IL-7, IL-23, IL-17F, IL-17A,
and IL-12p70 (Fig. 2). These analytes were not found to be
significantly different between the 2 groups. Five main clusters
were identified among the significantly elevated proteins in the
TN group: ENA-78, PDGF-AB/BB, and IL-18; RANTES and
TRAIL; IL-9; sCD40L and IL-33; EGF and FGF-2 (Fig. 3). There
were no significant sex differences within the TN group.

4. Discussion

Weconducted an investigation of CSF frompatients with TN, with
specific emphasis on identifying inflammatory markers. We
indeed found an altered inflammatory profile of CSF samples
from patients with TN compared with non-TN control partic-
ipants, identifying 10 key inflammatory markers with significantly
higher concentration in the TN group.

The markers identified can be grouped based on similar
function. IL-18, IL-33, and IL-9 are pro-inflammatory cytokines,
with IL-18 and IL-33 both being part of the IL-1 cytokine
family.10,31 IL-18 is a powerful inducer of IFNg, another
inflammatory cytokine, as well as an activator of Th1 cells and
inflammatory macrophages.36 Heightened production of IL-18
correlates with disease and disease severity in several autoim-
mune and chronic inflammatory diseases, including MS.31 In rat
models of chronic constriction injury of the sciatic nerve,
microglial release of IL-18 has been linked to neuropathic pain
symptoms, and blockade of this signaling attenuated pain
responses.39 Similar effects have been shown in other studies,
where IL-18–mediated microglia and astrocyte interactions have
been established in having a key role in generating pain after
nerve injury.7,32 Furthermore, complete Freund adjuvant-injection
models of trigeminal neuropathic pain in mice have been linked to
significant increases in IL-18 mRNA expression in trigeminal
ganglion neurons.12

sCD40L and TRAIL are both part of the tumor necrosis factor
(TNF) superfamily, with sCD40L being known for its pro-
thrombotic and pro-inflammatory role and TRAIL being able to
initiate the apoptosis pathway.3,18 Interestingly, elevated sCD40L
has been linked toMS, with someMS treatments reducing serum
concentrations toward normal levels.51 Ericson et al.18 found
elevated TRAIL levels in TN CSF compared with controls, which
then returned to similar levels as controls after MVD surgery. Our
replication of increased TRAIL in a novel set of TN patients further
supports its relevance in TN pathophysiology.

ENA-78 (also known as CXCL5) is a chemokine serving as
chemoattractant and activator of neutrophil function that has
been identified in a number of inflammatory diseases, such as
ulcerative colitis48 and MS.42 Upregulation of ENA-78 has been
associated with neuropathic pain in a rat model of spinal nerve
injury, in which blockage of ENA-78 signaling attenuated
mechanical allodynia and thermal hyperalgesia.53

EGF, PDGF-AB/BB, and FGF-2 are all growth factors that have
critical developmental and homeostatic roles but are thought to
contribute to various pathologies when dysregulated.2,11,52 For
example, FGF-2 has been recognized as a potential contributor
to the pathogenesis of inflammatory diseases such as MS and
rheumatoid arthritis.52 However, growth factors may be released
from damaged neurons as a neuroprotective mechanism, as has
been shown by PDGF-BB protecting dopaminergic neurons in

animal models of Parkinson disease and FGF-2 exerting
microglia-induced neuroprotection.13,35 Furthermore, overex-
pression of FGF-2 has been shown to attenuate
epileptogenesis-associated neuroinflammation in rats, especially
by reducing IL-1b expression.9 Elevation of these growth factors
may represent a response to demyelination because these
factors are involved in oligodendrocyte progenitor propagation.37

To date, our study is the first to report elevations in these growth
factors in TN CSF, and identifying their exact role in TN
pathogenesis is a key future direction.

RANTES, a proinflammatory chemokine otherwise known as
CCL5, was very high in TN CSF and almost nonexistent in control
CSF, which makes it an interesting candidate for further study. In
inflammatory conditions, RANTES is upregulated and attracts
T cells, causing them to proliferate and activate.54 T helper 1 cells
release IFNg subsequently increasing RANTES expression,
leading to a cycle that further prolongs the inflammatory
response.54 Furthermore, RANTES has been linked to atypical
facial pain (AFP) and trigeminal-mediated pain previously.27 A
study of medullary jawbone samples from 15 patients with fatty-
degenerative osteolysis and osteonecrosis of the jawbone with
concomitant AFP or TN found a 30-fold overexpression of
RANTES compared with healthy jawbones.27 A proposed
mechanism of action by RANTES in pain is the desensitization
of mu opioid receptors in peripheral sensory neurons, therefore
modifying the nociceptive reaction.27 It can also attract dendritic
cells, eosinophils, natural killer cells, mast cells, and basophils to
sites of inflammation and infection.28 Notably, CSF RANTES
levels in healthy individuals are very low but increase dramatically
at the onset and progression of MS.33,40 Furthermore, RANTES
can increase synaptic excitability by enhancing glutamatergic
transmission in vitro.33 Taken together, these previous findings in
conjunctionwith our confirmation of significant RANTES elevation
implicates RANTES as a key player in the inflammatory nature
of TN.

Overall, the key inflammatory mediators identified in this study
have a widespread role in inflammatory processes and have been
implicated in other disease states, especially MS. In the context of
neuropathic pain, neuroinflammation can impact 4 main pro-
cesses. First, it leads to increased vascular permeability,
leukocyte infiltration, glial cell activation, and increased pro-
duction of inflammatorymediators (cytokines and chemokines).25

Second, inflammatory mediators can directly activate and
sensitize nociceptors, which leads to pain.26,30 Third, neuro-
inflammation is also known to increase the expression of ion
channels involved in peripheral sensitization, such as transient
receptor potential ion channels and sodium channels.30 Finally,
immune cells and neurons communicate via inflammatory
mediators, which modulates the response to injury through
regulating resident immune cells and recruiting immune cells to
the injured area.30 We speculate that these mechanisms may
lead to peripheral sensitization and foster the development or
maintenance of TN. Notably, the IL-1 and TNF families of ligands
have been recognized as key players in the sensitizing
mechanisms of neuropathic pain.14

Trigeminal neuralgia is more common in females than males,
presenting in an approximately 1.5 to 2:1 ratio.6,16 However, we
did not find any differences between female TN CSF andmale TN
CSF in our sample. It is possible that our sample was not
sufficiently large enough to detect sex differences. Future
research should continue to investigate sex differences in TN
CSF because of its clinical relevance.

The cluster analysis yielded 5 main groupings of the in-
flammatory proteins that were significantly elevated in the TN
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group. Interestingly, these clusters do not group the proteins
within the “protein families” (cytokines, chemokines, TNF
superfamily, and growth factors) that our discussion is largely
based around. However, it may suggest that multiple co-
regulated molecular pathways involved in the inflammatory
pathogenesis of TN exist and contain members of different
protein families. For example, the cluster of ENA-78 (chemokine),
PDGF-AB/BB (growth factor), and IL-18 (interleukin) may
represent a co-regulated inflammatory pathway that contributes
to the overall inflammation in patients with TN. Further research
should aim to elucidate the true relationships between in-
flammatory proteins involved in the pathogenesis of TN.

This study is limited by a relatively small sample size and
a control group that contains 2 distinct—though
nonpainful—conditions (ie, HFS and NPH) with CSF extracted
from 2 different sites (ie, cisternal and lumbar), only one of which
matched the cisternal site of TN CSF acquisition. We in-
tentionally chose to collect cisternal CSF from around the
trigeminal nerve in patients undergoing MVD, based on the
rationale that this might enhance the sensitivity of our TN CSF
samples to the inflammatory environment experienced by
trigeminal neurons compared with previous studies that solely
used lumbar puncture CSF samples distant from the site of TN
pathology.1,18,46 Ethical challenges obviously prevented us
from extracting cisternal CSF from completely healthy popula-
tions. Although it is true that cisternal CSF may be encountered
in a variety of neurosurgical procedures, the vast majority of
these are for tumor-related surgery, in which a confounding pro-
inflammatory local environment is highly likely to be present;
consequently, we limited cisternal control CSF collection to HFS
patients. There is no doubt that lumbar CSF from NPH patients
represents an imperfect control for comparison with cisternal
TN CSF. That being said, previous work in NPH patients has
shown an increasing gradient of complement factors from
cisternal to lumbar CSF,44 meaning that our use of lumbar NPH
CSF is unlikely to have exaggerated the pro-inflammatory profile
of TN CSF that we identified. A limitation to the generalization of
study findings stems from the exclusive use of classical TN
patients with evidence of NVC. With DTI studies finding
evidence of microstructural abnormalities in idiopathic TN
despite the absence of NVC, inflammatory processes may also
be at play to cause damage. The current study does not address
the role of neuroinflammation in idiopathic TN because of
evidence of NVC being a common inclusion criterion for MVD
surgery. Ultimately, despite these limitations, we were able to
detect strong and statistically significant differences between
patients with TN and non-TN control participants after
correction for multiple comparisons, suggesting that these
differences were truly driven by the presence of increased
inflammation in TN.

5. Conclusion

Patients with TN have increased inflammatory markers in the CSF
compared with pain-free control participants. This includes pro-
inflammatory cytokines, TNF superfamily, chemokines, and
growth factors that may all play distinct, contributory roles to
TN pathophysiology. Overall, this study contributes to the
growing body of literature demonstrating that inflammation is
present in TN.
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