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Abstract 

Several artificial intelligence (AI)-driven tools have emerged for the hemodynamic evaluation of critically ill and surgi-
cal patients. This article provides an overview of current developments and potential clinical applications of machine 
learning (ML) for blood pressure measurements, hypotension prediction, hemodynamic profiling, and echocardiog-
raphy. ML algorithms have shown promise in enabling continuous, non-invasive blood pressure monitoring by ana-
lyzing pulse oximetry waveforms, though these methods require periodic calibration with traditional oscillometric 
brachial cuffs. Additionally, a variety of ML models have been trained to forecast impending hypotension. However, 
clinical research indicates that these algorithms often primarily rely on mean arterial pressure, leading to questions 
about their added predictive value. The issue of false-positive alerts is also significant and can result in unwarranted 
clinical interventions. In terms of hemodynamic profiling, ML algorithms have been proposed to automatically classify 
patients into specific hemodynamic endotypes. However, current evidence suggests these models tend to replicate 
conventional hemodynamic profiles found in medical textbooks or depicted on advanced hemodynamic monitors. 
This raises questions about their practical clinical utility, especially given occasional discrepancies that could impact 
treatment decisions. Point-of-care ultrasound (POCUS) has gained traction for evaluating cardiac function in patients 
experiencing circulatory shock. ML algorithms now embedded in some POCUS systems can assist by recognizing 
ultrasound images, guiding users for optimal imaging, automating and reducing the variability of key echocardio-
graphic measurements. These capabilities are especially beneficial for novice operators, potentially enhancing accu-
racy and confidence in clinical decision-making. In conclusion, while several AI-based technologies show promise 
for refining hemodynamic assessment in both critically ill and surgical patients, their clinical value varies. Compre-
hensive validation studies and real-world testing are essential to identify which innovations will genuinely contribute 
to improving the quality of care.
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Background
Artificial intelligence (AI) refers to the development of 
systems or machines that mimic human intelligence to 
perform tasks such as learning, reasoning, problem-
solving, and decision-making. Machine learning (ML) 
algorithms are a subset of AI that enable computers to 
learn patterns and make predictions or decisions with-
out explicit programming by analyzing data and improv-
ing their performance over time. ML algorithms are 
increasingly used in medicine [1], and critical care is no 
exception [2, 3]. Contemporary computer power and 
ML algorithms offer the opportunity to analyze big data, 
including physiologic waveforms, at the bedside and in a 
fraction of a second. Predictive analytics, or the science 
of prediction, enables forecasting adverse events, such 
as hemodynamic instability, opening the door to proac-
tive interventions [4, 5]. This could lead to more accurate, 
timely, and personalized patient care. Ultimately, AI solu-
tions could decrease the risk of complications, improve 
patient outcomes, and reduce healthcare costs [1, 2]. 
However, hospital adoption requires ongoing validation 
through clinical studies demonstrating the superiority of 
AI-enabled solutions over human skills and existing tools 
and the development of user-friendly solutions.

Several AI-enabled tools have been developed for the 
hemodynamic assessment of critically ill and surgi-
cal patients. This article provides an overview of cur-
rent developments and potential clinical applications of 
ML innovations for blood pressure (BP) measurements, 
hypotension prediction, hemodynamic profiling, and 
echocardiography.

AI for blood pressure measurements
The oscillometric brachial cuff method is used to meas-
ure BP in most critically ill and surgical patients. It has 
the disadvantage of providing only intermittent meas-
urements, and it is known to overestimate low BPs (and 
underestimate high BPs) compared to reference intra-
arterial measurements [6]. Therefore, it does not permit 
the immediate detection of hypotensive events, which are 
linked with morbidity and mortality. In high-risk surgi-
cal and ICU patients suffering from circulatory shock, 
the use of intra-arterial monitoring is recommended but 
is associated with infectious, hemorrhagic, and throm-
botic complications. Volume clamp techniques enable 
continuous and non-invasive BP monitoring with servo-
controlled finger cuffs incorporating photoplethysmo-
graphic (PPG) sensors. Unfortunately, their accuracy 
and precision are influenced by peripheral circulation 
(typically shut down in patients with shock) [7], and a 
recent meta-analysis concluded that only one-third of 
validation studies reported that volume clamp techniques 
meet current international standards (bias < 5 mmHg and 

SD < 8 mmHg) for BP monitoring [8]. In addition, a meta-
analysis of 7 randomized controlled trials suggested that 
using volume clamp methods during non-cardiac surgery 
does not improve postoperative patient outcomes [9]. 
Interestingly, thanks to ML algorithms, attempts have 
recently been made to compute BP directly from PPG 
waveforms. Such PPG waveforms can be recorded with 
pulse oximeters in all critically ill and surgical patients 
[10]. Computing BP from PPG waveforms would open 
the door to easy, non-invasive, and continuous BP moni-
toring in clinical situations where BP may quickly and 
significantly vary, from spinal anesthesia during cesarian 
section to general anesthesia induction, hemorrhage dur-
ing and after surgery, and sepsis and cardiac complica-
tions in critically ill patients (Table 1).

Machine learning algorithms can be trained with a 
large number of PPG waveforms and corresponding BP 
values. Thus, they can learn the specific PPG patterns 
associated with a drop or a rise in BP. Pending regular 
calibrations with an external technique (usually the oscil-
lometric brachial cuff method), these algorithms allow 
the continuous estimation of BP from any PPG wave-
form. Several wristbands integrating optical sensors to 
record reflective PPG waveforms have been approved for 
medical use, although validation studies have reported 
conflicting findings [11, 12]. As of today, these wristbands 
are mainly proposed to track changes in BP in ambula-
tory patients with chronic hypertension. Nevertheless, 
the same principle could be applied to upgrade pulse 
oximeters used in surgical and critically ill patients. For 
instance, in patients undergoing surgery, Ghamri et  al. 
[13] used the PPG signal from standard pulse oxime-
ters and an ML algorithm to track changes in BP during 
anesthesia induction (Fig. 1). They reported a strong cor-
relation between changes in systolic and mean BP meas-
ured by a radial arterial catheter (the reference method 
in this study) and those predicted by the PPG signal. 
Because oscillometric brachial cuffs and pulse oximeters 
are ubiquitous devices, one may easily envision a future 
where they will communicate, pulse oximeters enabling 
the continuous monitoring of BP between intermittent 
oscillometric measurements and triggering brachial cuff 
inflation anytime a significant change in BP is suspected 
[14]. Several studies suggest that, in addition to systolic, 
diastolic, and mean BP measurements, PPG waveforms 
coupled with continuous ECG recordings could be used 
to impute or rebuild BP waveforms [15, 16]. Whether 
these artificial BP waveforms could be useful to compute 
additional hemodynamic variables such as pulse pressure 
variation, stroke volume, and cardiac output remains to 
be determined. In addition, poor peripheral perfusion is 
a well-documented factor that compromises the accuracy 
of oxygen saturation measurements via pulse oximetry 
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and cardiac output estimation using volume clamp tech-
niques [7]. Consequently, it is also likely to affect the reli-
ability of blood pressure monitoring derived from PPG 
waveforms, regardless of the sophistication or quality of 
the ML algorithm employed.

To guarantee accurate measurements of BP with intra-
arterial monitoring, one may ensure that the pressure 
transducer is correctly positioned at the level of the heart 
and the arterial pressure waveform is neither overdamped 
nor underdamped [17]. An overestimation of BP (mainly 

Table 1 Machine learning algorithms for the hemodynamic assessment of critically ill and surgical patients

AP arterial pressure, CO cardiac output, IVC inferior vena cava, LVEF left ventricular ejection fraction, MAP mean arterial pressure, VTI velocity time integral

Designed for Data input Expected benefit Comment

AP monitoring from pulse oximeter Photoplethysmographic waveform Easy non-invasive and continuous BP 
monitoring

Not commercially available

Detection of overdamping of the AP 
waveform

AP waveform Quality indicator for AP measurements 
and derived variables (e.g. CO)

Not commercially available

Prediction of hypotension 
(MAP < 65 mmHg)

AP waveform Proactive intervention to decrease 
the duration and depth of hypotensive 
events

• Commercially available
• Does not predict hypo-
tension better than MAP
• High rate of false posi-
tives → risk of unjustified 
treatment

Hemodynamic profiling • Ultrasound images
• NT-ProBNP
• Hemodynamic variables including CO

• Automatic identification of hemody-
namic profiles
• Better personalization of care

• Not commercially avail-
able
• Superiority over existing 
methods not yet estab-
lished

Automation of echocardiographic 
measurements (LVEF, VTI, IVC diameter)

Ultrasound images • Guiding users for optimal imaging
• Automating and reducing the variabil-
ity of measurements

Commercially available

Fig. 1 Example of continuous monitoring of systolic (SAP), mean (MAP), and diastolic (DAP) arterial pressure with a pulse oximetry signal
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systolic pressure) is observed when the arterial pressure 
waveform is underdamped, a very common scenario in 
critically ill patients [18]. Arterial pressure waveforms 
are increasingly used to compute stroke volume and 
cardiac output with pulse contour algorithms [19–21]. 
Wrong positioning of the pressure transducer [22, 23] 
and damping phenomena [24, 25] may result in wrong 
stroke volume and cardiac output measurements and, 
ultimately, in wrong therapeutic decisions. Interestingly, 
ML algorithms have been proposed to detect improper 
positioning of pressure transducers and abnormal damp-
ing [26] (Table 1). In surgical patients monitored with a 
radial arterial catheter, Rinehart et al. [27] tested an ML 
algorithm trained to detect a pressure transducer that 
was either too low or too high and an overdamped arte-
rial pressure waveform. They reported areas under the 
receiver operating characteristic curve (AUROC) rang-
ing between 0.91 and 0.99, sensitivities between 92 and 
99%, and specificities between 74 and 99% to detect all 
abnormal states. Of note, other methods not based on 
AI have also been proposed to detect and correct abnor-
mal arterial pressure waveforms. In critically ill patients 
with underdamped waveforms (confirmed by the Gard-
ner reference method), Foti et al. [25] showed that a com-
mercially available electronic filter (MostCareUp, Vygon, 
France) was able to detect underdamping, normalize the 
BP waveform, and provide systolic BP and cardiac output 
values comparable to those obtained with a mechanical 
resonance filter. In summary, ML algorithms may help 
improve the quality of arterial pressure waveforms. How-
ever, they may not be indispensable to do so.

AI for the prediction of hypotension
Proactive BP management during surgery has gained 
widespread interest, as intraoperative hypotension is 
associated with postoperative complications such as kid-
ney failure, myocardial injury, and increased mortality 
[28]. The first AI model commercially available for pre-
dicting hypotension is the Hypotension Prediction Index 
(HPI). Based on arterial waveform features, it forecasts 
a mean arterial pressure (MAP) < 65  mmHg for at least 
one minute [29] (Table  1). A recent systematic review 
and meta-analysis of validation studies reported a pooled 
AUROC of 0.89 for predicting hypotension 5 to 15 min in 
advance [30].

However, concerns have emerged about the HPI 
development process, specifically about data leak-
age in the training of the model [31–33]. This indicates 
that information on the outcome (hypotension or non-
hypotension) was used to select the input data. This is 
methodologically incorrect as the AI model then has pre-
knowledge, and its predictive performance is artificially 
high. In the HPI algorithm development, the training data 

has been selected in such a way that the model mostly 
learned that the current MAP is an important predictor 
of hypotension. This resulted in an almost perfect sym-
metry between HPI and current MAP values, known 
as the “mirror effect” [34]. A clinical study in 100 non-
cardiac surgery patients found a Spearman rank correla-
tion of 0.99 between HPI and simultaneous MAP values 
(Fig. 2) [35]. Recent studies have shown that HPI is above 
85 (the threshold value recommended by the developers 
to predict hypotension and invite clinicians to a proac-
tive intervention) as soon as the MAP is 71–73 mmHg or 
below [36, 37]

Given the close correlation between HPI and MAP 
values, researchers have hypothesized that MAP alone 
could perform similarly in predicting future hypotension 
[36, 38, 39]. Recent studies have confirmed that AUROCs 
for HPI and MAP are virtually identical (Fig. 3) [35, 40–
42]. One could imagine the AUROC to be the same for 
MAP and HPI, but with one variable being more specific 
and the other being more sensitive. This is not the case, 
the MAP and HPI ROC curves are perfectly superim-
posed [35, 41, 42], indicating that whatever the cut-off 
value selected to predict hypotension, the performance of 
both variables is comparable in terms of sensitivity and 
specificity.

Furthermore, the focus on AUROC as the primary per-
formance measure, though useful for model comparison, 
lacks clinical relevance [43]. In practice, the positive pre-
dictive value is key to determining the proportion of false 
alerts that may lead to unjustified therapeutic interven-
tions. Studies have reported low positive predictive val-
ues both for HPI and MAP. In the first truly independent 
HPI study (in most initial studies, data were analyzed 
by the developers), Ranucci et  al. [44] reported a posi-
tive predictive value of only 13%. In two more recent and 
larger studies [35, 41], the positive predictive values were 
around 30%, suggesting that 7 out of 10 alarms may be 
false. However, the estimation of the true positive predic-
tive value is challenging. Indeed, clinicians may react to 
HPI alerts by administering fluid or vasopressors, which 
could prevent hypotensive events. Such scenarios would 
be wrongly classified as false positives because HPI was 
high, and hypotension did not occur. Therefore, to get a 
fair estimation of the positive predictive value, it must 
be estimated from studies where HPI values are blinded. 
Such a study was recently published by Massari et  al. 
[42], who reported a positive predictive value of 62%. In 
summary, one may reasonably estimate that around one 
to two-thirds of HPI alerts are false [33]. These frequent 
false alerts may lead to the administration of fluid, vaso-
pressors, and/or inotropes (with known side effects) to 
normotensive patients who would never develop hypo-
tension [38]. In this respect, several studies have reported 



Page 5 of 13Michard et al. Annals of Intensive Care           (2025) 15:26  

increased hypertension during HPI monitoring, an 
observation likely due to overtreatment [45, 46]. A risk–
benefit evaluation was recently published and suggested 
that the probability of unnecessary treatment with HPI 
monitoring is 10 times higher than the probability of pre-
venting postoperative complications [33].

Despite these concerns, the HPI has been used in sev-
eral randomized controlled trials that have yielded con-
flicting results [47, 48]. However, a meta-analysis of 
twelve studies found that using HPI, particularly with a 
predefined treatment protocol, may reduce the incidence, 
duration, and severity of hypotensive events [30]. Having 
said that, because MAP predictive performance is com-
parable to that of HPI, similar results might be achievable 
simply by setting a MAP alarm around 72  mmHg [36, 
38]. It would be a more cost-effective alternative to pre-
dict impending hypotension [34–38]. Studies comparing 
both strategies are ongoing.

Other AI models for predicting hypotension have 
been explored. A systematic review found 21 stud-
ies employing ML algorithms [30]. The overall pooled 
AUROC for these studies was 0.79, and MAP was often 
the most important predictor of hypotension. Since 
MAP’s AUROC for predicting hypotension typically falls 

between 0.69 and 0.93 (Fig. 3), these ML models may also 
not significantly outperform conventional hemodynamic 
monitoring.

In summary, while AI models like the HPI show poten-
tial in predicting hypotension, their performance is 
closely tied to MAP, a traditional and readily available 
metric. A possible explanation for the inability of ML 
algorithms to outperform current BP monitoring could 
be the lack of relevant information in the training data. 
For example, important risk factors for developing hypo-
tension have not been used (e.g. patient characteristics, 
anesthetic dose) or cannot be used (e.g. surgical manip-
ulation or bleeding) as input for the prediction. There-
fore, the clinical added value of such AI models remains 
unclear, especially given the risks associated with poten-
tial overtreatment [33]. Finally, more research is also 
needed to evaluate the impact of hypotension prevention 
strategies. Indeed, studies and meta-analyses suggest that 
targeting higher MAP values and preventing hypoten-
sion does not reduce morbidity and mortality [49–51]. 
In addition, the first study designed and powered (> 900 
patients) to assess the outcome impact of HPI monitor-
ing during surgery reported no reduction in acute kidney 
injury (the primary outcome) and no reduction in any 

Fig. 2 3D view of the non-linear and tight (r = 0.99) relationship between mean arterial pressure (MAP) and the hypotension prediction index (HPI). 
Original figure created with data from Mulder et al. [35]
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other postoperative complications, length of stay, hospi-
tal readmission and mortality [52].

AI for hemodynamic profiling
The concept of integrating hemodynamic variables 
to delineate specific hemodynamic profiles or pheno-
types has long been established. Since the 1970s, criti-
cal care textbooks have included comprehensive tables 
that outline these profiles based on variables measured 
by pulmonary artery catheters. These resources have 
been fundamental in educating medical professionals 
about cardiovascular physiology, assisting in the analy-
sis of hypotension mechanisms, and guiding therapeutic 

decisions. Machine learning algorithms have recently 
been proposed to identify hemodynamic profiles or phe-
notypes (Table 1).

Geri et al. [53] used hierarchical clustering with clini-
cal and transesophageal echocardiographic data input to 
explore cardiovascular phenotypes in 360 patients with 
septic shock. Five different phenotypes were identified: 
patients with hyperkinetic profile (n = 84), patients with 
right ventricular failure (n = 81), patients with persistent 
hypovolemia (n = 70), patients with left ventricular sys-
tolic dysfunction (n = 64), and patients well resuscitated 
(n = 61). ICU mortality was the highest (50%) in patients 
with left ventricular systolic dysfunction and the lowest 

Fig. 3 Predictive value of the Hypotension Prediction Index (HPI) and the Mean Arterial Pressure (MAP). Areas under receiver operating 
characteristic curves (AUROC) to predict intraoperative hypotension (IOH, defined by a MAP < 65 mmHg for at least 1 min) were compared in 4 
recent clinical studies
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(21%) when patients were well-resuscitated. The authors 
acknowledged that whether their clustering approach 
could help clinicians optimize hemodynamic support 
remains to be evaluated. Guinot et  al. [54] used a simi-
lar clustering approach with clinical, biological (NT-
proBNP), and echo-Doppler data input to characterize 
various phenotypes associated with fluid overload or 
congestion in 145 ICU patients. Three different pheno-
types emerged from the analysis: hemodynamic conges-
tion with moderate alterations of ventricular function 
(n = 75), volume overload congestion with normal cardiac 
function (n = 50), and systemic congestion with severe 
alterations of biventricular function (n = 20). These phe-
notypes varied significantly concerning acute kidney 
injury and mortality rates, as well as ICU and hospital 
length of stay. Nevertheless, whether clinicians having 
access to the same information would have classified 
patients similarly and what might be the impact of such 
classification on decision-making has not been explored 
yet.

In a pilot study, Kouz et al. [55] also used hierarchical 
clustering to identify underlying hemodynamic altera-
tions causing intraoperative hypotension and described 
six different phenotypes. Based on their characteristics, 
the phenotypes were labeled myocardial depression, 

bradycardia, vasodilation with cardiac index increase, 
vasodilation without cardiac index increase, hypov-
olemia, and mixed types. In a second and larger study 
(2000 surgical and critically ill patients), the same group, 
in collaboration with industry partners, used another 
unsupervised deep learning model to identify four phe-
notypes that were labeled vasodilation, bradycardia, 
hypovolemia, and cardiac dysfunction [56]. The authors 
suggested that automation of hemodynamic profil-
ing with AI may help reduce the cognitive load associ-
ated with integrating and interpreting hemodynamic 
measurements. Machine learning offers the significant 
advantage of rapidly processing vast amounts of data, 
which can be invaluable in complex clinical scenarios. 
However, in the context of hemodynamic monitoring, 
only a limited number of key variables are required to 
understand the mechanisms behind hypotension (e.g., 
vasodilation = low BP with preserved cardiac output). In 
addition, visual decision support tools embedded in mod-
ern hemodynamic monitors provide an accessible and 
effective means for clinicians to identify hemodynamic 
profiles at a glance. These tools simplify hemodynamic 
information into clear visual formats that support timely 
decision-making without needing the intricate compu-
tations that ML algorithms entail (Fig. 4). The necessity 

Fig. 4 The four main hemodynamic phenotypes of hypotension. Simple visual tools (here, concept screens) enable the identification 
of hemodynamic profiles at a glance, without the need for AI. Brady bradycardia, Cardio Cardiac dysfunction, CI cardiac index, HR heart rate, Hypo 
hypovolemia, MAP mean arterial pressure, PPV pulse pressure variation, SVI stroke volume index, SVRI systemic vascular resistance index, Vaso 
vasodilation
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of integrating complex, patent-protected, and costly 
ML algorithms for hemodynamic profiling is, therefore, 
debatable. The core value of ML in this context should be 
carefully considered against more straightforward and 
cost-effective solutions that already fulfill clinical needs 
[57, 58]. In addition, instances were noted where patients 
were classified under the “bradycardia” category despite 
presenting with heart rates above 60  bpm, and others 
were marked as having “vasodilation” even when their 
systemic vascular resistance index was within normal or 
elevated ranges. These inconsistencies can have signifi-
cant clinical implications. If ML algorithms are used to 
guide therapeutic interventions, mislabeling could lead to 
inappropriate treatment strategies. For example, a patient 
misclassified under “bradycardia” might receive chrono-
tropic agents unnecessarily, while a patient tagged as hav-
ing “vasodilation” could be inappropriately treated with 
vasopressors despite having normal vascular resistances. 
Such inaccuracies pose potential safety risks.

In summary, ML algorithms offer the potential to 
unlock valuable clinical insights from the extensive data 
recorded in critically ill and surgical patients far beyond 
what the human brain can process. However, they may 
not be essential for integrating and interpreting “small 
data,” such as a limited set of hemodynamic or echo-
cardiographic variables. Evaluating ML algorithm per-
formance necessitates comparison with established 
practices and simpler tools [57], like straightforward clas-
sification tables or visual decision support tools.

AI for echocardiographic assessment
Over the last decade, ultrasound devices have become 
smaller, smarter, and more affordable. Most cart-based 
point-of-care ultrasound (POCUS) systems are light and 
easy to move from one room to the other. Some POCUS 
devices fit in the pocket, and several transducers can 
be connected to an electronic tablet or a smartphone, 
sometimes wirelessly [59, 60]. In case of hemodynamic 
instability, echocardiography enables a quick evalua-
tion of cardiac anatomy and function [61, 62]. A recent 
systematic review and meta-analysis of 18 randomized 
controlled trials suggested that POCUS-guided resusci-
tation of shock states may reduce the duration of vasoac-
tive medication, the need for renal replacement therapy, 
and 28-day mortality [63]. Echocardiography is recom-
mended as a first-line approach for the diagnosis and 
early management of patients with clinical signs of cir-
culatory shock [64, 65]. However, precise quantitative 
ultrasound evaluations of cardiac function may remain 
challenging for some clinicians, especially for trainees.

Most recent ultrasound devices come with software 
innovations, from speckle tracking [66, 67] to ML algo-
rithms [68, 69], designed to facilitate and improve the 

quality of echocardiographic evaluations (Table  1). 
Machine learning algorithms have been trained using a 
large number of echocardiographic images and become 
capable of recognizing ultrasound images, guiding users 
to optimize image quality, automatically measuring key 
echocardiographic variables, and reducing the intra-
operator variability of measurements [69, 70]. Most clini-
cal validation studies published so far have been done in 
cardiac patients. However, several recent studies on criti-
cally ill and surgical patients yielded promising results, 
particularly for beginners in echocardiography (typically 
ICU residents).

As of today, most ML algorithms have been devel-
oped for the real-time estimation of left ventricular ejec-
tion fraction (LVEF) [71–73]. For example, Varudo et al. 
[73] used a neural network algorithm that automatically 
detects the apical 4-chamber view, endocardial left ven-
tricular borders, and end-diastolic/systolic times from 
mitral valve motion. Then, it calculates left ventricular 
volumes and LVEF (Fig.  5). In 95 critically ill patients, 
Varudo et al. [73] reported an excellent specificity (> 95%) 
to detect LV dysfunction. Interestingly, in this study, the 
reproducibility of LVEF measurements was better when 
novices were using the ML algorithm than when experts 
in echocardiography were taking the measurements 
manually. Other ML algorithms can directly estimate 
LVEF without estimating left ventricular volumes [74].

Machine learning algorithms have also been designed 
for the automated assessment of the subaortic velocity 
time integral (VTI), the respiratory variations in inferior 
vena cava (IVC) diameter, the mitral annular plane sys-
tolic excursion (MAPSE), and the left ventricular dias-
tolic function. The subaortic VTI is a surrogate of left 
ventricular stroke volume that can be used to assess fluid 
responsiveness (a significant rise in VTI during a passive 
leg raising maneuver or a fluid challenge is observed in 
fluid-responsive patients) and to calculate cardiac output 
[75]. An ML algorithm recognizes the apical 5-chamber 
view and the left ventricular outflow tract (Fig. 5). Then, 
the pulsed wave sampling box is positioned automati-
cally in the left ventricular outflow tract to capture the 
optimal Doppler signal and calculate the average VTI 
over a 4-s period [76]. Doing so enables a quick estima-
tion of the sub-aortic VTI with a low percentage error, 
even in the hands of trainees [77]. In mechanically ven-
tilated patients, the respiratory variation in IVC diam-
eter has been proposed to predict fluid responsiveness 
[78]. In this regard, several ML algorithms have also 
been trained for the automated evaluation of the IVC 
profile, which allows the continuous tracking of the ves-
sel diameter throughout the respiratory cycle [79]. Apart 
from the precise identification of the minimum and 
maximum IVC diameters and the automated calculation 
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Fig. 5 Examples of AI-enabled tools for echocardiography. Top: Automated Velocity Time Integral (VTI) measurement from an apical 5 chambers 
view, Middle: Automated Left Ventricular Ejection Fraction measurement from an apical 4 chambers view (Realtime A4C EF), Bottom: Automated 
measurement of the inferior vena cava (IVC) collapsibility index (CI) from a subcostal view. LVOT left ventricle outflow tract diameter, Diam diameter, 
HR heart rate, CO cardiac output, LVESV left ventricular end-systolic volume, LVEDV left ventricular end-diastolic volume, Dmin minimum diameter, 
Dmax maximum diameter
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of the collapsibility or distensibility index (Fig.  5), ML 
algorithms have another advantage: they track the same 
portion of the IVC, which is somewhat impossible when 
using the classical M-mode sampling approach because 
of the IVC swing contextual to the diaphragmatic move-
ments. Other ML algorithms have been developed for the 
automated calculation of the MAPSE and a quick assess-
ment of left ventricular systolic function with transtho-
racic echo in critically ill patients or with transesophageal 
echo during surgery [80, 81]. Left ventricular diastolic 
dysfunction is an increasing concern for intensivists 
because it may dramatically impact the tolerance to fluid 
administration and is not detected by quick qualitative 
POCUS evaluations [82]. The diagnosis and the grad-
ing of diastolic dysfunction typically require the quanti-
fication of multiple echocardiographic parameters by an 
experienced operator, and it is time-consuming. Using 
ML algorithms, Chen et al. [83] developed and validated 
a reliable method to detect and grade left ventricular 
diastolic dysfunction in a few seconds, saving time and 
labor.

Finally, a possibly under-explored advantage of AI in 
echocardiography pertains to the possibility of using it 
for teaching. Several pathways are currently available to 
obtain certification in echocardiography, and an increas-
ing number of clinicians have been trained to perform 
echocardiographic assessments [84]. However, human 
resources are limited, and the availability of trainers and 
supervisors may become an issue. Trainees and clinicians 
willing to improve their skills could benefit from the 
availability of AI-enabled tools to compare their manual 
calculations with those done automatically by the ML 
algorithms.

Perspectives and challenges ahead
The rapid advancements in AI offer a glimpse into 
a future where ML innovations seamlessly integrate 
into healthcare and could be used in combination. For 
example, AI tools could transform the surgical patient 
journey, starting before hospital admission, by character-
izing patient cardiovascular phenotypes and personaliz-
ing treatment pathways. In the operating room and ICU, 
AI tools could enhance and optimize clinical decision-
making, while in surgical wards and post-discharge care, 
they could enable early detection of hemodynamic dete-
rioration, preventing rescue interventions or readmis-
sions [2, 14, 85].

Despite this promising potential, numerous challenges 
hinder the effective implementation of AI tools [1–3, 86, 
87]. These hurdles begin at the development stage, where 
the availability of representative, diverse, and inclusive 
datasets is critical to ensuring the generalizability and 
equity of research outcomes. Regulatory and commercial 

constraints further complicate the landscape. Both regu-
latory bodies and developers often lack the expertise, 
manpower, and frameworks to evaluate the safety and 
clinical value of learning tools, which inherently require 
frequent updates.

Another pressing issue is the need for greater algorithm 
transparency and explainability to build trust and drive 
clinical adoption [86, 87]. Education plays a vital role 
here. Starting from medical school, clinicians should be 
equipped with a foundational understanding of ML prin-
ciples and limitations—not to turn them into computer 
scientists but to demystify AI tools. This would help dis-
pel perceptions of AI as either an omniscient "Deus ex 
machina" or an opaque, error-prone black box threaten-
ing their roles.

Accountability is another crucial dimension. While AI 
tools provide valuable insights, most clinical decisions 
will ultimately be made by humans. These tools are often 
validated in specific contexts and may not perform relia-
bly in different scenarios. This raises significant questions 
about liability. Who bears responsibility in the event of 
a wrong diagnosis or adverse outcome—the developer 
or the clinician? Such concerns become even more pro-
nounced with AI-driven closed-loop systems that not 
only suggest therapeutic options but also autonomously 
administer treatments. Predictive analytics introduce 
additional complexities by encouraging clinicians to act 
“proactively” based on probabilities rather than con-
firmed diagnoses [5, 38]. This represents a fundamental 
shift in clinical practice, as clinicians are traditionally 
trained to detect and treat established disease states or 
adverse events. Acting on probabilities, particularly when 
patients are hemodynamically stable and the positive 
predictive value is less than ideal, poses ethical and prac-
tical dilemmas—especially if the risks of harm outweigh 
the potential benefits [33].

The high development costs and premium pricing of 
most AI innovations present a significant barrier to their 
clinical adoption, particularly in middle-income coun-
tries. While technologies like continuous BP monitoring 
using a pulse oximeter or automated cardiac function 
assessment via a pocket ultrasound device connected to a 
smartphone may initially seem like practical solutions to 
improve access to modern hemodynamic monitoring and 
management, their costs may limit widespread use. Cur-
rently, the few commercially available AI solutions are 
sold at premium prices, restricting their accessibility to 
a privileged minority. For instance, the integration of the 
HPI into cardiac output monitoring systems has nearly 
doubled the cost of arterial pressure sensors. This price 
increase is particularly troubling given that the existing 
costs of cardiac output monitoring systems are already 
a significant barrier to their use [88]. These financial 
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constraints reduce the adoption of such systems, thereby 
limiting the number of high-risk surgical or ICU patients 
who could benefit from advanced hemodynamic man-
agement [89].

In summary, while AI innovations hold transformative 
potential, they also present numerous questions and limi-
tations that the research community and industry must 
address. Only by overcoming these challenges can clini-
cians fully embrace AI as a reliable and integral part of 
their daily practice.

Conclusion
Despite significant excitement surrounding AI-enabled 
tools, a gap remains between the perceived potential 
of these technologies and their proven clinical value. 
Numerous studies have highlighted that ML algorithms 
may, at times, offer insights that clinicians can already 
infer or observe directly. In the realm of hemodynamic 
assessment for surgical and critically ill patients, cer-
tain examples stand out. For instance, the HPI has been 
shown to largely mirror the MAP, resulting in similar 
predictive capabilities for hypotensive events. Likewise, 
machine learning-derived hemodynamic phenotypes 
replicate the conventional hemodynamic profiles found 
in medical textbooks or shown on modern monitoring 
systems, albeit with some inconsistencies. These find-
ings underscore the need for thorough validation of AI 
tools to ensure they provide added value beyond what is 
already accessible through established clinical methods.

Conversely, AI-enabled tools can offer capabilities that 
surpass human skills and conventional methods. Notably, 
they have shown the potential to track BP changes using 
pulse oximetry waveforms. Additionally, these tools 
can enable trainees to measure echocardiographic vari-
ables with greater consistency and reproducibility than 
even experienced clinicians performing manual assess-
ments. Such advances hold promises for augmenting 
clinical precision, reducing variability, and democratizing 
access to high-quality patient care through supportive 
technology.

The creativity of engineers and computer scientists 
has fueled the development of exceptionally complex 
AI tools, which are often perceived as opaque or “black 
boxes” by clinicians. This makes rigorously designed 
clinical studies more crucial than ever. Such studies are 
essential for two main reasons: first, to validate the safety 
and effectiveness of AI-enabled tools, ensuring they per-
form as anticipated; and second, to confirm their supe-
riority over existing methods in areas such as accuracy, 
reproducibility, speed, or accessibility. We believe that, 
while not every innovation will prove valuable, select AI 
advancements will eventually enhance care quality and 
patient satisfaction.
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