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Objective: The purpose of this study was to investigate the preoperative

prediction of Cytokeratin (CK) 19 expression in patients with hepatocellular

carcinoma (HCC) by machine learning-based ultrasomics.

Methods: We retrospectively analyzed 214 patients with pathologically

confirmed HCC who received CK19 immunohistochemical staining. Through

random stratified sampling (ratio, 8:2), patients from institutions I and II were

divided into training dataset (n = 143) and test dataset (n = 36), and patients

from institution III served as external validation dataset (n = 35). All gray-scale

ultrasound images were preprocessed, and then the regions of interest were

then manually segmented by two sonographers. A total of 1409 ultrasomics

features were extracted from the original and derived images. Next, the

intraclass correlation coefficient, variance threshold, mutual information, and

embedded method were applied to feature dimension reduction. Finally, the

clinical model, ultrasonics model, and combined model were constructed by

eXtreme Gradient Boosting algorithm. Model performance was assessed by

area under the receiver operating characteristic curve (AUC), sensitivity,

specificity, and accuracy.

Results: A total of 12 ultrasomics signatures were used to construct the

ultrasomics models. In addition, 21 clinical features were used to construct

the clinical model, including gender, age, Child-Pugh classification, hepatitis B

surface antigen/hepatitis C virus antibody (positive/negative), cirrhosis (yes/no),

splenomegaly (yes/no), tumor location, tumor maximum diameter, tumor

number, alpha-fetoprotein, alanine aminotransferase, aspartate

aminotransferase, alkaline phosphatase, glutamyl-transpeptidase, albumin,

total bilirubin, conjugated bilirubin, creatinine, prothrombin time, fibrinogen,
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and international normalized ratio. The AUC of the ultrasomics model was

0.789 (0.621 – 0.907) and 0.787 (0.616 – 0.907) in the test and validation

datasets, respectively. However, the performance of the combined model

covering clinical features and ultrasomics signatures improved significantly.

Additionally, the AUC (95% CI), sensitivity, specificity, and accuracy were 0.867

(0.712 – 0.957), 0.750, 0.875, 0.861, and 0.862 (0.703 – 0.955), 0.833, 0.862,

and 0.857 in the test dataset and external validation dataset, respectively.

Conclusion: Ultrasomics signatures could be used to predict the expression of

CK19 in HCC patients. The combination of clinical features and ultrasomics

signatures showed excellent effects, which significantly improved prediction

accuracy and robustness.
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hepatocellular carcinoma, machine learning, radiomics, cytokeratin 19 (CK19), ultrasonography
Introduction

Hepatocellular carcinoma (HCC) is the leading primary liver

cancer, which is one of the major global health challenges (1). In

2020, liver cancer ranked sixth and third in incidence rate and

mortality among all malignant tumors in the world, and there

were approximately 905,000 new cases and 830,000 deaths (2).

With a 5-year survival rate of 18%, liver cancer has become the

second most fatal tumor, just secondary to pancreatic cancer (3).

Although many treatment strategies are available in clinical

practice, the recurrence rate of HCC remains high, and the

prognosis is generally poor (4–6). Accumulating evidence

suggests that HCC is a heterogeneous tumor with a

multimolecular phenotype (7, 8), and that inter- and

intratumoral heterogeneity is often highly resistant to clinical

interventions, leading to treatment failure (9, 10). The key

factors associated with the prognosis of HCC include

microvascular invasion, tumor grade, Ki67 expression, etc.
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(11–13). Compared with these factors, CK19 is not only a

prognostic marker of HCC (14), but also a stemness-related

marker (15). Tumor hepatocytes are capable of self-renewal,

differentiation and proliferation, with stronger tumorigenicity

and chemoresistance (16, 17). Transarterial chemoembolization

and systemic chemotherapy play an important role in

the treatment of HCC (4, 6). However, CK19-positive

HCC patients are more likely to develop resistance to

chemotherapeutic drugs, resulting in treatment failure (18).

Therefore, one manifestation of HCC heterogeneity is the

expression of Cytokeratin (CK) 19.

Cytokeratins are important structural components in the

epithelial cell skeleton (19). In adult liver, CK8 and CK18 are

expressed in mature hepatocytes, while CK7 and CK19 are

expressed in cholangiocytes and hepatic progenitor cells (20).

CK19 has been shown to be expressed in 4-28% of HCC patients

(21–23). In vitro studies have confirmed that CK19-positive

HCC cells are closely related to invasiveness, epithelial-

mesenchymal transition, and angiogenesis (23, 24). Compared

with CK19-negative HCC patients, CK19-positive patients have

a poorer prognosis, their clinical manifestations are not only

more prone to resistance to chemotherapeutic drugs, but also

have a higher incidence of extrahepatic metastasis and vascular

invasion (14, 18, 23). Due to its high invasiveness, this molecular

subtype has been considered as a new subtype of HCC (16, 25). It

has been found that some liver transplant patients without CK19

expression and CK19-related gene expression have a good

prognosis, even if they do not meet the Milan criteria (18, 24).

It has been suggested that preoperative assessment of CK19

expression may help to determine judge whether patients

beyond the Milan criteria meet the condition of liver

transplantation, potentially expanding the criteria for liver

transplantation (26). Therefore, preoperative assessment of
frontiersin.org
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CK19 expression in HCC patients is critical for the effective

development of individualized treatment strategies.

Immunohistochemical analysis of biopsy tissues is a reliable

method for the clinical preoperative assessment of CK19

expression in HCC patients (27). However, tissue biopsy is

expensive, and the invasive procedure may bring a series of

complications, such as intra-abdominal or subcapsular bleeding,

needle-path metastasis and intra-abdominal metastasis (28, 29).

In addition, the sample size of biopsy tissues is small which can

easily leading to missed diagnosis (30). In addition, the biopsy is

not recommended as a routine test for diagnosis of HCC by the

current guidelines (6, 31). Therefore, the current preoperative

detection of CK19 is somewhat limited. Radiomics is a powerful

tool for modern precision medicine (32). It captures high-

throughput radiomics features from medical images combined

with clinically relevant information to further improve the

accuracy of diagnosis and prognosis prediction, since these

features can provide additional information, such as tumor

phenotypes and immune microenvironment (33). As one field

of radiomics, ultrasomics plays an important role in the

diagnosis and treatment of liver cancer (34). Mao et al.

successfully classified primary and metastatic liver cancer

using k-nearest neighbor, logistic regression, multilayer

perceptron, random forest, and SVM algorithms based on

grayscale ultrasound images (35). Based on ultrasound original

radio frequency signals of HCC, Dong et al. effectively predicted

MVI using sparse representation algorithm and machine

learning algorithm combined with signal analysis and

processing techniques (36). Ma et al. developed a radiomics

model based on dynamic contrast-enhanced ultrasound (CEUS)

(37). They found that the model performed well in predicting

early HCC recurrence after ablation, while combining CEUS, US

radiomics and clinical Combination models of factors can

stratify high risk of late recurrence. The above studies

demonstrate that multiple modalities of ultrasomics can

successfully predict diagnosis and differential diagnosis of

HCC, early recurrence and key prognostic factors. At present,

some studies have successfully constructed radiomics models for

predicting CK19 status based on Magnetic resonance imaging

(MRI) images with good performance (38–40). However, MRI

cannot be applied to some special populations, such as those

with claustrophobia or metal-containing implants in their

bodies. Furthermore, MRI is time-consuming and expensive,

which limits its clinical application (41). Ultrasound has become

one of the most common examination methods for the liver

because of its non-invasive and non-radiative properties, more

applicable population, repeated observation and relatively low

cost (42). As a branch of radiomics, ultrasomics has been

successfully applied to the accurate diagnosis of various

malignant tumors, such as liver cancer, thyroid cancer and

breast cancer, with good results (43–47). However, there are

few reports about the prediction of CK19 expression in HCC

patients based on ultrasomics method.
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Therefore, this study aims to explore the value of machine

learning-based ultrasomics for non-invasive prediction of CK19

expression in HCC patients, and to further evaluate the

generalization ability of the prediction model using an

independent external validation dataset.
Materials and methods

Study population

This retrospective study was approved by the ethics review

boards of three medical institutions, Henan Provincial People’s

Hospital (Institution I), the First Affiliated Hospital of

Zhengzhou University (Institution II), and Henan Cancer

Hospital (Institution III), and the patients’ informed consent

was waived. From May 2019 to December 2021, clinical,

pathological and imaging data of 1535 hospitalized patients

from the above three medical institutions were collected, and

the population was screened according to the following criteria.

Inclusion criteria: (1) pathologically confirmed HCC with CK19

results; (2) performed liver ultrasound with two weeks before the

surgery; (3) clinical and imaging data integrity. Exclusion

criteria: (1) recurrent HCC; (2) history of radiotherapy,

chemotherapy, radiofrequency ablation, or other anti-tumor

therapies; (3) abdominal ultrasonography performed at other

hospitals; (4) preoperative imaging and clinical examinations

showing obvious metastases or concurrent malignant tumors of

other natures; (5) low quality image. A total of 214 patients were

finally included in this study, of which 179 patients from

institution I and II were divided into training dataset (n =

143) and test dataset (n = 36) by random stratified sampling

(ratio, 8:2), and 35 patients from institution III served as an

independent external validation dataset. The screening and

grouping flow chart of the study population is shown in Figure 1.

The indicators of the patients mainly included gender, age,

hepatitis B surface antigen (HbsAg)/hepatitis C virus antibody

(HCV-Ab), serum liver and kidney function indicators,

coagulation function indicators, liver cirrhosis, splenomegaly,

tumor location, maximum tumor diameter and tumor number.

HCC specimens from all patients were pathologically examined

and diagnosed according to World Health Organization criteria.

In this study, all patients were divided into CK19-positive and

CK19-negative groups, where CK19 positive is defined as the

presence of membranous or cytoplasmic immunoreactivity

in ≥5% of tumor cells (21).
Image acquisition, preprocessing and
ROI segmentation

All patients fasted for more than 8 hours before abdominal

ultrasonography. Preoperative ultrasonography was performed
frontiersin.org
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by sonographers with more than 10 years of experience in liver

ultrasonography, and the echogenicity, lesion size, and blood

flow signals of the lesions were also assessed and recorded. At

least one original ultrasound image clearly showing the

maximum lesion diameter and one original ultrasound image

containing the measured parameters in the same section should

be stored in Digital Imaging and Medicine Communication

(DICOM) format, respectively. The models of ultrasound

equipment used were: GE Logiq E20, GE Vivid E9, HIVISION

Ascendus, HIALOK ProSound A5, Philips EPIQ 7 or Philips

EPIQ 5, etc. All ultrasound probes were C75, with the frequency

of 1 – 5 MHZ.

In order to eliminate differences caused by different ultrasound

equipment and different operators and to ensure the comparability

of the features, researchers with 6 years of experience carried out

image preprocessing. To ensure the distribution of baseline features,

we first used stratified sampling to divide the training dataset and

test dataset for patients in institutions I and II in a ratio of 8:2. Then,

we used b-spline for ultrasound images reconstructed with different

voxel sizes. The images were resampled to a pixel size of 1 mm x1

mm, and gray-level discretized in the histogram with the bin width

set to a fixed 25.
Frontiers in Oncology 04
Region of interest (ROI) segmentation for this study was

performed by a sonographer with 30 years of experience in

abdominal ultrasound diagnosis (sonographer 1), and a

sonographer with 10 years of experience in abdominal

ultrasound diagnosis (sonographer 2). First, under the

guidance of sonographer 1, sonographer 2 used ITK-SNAP

software (http://www.itksnap.org) to manually segment each

patient’s ultrasound image along the lesion margin on the

largest transverse section of the tumor. To assess the

reproducibility of features, 50 cases of the ultrasound images

were randomly selected for segmentation by the sonographer 2.

Both sonographers were blinded to the clinical and pathological

data of all patients. The flowchart of this research is shown in

Figure 2. The representative lesion segmentation images are

shown in Figure 3.
Ultrasomics feature extraction
and screening

First, 14 filters were used to process the original image of

each patient to obtain the corresponding derived images, and
FIGURE 1

Flowchart: Cases were screened and enrolled according to the established exclusion criteria.
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then the open-source software package pyradiomics 2.1.2 was

used to extract the information in all original images and derived

images in high-throughput and converted them into quantitative

features. Seven major radiomics features below were obtained:

first order, shape, gray level co-occurrence matrix (GLCM), gray

level run length matrix (GLRLM), gray level size zone matrix

(GLSZM), neighboring gray tone difference matrix (NGTDM)

and gray level dependence matrix (GLDM). After extracting all

feature values, the missing value of each feature was filled with

the median. Finally, the data were normalized (Z-score

normalization) according to the mean and standard deviation

to make the data conformed to a normal distribution. Details of

the feature extraction methods and the filters used are provided

in the Supplementary Material 1.

The optimal feature subset was selected by feature

dimensionality reduction as follows: firstly, the reproducibility of

the extracted features was evaluated by the intraclass correlation

coefficient (ICC), where the features with ICC > 0.8 were considered

to be reproducible (48); secondly, the features with variance of 0

(i.e., features that did not contribute anything to the classification)

were excluded by the variance threshold; thirdly, the linear or

nonlinear information relationships between each feature and the

label were captured by mutual information, and the features with
Frontiers in Oncology 05
maximal information coefficient (MIC) of 0 were filtered. Finally,

dimensionality reduction was further performed using the

embedding method in combination with eXtreme Gradient

Boosting (XG Boost).
Model construction and evaluation

The ultrasomics model, the clinical model and the combined

model were constructed using the eXtreme Gradient Boosting

(XGBoost) algorithm in combination with the learning curve

and the grid search for tuning parameter, respectively. XGBoost,

an efficient and widely used machine learning algorithm,

incorporated regularization and parallel processing, which

could reduce both overfitting and computation (49).

Firstly, the ultrasomics model was constructed using the

optimal ultrasomics signatures selected above. Secondly, the

clinical model was constructed by 21 clinical features, including

gender, age, Child-Pugh classification, HbsAg/HBC Ab (positive/

negative), cirrhosis (yes/no), splenomegaly (yes/no), tumor location,

tumor maximum diameter, tumor number, and serum biochemical

parameters, including alpha-fetoprotein (AFP), alanine

aminotransferase (ALT), aspartate aminotransferase (AST),
A B C

FIGURE 2

Schematic diagram of the overall study: (A) Image acquisition and lesion segmentation; (B) Feature extraction and feature selection, and
(C) Model construction and evaluation.
B C DA

FIGURE 3

Examples of delineating regions of interest (ROI) on a grayscale ultrasound image. (A, B) are the CK19-positive HCC patient, (C, D) are the
CK19-negative HCC patient.
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alkaline phosphatase (ALP), glutamyl-transpeptidase (GGT),

albumin, total bilirubin (TB), conjugated bilirubin (CB),

creatinine, prothrombin time (PT), fibrinogen, international

normalized ratio (INR). Finally, the combined model was

constructed based on all the above clinical features and

ultrasomics signatures to explore whether the combination of the

two can show better performance. Supplementary Material 2

includes details of parameter tuning for model building.

The performance of the three prediction models was

assessed in the test dataset and the external validation dataset,

and expressed as four indicators: area under the receiver

operating characteristic curve (AUC) with 95% confidence

interval (CI), accuracy, sensitivity and specificity. Model

construction and evaluation were performed in the Python

environment using the scikit-learn 0.23.2 package.
Statistical analysis

Statistical analysis was performed by IBM SPSS Statistics 23.0

software. The distribution of continuous variables was first

determined by the Shapiro – Wilk test, expressed as mean ±

standard deviation or median (25th to 75th percentile) for

continuous variables. Categorical variables were expressed as

frequency and relative frequency. Statistical differences between

the two groups of CK19-positive and CK19-negative patients were

then analyzed as described above using t-test or Mann-Whitney U

test for continuous variables and chi-square test or Fisher’s exact

probability test for categorical variables. A value of p < 0.05 was

considered statistically significant.
Results

Baseline characteristics of the
study population

A total of 214 HCC patients were finally included in this

study. Patients from institution I and II were mixed and divided
Frontiers in Oncology 06
into training dataset (n = 143) and test dataset (n = 36) by

random stratified sampling (ratio, 8:2), and patients from

institution III separately served as external validation dataset

(n = 35). In the whole study cohort, CK19 negative and positive

patients accounted for 78.97% (169/214) and 21.03% (45/214),

respectively, and male and female patients accounted for 80.37%

(172/214) and 19.63% (42/214), respectively. The baseline

clinical and pathological characteristics of all patients are

shown in Table 1.
Feature extraction and screening

A total of 1,409 features were extracted from the original and

derived images, including first order, shape, GLCM, GLRLM,

GLSZM, NGTDM and GLDM of 18, 14, 24, 16, 16, 5 and 14,

respectively. All but 14 shape features were obtained from the

original and derived images. Details of the features were

provided in the Supplementary Material 3.

Firstly, a total of 992 features were retained according to the

ICC of features. Secondly, 16 features with zero variance and 487

features with zero MIC were excluded using variance threshold

and mutual information. Finally, 12 most valuable signatures

were selected using the embedding method combined with

XGBoost for further dimension reduction. Supplementary

Figures 1, 2 showed the importance of the 12 signatures.
The performance Of ultrasomics, clinical
and combined models

Three prediction models, that’s ultrasomics model, clinical

model and combined model, were constructed using XGBoost

algorithm, respectively. The results showed that the ultrasomics

signatures showed satisfactory performance in predicting CK19

expression in HCC patients, and the AUCs of the test dataset

and the external validation dataset were 0.789 (95% CI, 0.621 –

0.907) and 0.787 (95% CI, 0.616 – 0.907), respectively. The AUC

of the clinical model constructed based on the relevant clinical
B CA

FIGURE 4

The ROC curves of the modes in the training dataset, test dataset and validation dataset: (A) The clinical model. (B) The ultrasomics model.
(C) The combined model.
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characteristics was 0.746 (95% CI, 0.574 – 0.876) and 0.638 (95%

CI, 0.459 – 0.793) in the test and validation datasets, respectively.

However, when the clinical features and ultrasomics features

were combined, the combined model achieved an excellent

performance in predicting CK19 expression, and the AUC

increased to 0.867 (95% CI, 0.712 – 0.957) and 0.862 (95% CI,

0.703 – 0.955), respectively. The ROC curves of all models in the

three datasets are presented in Figure 4, and the detailed

indicators of performance evaluation are presented in Table 2.
Frontiers in Oncology 07
Discussion

HCC with positive CK19 expression is a new subtype of

primary liver cancer (16, 25). In HCC, positive CK19 expression

is one of the independent risk factors for prognosis, and is

significantly correlated with invasion, chemotherapy drug

resistance, and lymph node metastasis (14, 15, 18, 22). It has

been reported that recurrence-free survival was significantly

reduced in CK19-positive patients after surgical resection
TABLE 1 Preoperative clinical baseline characteristics of 214 patients.

Clinical characteristics CK19- (n = 169), n (%) CK19+ (n = 45), n (%) p value

Sex 0.181

male 139 (82.25%) 33 (73.33%)

female 30 (17.75%) 12 (26.67%)

Age (years) 56.30 ± 11.079 55.16 ± 10.388 0.535

Child-Pugh Class 0.041

A 151 (89.35%) 35 (77.78%)

B 18 (10.65%) 10 (22.22%)

HbsAg/HCV Ab 0.980

positive 128 (75.74%) 34 (75.56%)

negative 41 (24.26%) 11 (24.44%)

Cirrhosis 0.922

Yes 140 (82.84%) 37 (82.22%)

No 29 (17.16%) 8 (17.78%)

Splenomegaly 0.391

Yes 78 (46.15%) 24 (53.33%)

No 91 (53.85%) 21 (46.67%)

AFP (ng/ml) 14.60 (4.79-280.84) 33.80 (5.64-589.68) <0.001

ALT (U/L) 29.00 (20.15-46.9) 31.00 (21.00-48.00) 0.274

AST (U/L) 86.00 (69.00-114.00) 36.00 (25.00-49.85) 0.831

ALP (U/L) 86.00 (69.00-114.00) 88.50 (69.00-114.08) 0.283

GGT (U/L) 54.00 (30.15-103.50) 54.00 (30.00-113.50) 0.384

Albumin (g/L) 40.80 (36.90-44.40) 40.80 (36.98-44.40) 0.752

TB (umol/L) 13.2 (9.50-18.70) 13.70 (9.65-19.88) 0.070

CB (umol/L) 5.20 (3.50-7.80) 5.25 (3.70-7.80) 0.216

Creatinine (umol/L) 65.00 (56.00-76.00) 64.00 (56.00-75.25) 0.222

PT (s) 12.30 (11.40-13.20) 12.30 (11.40-13.20) 0.924

Fibrinogen (g/L) 2.44 (1.95-2.88) 2.45 (2.00-2.92) 0.108

INR 1.04 (0.98-1.11) 1.05 (0.98-1.11) 0.952

Tumor location 0.729

right lobe 139 (82.25%) 38 (84.44%)

left lobe 30 (17.75%) 7 (15.56%)

Maximum diameter (mm) 42.00 (28.00-67.00) 41.00 (27.00-66.25) 0.203

Tumor Number 0.208

1 136 (80.47%) 33 (73.33%)

2 12 (7.10%) 7 (15.56%)

>2 21 (12.43%) 5 (11.11%)
fronti
CK19, Cytokeratin 19; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, glutamyl-transpeptidase; TB, total
bilirubin; CB, conjugated bilirubin; PT, prothrombin time; INR, international normalized ratio; Unless otherwise specified, data in parentheses are percentages.
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compared with CK19-negative HCC patients, with 26.1% decrease

in 1-year survival, 16% decrease in 2-year survival, and 16.4%

decrease in 3-year survival, which seriously affected prognosis of the

patients (50). Therefore, preoperative assessment of CK19

expression in HCC patients is critical for the development of

individualized treatment strategies, and improving the prognosis

of patients. Preoperative immunohistochemistry is the main choice

for clinical detection of CK19 (27). However, preoperative tissue

biopsy may increase the risk of unwanted complications, such as

abdominal or subcapsular hemorrhage, as well as needle tract

metastasis (28, 29). Meanwhile, in current guidelines, biopsy is

not a routine test for HCC diagnosis (6, 31). Therefore, the current

preoperative detection of CK19 is somewhat limited.

Radiomics could extract a large number of macro

unrecognizable, high- dimensional features through advanced

data mining technology to help clinicians to further improve the

accuracy of diagnosis and prognosis prediction (32). As a field of

radiomics, ultrasomics plays an important role in the diagnosis

and treatment of liver cancer (34). In this multicenter study, we

fully mined the high-throughput information in gray-scale

ultrasound images, and constructed and validated three

models to predict CK19 expression in HCC patients. Firstly,

we extracted a total of 1,409 ultrasomics features from the

original and derived images. In order to avoid curse of

dimensionality, we used ICC, variance threshold, and

embedding method combined with XGBoost to reduce the

dimensionality of the features, resulting in 12 optimal

signatures. Then, the XGBoost algorithm combined with the

learning curve and the grid search parameter adjustment

method was used to train three prediction models: the

ultrasound omics model, the clinical model and the combined

model. The results showed that ultrasomics signatures based on

machine-learning could predict and classify the expression of

CK19 in HCC.As can be seen from Table 2, the combined model

incorporating ultrasomics signatures and clinical factors

performed excellently, with AUC improving to 0.867 (95% CI,

0.712 – 0.957) and 0.862 (95% CI, 0.703 – 0.955), respectively. In

addition, in external validation dataset, the combined model not
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only reached an AUC of more than 0.85, but also reached an

accuracy, sensitivity, and specificity of more than 80% (85.71%,

83.33%, and 86.21%, respectively), which indicated that the

combined model had a more stable performance. Notably, the

reproducibility of the results is one of the main limitations of

radiomics in clinical application, but the current radiomics

prediction studies of HCC are mostly based on a single center.

On one hand, the heterogeneity of the images collected by the

single center is relatively low, and the model had not been

verified externally, which might be an overfitting phenomenon.

On the other hand, the cases selected from multiple centers have

a wide range of disease distribution and other aspects compared

to a single center study. These were the reasons why we

conducted a multicenter study. The results showed that model

performance on the test dataset were comparable to the

performance on the external validation dataset, especially the

AUCs of the combined model were as high as 0.86. Therefore,

the models had a reliable generalization ability.

To date, only a few scholars explored the correlation between

HCC radiomics signatures and CK19 expression, mostly based on

MRI (38–40). Wang et al. identified HCC patients with positive

CK19 expression based on texture features of conventional MRI

image sequences (38). They manually segmented lesions and

extracted texture features in diffusion-weighted imaging (DWI)

sequences, and then analyzed 7 conventional sequence MRI

appearances, clinicopathological characteristics, and 2,415 texture

features using univariate and multivariate analysis methods. Finally,

serum AFP level ≥ 400 ng/mg, arterial rim enhancement, and

StdSeparation 3D texture features were identified as predictive

variables associated with CK19 positivity in HCC patients, and

then a logistic regression prediction model was constructed using

the above variables. The AUCs predicted by each of the three factors

was 0.650 (95% CI, 0.533 – 0.754), 0.635 (95% CI, 0.518 – 0.741),

and 0.765 (95% CI, 0.655 – 0.853), respectively. While combining

the three characteristics, the prediction model performed optimally,

with an AUC of 0.844 (95% CI, 0.744 – 0.916). Wang et al.

developed a nomogram for the prediction of CK19 expression,

which incorporates both clinico-radiological features and fused
TABLE 2 The performance of training dataset, test dataset and verification datase.

Dataset Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95%CI) p value

Training dataset Clinical 82.52 88.57 80.56 0.917 (0.859-0.956) <0.0001

Ultrasomics 85.31 88.57 84.26 0.949 (0.899-0.979) <0.0001

Combined 95.80 94.29 96.30 0.995 (0.965-1.000) <0.0001

Test dataset Clinical 63.89 75.00 62.50 0.746 (0.574-0.876) 0.0750

Ultrasomics 77.78 75.00 78.12 0.789 (0.621-0.907) 0.0289

Combined 86.11 75.00 87.50 0.867 (0.712-0.957) 0.0016

Validation dataset Clinical 62.86 83.33 58.62 0.639 (0.459-0.793) 0.2513

Ultrasomics 71.43 66.67 72.41 0.787 (0.616-0.907) 0.0011

Combined 85.71 83.33 86.21 0.862 (0.703-0.955) <0.0001
fronti
AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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radiomics features (39). They extracted 647 radiomics features from

enhancedMRI multi-sequence images based on a machine learning

algorithm, and then used the least absolute shrinkage and selection

operator regression and decision tree for feature screening and

model construction. Finally, in the validation dataset, the AUC of

the radiomics model fused with 17 optimal signatures was 0.822

(95% CI, 0.716 – 0.928), and the AUC of the combined model

incorporating clinical factors, conventional imaging features, and

radiomics signatures reached 0.846 (95% CI, 0.730 – 0.963). Yang

et al. developed four CK19 expression classifiers based on HCC-

enhanced MRI images from three centers and compared their

performance (40). They constructed predictive classifiers using four

machine learning algorithms: multiple logistic regression, support

vector machine, random forest, and artificial neural network

algorithm (ANN), respectively, and evaluated the generality of the

optimal classifier in two validation datasets. The results showed that

the ANN classifier constructed from the 12 optimal features

exhibited the best diagnostic performance. The AUC was 0.857,

0.726, and 0.790 in the training, validation 1, and validation 2

datasets, respectively. In this study, the AUC of the ultrasomics

model and the combined model reached 0.789 (95% CI, 0.621 –

0.907) and 0.867 (95% CI, 0.712 – 0.957) in the test dataset,

respectively. In addition, the two models also achieved similar

performance in the external validation dataset, with AUC of

0.787 (95% CI, 0.616 – 0.907) and 0.862 (95% CI, 0.703 – 0.955),

respectively. The results showed that although the gray-scale

ultrasound images used in this study were not as rich as the

image sequences contained in MRI, our ultrasomics model

achieved similar prediction performance with the prediction

model constructed by integrating multiple sequence radiomics

features of MRI. This fully demonstrated that gray-scale

ultrasound images included a variety of information and also had

a great potential in predicting the level of tumor heterogeneity. In

addition, our prediction model also showed excellent prediction

performance in the independent external validation dataset, and the

ultrasonography is relatively cheap, which makes the ultrasomics

method a better choice for popularization.

However, this study also had some limitations. Firstly, this was

a retrospective study and there might be selection bias. And the data

came from three medical institutions, especially with relatively few

positive samples. In the future, we hope to expand the research

scope and increase the sample size. Secondly, the images used in this

study were acquired by multiple ultrasound devices. Although

feature extraction was preprocessed before, there might still be

some device-related differences which were not eliminated. Again,

this study extracted features from the largest section of the tumor

only, and will includemore sections in the future for in-depth study.

Finally, only gray-scale ultrasound images were collected, but we

hope to collect more ultrasound images with multiple parameters

and modalities to further investigate CK19 expression prediction in

HCC patients by ultrasomics.

In conclusion, ultrasomics signatures could be used for

noninvasive prediction of CK19 expression in HCC, and the
Frontiers in Oncology 09
combined prediction of clinical features and optimal ultrasomics

feature subset showed an excellent performance, which

improved the prediction of CK19 expression in HCC

significantly. Therefore, machine learning-based ultrasomics

methods may be used to predict tumor heterogeneity and

facilitate the development of precision medicine.
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