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The foremost limitation of block copolymer synthesis is to polymerize two or more different
types of monomers with different reactivity profiles using a single polymerization technique.
Controlled living polymerization techniques play a vital role in the preparation of wide range
of block copolymers, thus are revolutionary techniques for polymer industry. Polymers with
good control over molecular weight, molecular weight distribution, chain-end functionality
and architectures can be prepared by these processes. In order to improve the existing
applications and create new opportunities to design a new block copolymer system with
improved physical and chemical properties, the combination of two different
polymerization techniques have tremendous scope. Such kinds of macromolecules
may be attended by combination of homopolymerization of different monomers by
post-modification techniques using a macroinitiator or by using a dual initiator which
allows the combination of two mechanistically distinct techniques. This review focuses on
recent advances in synthesis of block copolymers by combination of living cationic
polymerization with other polymerization techniques and click chemistry.

Keywords: cationic polymerization, block copolymer, macroinitiator, dual initiator, site transformation,
polyisobutylene

INTRODUCTION

Macromolecular engineering is the technology of total synthesis of highly controlled
macromolecules, with the goal to achieve control over the physical properties of
macromolecules, including molecular weight, molecular weight distribution, end-functionality,
tacticity, stereochemistry, block sequence, and block topology. The best technique for the
preparation of polymers with well-defined structures having low dispersity is living
polymerization. In the living polymerization process, all chains are initiated during the start of
the polymerization and the chains grow at a constant rate retaining their chain-end fidelity (Moad
et al., 2008; Jenkins et al., 2009). The term living polymerization was first coined by Szwarc et al.
(1956), who introduced living anionic polymerizations in 1956 (Szwarc, 1956). Later, the living
cationic polymerization, living ring-opening polymerization (ROP) and other living polymerization
methods were discovered.

Cationic polymerization is an important technique for polymer synthesis for monomers having
an electron-rich double bond, such as, isobutylene (IB) (Rajasekhar et al., 2020). Conventional
cationic polymerization progresses through four elementary steps: initiation, propagation, chain
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transfer, and chain termination. Cationic species are generated by
ionization during initiation and electrophilic addition of the
monomer to the active cationic site takes place during
propagation. The conventional cationic polymerization
reactions also involve chain termination, chain transfer, and
other chain-breaking reactions. This is due to the high
reactivity of the active cationic species. Thus, the propagating
active species gets quenched and kinetic chain is stopped. Chain
transfer reactions limit the molecular weight; thus, to obtain high
molecular weight polymers, reactions are mostly carried out at
very low temperature to prevent chain transfer reactions.
Polymers bearing selectively placed functional groups at the
chain end(s) are also very difficult to synthesize using
conventional cationic polymerization techniques. So, living
cationic polymerization was introduced to synthesize polymers
having controlled molecular weight, with limited chain transfer
and termination processes; narrow molecular weight distribution
and predetermined chain end functionalities. Living cationic
polymerization was first reported using vinyl ethers
(Miyamoto et al., 1984) and isobutylene (Faust and Kennedy,
1987) in the 1980s. Since then, the scope of living cationic
polymerization has been expanded rapidly both in terms of
monomers and initiating systems.

The capability to control the polymerization process opens up
a tremendous scope for the synthesis of highly controlled
polymeric architectures such as random, alternating, star,
branched, block, graft copolymers, etc. Presently, choice and
sequence addition of monomers for block copolymerization
using a single polymerization process has limitations since
there is no single polymerization technique for all types of
monomers. There are many reported review articles which
have discussed all types of combination techniques, but here
our aim is to focus typically on synthetic procedures for
copolymers by living cationic polymerization with other
polymerization techniques. This review summarizes the recent
developments in the synthesis methodologies of various types of
polymeric materials by combined cationic polymerization
pathways with other polymerization techniques like radical,
anionic, ring opening polymerisation, click chemistry, etc.

LIVING CATIONIC POLYMERIZATION

The key to achieve living cationic polymerization is controlled
initiation and propagation (Aoshima and Kanaoka, 2009). To
achieve polymers with controlled molecular weight, narrow
polydispersity, and precise chain end functionality, elimination
or suppression of chain transfer or chain termination reactions
are essential (Cho et al., 1990). Living cationic polymerization of
various electron rich vinyl monomers are initiated by Lewis acid
containing a binary initiating system to produce a carbocation
structurally similar to the monomer (De and Faust, 2007). For
living cationic polymerization, the key factor is to attain
equilibrium between the formed active species and the
dormant polymer chain, and there must be rapid exchange
within the active and dormant species so that a small amount
of active species is present within the system (Figure 1). Factors

like temperature, solvent polarity, concentration of active
initiating species, and nature of the counter ion play a decisive
role to control the equilibrium of the entire mechanism.

The first report on living cationic polymerization was for
isobutyl vinyl ether (IBVE) by Higashimura et al. using HI/I2
initiating system (Sawamoto and Higashimura, 1986). Since then,
researchers have grown interest in cationic polymerization of
other vinyl monomers. Faust and Kennedy (1987) reported living
cationic polymerization IB. The scope of living cationic
polymerization has increased in terms of initiating systems,
monomers, and synthetic applications in the course of time.
Linear semilogarithmic kinetic plot (ln([M]0/[M]) vs. time,
where [M]0 is the initial concentration and [M] is the
concentration at time (t) � t of the monomer) suggests
constant concentration of active species, i.e., no chain
termination; and linear dependence of number average
molecular weight (Mn) vs. monomer conversion (Mn vs.
conversion) indicates the absence of chain transfer (Szwarc
and Beylen, 1993). Again, according to a combined relation
derived by Penczek et al. (1991), the linearity of the ln{1-([I]
DPn/[M]0)} vs. time plot [where DPn is the number average
degree of polymerization, (I) is the concentration of the initiator]
proves the simultaneous absence of chain termination and chain
transfer (Penczek et al., 1991).

Generally, two methods are used for the preparation of
functional polymers via living cationic polymerizations: (1)
functional initiators and (2) end quenching of living polymeric
cations with appropriate nucleophiles or capping agents. A
functional initiator with/without a protected functional group
is generally used during the living cationic polymerization to
produce functional polymers. Several reports are there for the
preparation of chain-end functional polyisobutulenes (PIBs)
using ester functional initiators such as 3,3,5-trimethyl-5-
chloro-1-hexyl isobutyrate and methacrylate (Balogh et al.,
1992). An efficient way to produce end-functional polymers is
by end quenching of living cationic polymerizations with
appropriate nucleophiles. The functional initiator method is
more efficient due to unwanted side reactions during
nucleophile act to the end functionalization of the propagating
polymer cations. PIB with functional terminator approach was
reported by Faust et al., using diphenylethylene (DPE)
(Hadjikyriacou et al., 1995). This strategy was further extended

FIGURE 1 | General mechanism of controlled/living cationic
polymerization.
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to prepare a variety of end-functional PIBs bearing, alcohol,
methoxy, amine, carbonyl, and ester end groups.

The initiator system plays an important role according to
monomer choice. A wide variety of initiators were reported
such as, organic esters, halides, ethers, and alcohols, which act
as cation source to initiate living polymerization of IB.
Hydrogen chloride (HCl) adducts of 2-chloro-2,4,4-
trimethylpentane and 2-chloro-2,4-diphenyl-4-
methylpentane works as excellent initiators for α-methyl
styrene and IB, respectively. Faust et al., reported weak
Lewis acids as co-initiator for more reactive monomers like
vinyl ethers or N-vinyl carbazole, whereas strong Lewis acids
for less reactive monomers like IB or styrene (De and Faust,
2015).

COMBINATION OF LIVING CATIONIC
POLYMERIZATION WITH OTHER
POLYMERIZATION TECHNIQUES
Novel block copolymers could be synthesized by combination of
different living/controlled polymerization mechanisms such as
radical, cationic, anionic, ring-opening polymerizations, click
chemistry, etc., with new monomer combinations. The first
report on combination polymerization was by Richards et al.,
in 1977 to solve the problem of synthesizing copolymers using
different types of monomers (Burgess et al., 1977a; Burgess et al.,
1977b). The combination of two mechanisms occurs mainly by
two types of processes: a) site transformation method, and b) dual

initiator method (Figure 2). The site transformation technique
provides a useful alternative for the synthesis of block
copolymers, where the propagating active centre is
transformed to a whole new kind of active site and a second
monomer is polymerized by a different mechanism using the
newly formed active site, i.e., one homopolymer chain is
terminated by an initiator which initiates block
copolymerization using another technique. Whereas, in the
dual initiator method, one single initiator is capable of
initiating polymerization in two different mechanisms.
Another important technique is by combination of living
cationic polymerization with coupling click chemistry. The
essential conditions to achieve quantitative coupling reaction is
that the end groups should have similar reactivities and selection
of a good solvent for both homo—and copolymers.

Combination of Living Cationic
Polymerization with Controlled/Living
Radical Polymerization
From the very first introduction of the combination
polymerization technique concept, researchers’ interest in the
synthesis of novel polymeric architectures has grown. The scope
of combination polymerization has got new dimensions by
preparation of block copolymers using cationic and controlled/
living radical polymerizations like atom transfer radical
polymerization (ATRP), reversible addition-fragmentation
chain-transfer (RAFT) polymerization, nitroxide-mediated
polymerization (NMP), etc.

FIGURE 2 | Block copolymer synthesis mechanism: (A) Site transformation method, and (B) dual initiator method.
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Combination with Atom Transfer Radical
Polymerization
In 1997, Coca and Matyjaszewski reported block copolymers
preparation of styrene (St) and IB, i.e., P(St-b-IB-b-St) (P1) by
combination of cationic and ATRP, where both St and IB
monomers are capable of undergoing polymerization by living
cationic techniques. A recent study proves P(St-b-IB-b-St) (P1) is
highly hemocompatible and can be used as heart valve leaflets in
near future (Table 1) (Ovcharenko et al., 2019). Researchers have
also studied surface mobility of heparin by synthesizing
functional dendritic PIB-based thermoplastic elastomer by
styrene (St) and IB copolymer (Wu et al., 2018). However, the
insertion of monomers like methacrylic acid (MA) with the same
polymerization approach is a real difficult task as it does not
undergo polymerization via cationic polymerization technique.
Hence, the synthesis of P(IB-b-MA) (P2) di-block copolymer,
P(MA-b-IB-b-MA) (P3) tri-block copolymer is more fascinating
(Fang and Kennedy, 2002). They have reported micellar and
endless ionomer networks using these triblock copolymers (Table
1). The PIB macroinitiator used for the ATRP was synthesized
from the hydroxyl functional PIBs, obtained by hydroboration/
oxidation of allyl functional PIBs, by further reaction with 2-
bromoisobutyryl bromide. For the synthesis of P2 and P3
(Figure 3), tert-butyl methacrylic acid (t-BuMA) was
polymerized using the macroinitiator and then further
hydrolysed post polymerization to synthesize the targeted
block copolymers. Synthesis of P2 by dual initiator has also
been reported, where dual initiators (Figure 4) like 3,3,5-
trimethyl-5-chlorohexyl 2-bromopropionate (IB2BP, 1) and
3,3,5-trimethyl-5-chlorohexyl 2-bromo-2-methylpropionate
(IB2BMP, 2) were used to combine cationic polymerization
and ATRP (Zhu and Storey, 2010). A similar type of dual
initiator, 3-[3,5-bis(1-chloro-1-methyl ethyl)phenyl]-3-methyl
butyl-2-bromo-2-methyl propionate (DCCBMP, 3) was
reported by Zhu and Storey (2012) for the synthesis of
polyisobutylene-based miktoarm star polymers.

Du Prez et al., prepared block copolymers of poly(methyl vinyl
ether) (PMeVE) segment with poly(tert-butyl acrylate),
poly(acrylic acid), poly(methyl acrylate), and polystyrene
blocks (P4–P7), using a novel dual initiator 2-bromo-(3,3-
diethoxy-propyl)-2-methylpropanoate (4) (Bernaerts and Du
Prez, 2005). In 2008, P(IB-b-St) and poly(IB-b-poly(methyl
methacrylate-co-styrene) P[IB-b-(MMA-co-St)] copolymers

were reported using a combined ATRP process using PIB with
allyl halide end groups as macroinitiators (Jakubowski et al.,
2008). Chen et al. (1998) reported ATRP of styrene in bulk and in
xylene solution and p-acetoxystyrene (pACOSt) (P8-P9) in
xylene solution using 1-chloro-1-phenylethyl-telchelic PIBs
(Mn � 7,800 and 30,700 g/mol) as macroinitiators (Chen et al.,
1998). Triblock copolymers (P10) composed of hydrophobic
inert PIB as an inner core and hydrophilic poly[poly(ethylene
glycol) methacrylate] (PPEGMA) outer blocks were reported via
combined ATRP and cationic polymerization techniques
(Figure 5; Szabó et al., 2015). This copolymer having a
crystalline domain can be applied as nonionic surfactants
(Table 1). Polymerization of bisazobenzene containing vinyl
ether by cationic polymerization with IBVE as initiator using
Et1.5AlCl1.5 as catalyst, and ethyl acetate as base was synthesized,
which acts as macroinitiator for block copolymerization of
methyl methacrylate (MMA) by ATRP (Li et al., 2014).
Spherical and worm like polymeric architectures were formed
by poly(p-chloromethyl styrene)-g-(methyl methacrylate)
P(pCMS-g-MMA) (P11) and poly(p-chloromethyl styrene)-g-

TABLE 1 | Polymers, their morphologies, and applications.

Polymers Morphology Applications References

P(St-b-IB-b-St) (P1) Micelle Hemocompatible Coca and Matyjaszewski (1997)
Heart valve leaflets

P(IB-b-MA) (P2) Micelle Thermoplastic elastomer Fang and Kennedy (2002)
P(MA-b-IB-b-MA) (P3) Micelle Thermoplastic elastomer Fang and Kennedy (2002)

Ionomer network
P(PEGMA-b-IB-b-PEGMA) (P10) Crystalline Non-ionic surfactant Szabó et al. (2015)
P(MAPOSS-b-IB) (P13) Crystalline Composite material Haldar et al. (2015b)
P(NH2-L-Leu-HEMA-b-IB) (P14) Micelle pH triggered delivery Bauri et al. (2013)
P(ethylene-IB-b-ethylene) (P23) – Thermoplastic elastomer Espinosa et al. (2013)

FIGURE 3 | Examples of block copolymers synthesized via combination
of living cationic polymerization and controlled/living radical polymerization.
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(benzyl methacrylate) P(pCMS-g-BzMA) (P12) graft copolymers
(Banerjee et al., 2014). Initially, P(pCMS) macroinitiator was
synthesized using FeCl3 at 25°C by cationic polymerization,
which in turn initiated the ATRP process for MMA or BzMA
monomers. Researchers have reported triblock copolymers
having rod-coil-rod morphology with liquid crystal properties
(Gao et al., 2008). They form rod and lamellar structures which
can be confirmed from TEM images. Some other block
copolymer preparation with monomers such as 2,5-bis[(4-
methoxy phenyl)oxycarbonyl]styrene (pMPCS) using PIB

macroinitiator are also reported by ATRP technique. PIB-b-
oligoacrylates and PIB-b-oligomethacrylates were synthesized
by ATRP using PIB-α-bromo ester macroinitiator (Fu et al.,
2018).

β-Pinene is another very important monomer for living
cationic polymerization. There are numerous reports on
copolymers containing β-pinene by living cationic technique
but few studies are reported by using combination mechanism.
Block copolymers with β-pinene polymer-based macroinitiator is
also well studied. β-Pinene macroinitiator was prepared by living
cationic polymerization with the 1-phenylethyl chloride/TiCl4/
Ti(OiPr)4/nBu4NCl system, and used for block copolymerization
of MMA or butyl acrylate (BA) (Lu et al., 2003) and St (Lu et al.,
2004).

Combination with Reversible
Addition-Fragmentation Chain-Transfer
Polymerization
To date, several researchers have reported preparation of novel
block copolymers by combination of living cationic and RAFT
polymerizations (Minoda et al., 2013; Sugihara et al., 2012). There
are various reports of block and graft copolymers via
combination of living cationic polymerization and RAFT
polymerization using vinyl ether type RAFT agent, such as
benzyl 2-(vinyloxy)ethyl carbonotrithioate (BVCT). The BVCT

FIGURE 5 | (A)Block copolymer synthesis via combination of living cationic polymerization and atom transfer radical polymerization. (B)Block copolymer synthesis
via combination of living cationic polymerization and radical polymerization polymerization. (C) Block copolymer synthesis via combination of living cationic
polymerization and ring-opening polymerization. (D) Block copolymer synthesis via combination of living cationic polymerization and anionic polymerization.

FIGURE 4 | Examples of dual initiators used in combined living cationic
polymerization and controlled/living radical polymerization.
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act as dual initiator; it acts as a cationogen under EtAlCl2
initiation system in the presence of ethyl acetate for living
cationic polymerization and as a RAFT agent for the blocks
for RAFT polymerization mechanism (Ma Radzi et al., 2014a). De
and co-workers made an effort to prepare a well-defined di-block
copolymers of IB with poly[oligo(ethylene glycol) methyl ether
methacrylate] (POEGM; Bauri et al., 2015) poly(3-
(3,5,7,9,11,13,15-heptaisobutyl-pentacyclo[9.5.1.13,9.15,15.17,13]-
octasiloxane-1-yl)propyl methacrylate) (PMAPOSS) (P13)
(Haldar et al., 2015a) and amino acid-based monomers such
as Boc-L-alanine methacryloyloxyethyl ester (Boc-L-Ala-HEMA)
and Boc-L-leucine methacryloyloxyethyl ester (Boc-L-Leu-
HEMA) (P14) via combination of living carbocationic and
RAFT polymerizations techniques (Bauri et al., 2013). The
amino acid-based block copolymers were synthesized using
hydroxyl end-capped polyisobutylene as macro chain transfer
agents (mCTAs). The side-chain amino acid-based block
copolymers showed core-shell type micellar aggregates in
methanol, but after the Boc group deprotection, the block
copolymers formed spherical micellar aggregates in aqueous
milieu. These stable micellar aggregates can be applied in
chiral recognition, chiral resolution. They may also be used in
chiral catalysis of some organic reactions. Whereas the POSS
containing polymers showed crystallinity and are used for
synthesis of biocompatible composite materials (Table 1). Self-
healing gel was constructed from side-chain primary amine
leucine pendant with PIB. The diblock copolymer P(H2N-Leu-
HEMA)-b-IB) (P14) was synthesized using PIB based
di-functionalized cross-linker (HOC-PIB-CHO) without aiding
any external stimuli (Haldar et al., 2015b). They show well
defined crosslinking and are self-healing, thus finding a wide
range of applications in organ repair and pH-triggered delivery.

Synthesis of poly[(ethyl vinyl ether)-b-(vinylidene fluoride)]
P(EVE-b-VDF) (P15) diblock copolymer was reported via the
sequential combination of cationic polymerization of vinyl ethers
and radical RAFT polymerization of vinylidene fluoride (VDF)
(Figure 5; Guerre et al., 2017). Metal-free RAFT cationic
combination polymerization was reported by Maeda et al. for
the synthesis of block copolymers. For synthesis of vinyl ethers
(VEs) macroinitiator, the 1-isobutoxyethyl ethane dithioate
(IDTA) acts as a catalyst and the cationic polymerization was
initiated by the HCl.Et2O pair. The resulting poly(vinyl ethers)
(PVEs) could be used as mCTA for the RAFT polymerization of

methacrylate and styrene (Sugihara et al., 2015). The copolymers
show core-shell morphology which has been confirmed from
Atomic Force Microscopy (AFM) images.

Novel xanthates containing moieties were designed for
synthesis of block copolymer via combination of living
cationic polymerization and RAFT polymerization. Cationic
polymerization of IBVE and tert-butyl vinyl ether (tBVE) were
reported using xanthate containing initiating system. Initially the
cationic polymerizations of IBVE and tBVE were conducted by
using S-benzyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate
1)-HCl adduct/SnCl4 and Xanthate 1 or S-1-(ethoxycarbonyl)
ethyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 2)-
CF3COOH adduct/EtAlCl2 initiating system in the presence of
ethyl acetate. Then, RAFT/MADIX polymerization of vinyl
acetate (VAc) was carried out using azobis(isobutyronitrile)
(AIBN) as initiator at 60°C using either poly(IBVE) or
poly(TBVE) macro-CTA. The poly(TBVE) mCTAs
synthesized from the Xanthate 2 were able to polymerize VAc
via RAFT/MADIX polymerization, and produced well-defined
diblock copolymer, poly(TBVE)-b-poly(VAc) (Ma Radzi et al.,
2014b).

Combination with Nitroxide-Mediated
Polymerization
In Le et al. (2016), first reported the block copolymers by
combination of NMP and living cationic polymerization. They
have made some dual initiators for this particular concern.
Among the various dual initiators (5–7 in Figure 4), TEMPO-
based-alkoxyamine having high functionality of TEMPO showed
high efficiency in controlled polymerization of IBVE. The
TEMPO-functionalized poly(IBVE) (PIBVE) was used as a
macroinitiator for St at 130°C by NMP, resulting a well-
defined block copolymer of PIBVE-b-PS having a narrow
dispersity (Ð � 1.2).

COMBINATION OF LIVING CATIONIC
POLYMERIZATION WITH RING OPENING
POLYMERIZATION
ROP is a form of chain-growth polymerization, where the
polymerization initiates through attack on cyclic monomer to

FIGURE 6 | (A) Examples of block copolymers synthesized via combination of living cationic polymerization and ring-opening polymerization. (B) Examples of block
copolymers synthesized via combination of living cationic polymerization with anionic polymerization and click chemistry.

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 6445476

Dey et al. Block Copolymer Synthesis

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


form long chain polymers. Cyclic monomers such as epoxides,
lactones, lactides, cyclic carbonates, and many strained
cycloalkenes like norbornene undergo ROP with/without aid
of metal catalyst. There are very few reports on synthesis of
block copolymers by combined living cationic polymerization
and ROP utilizing site transformation method (Figure 6A).

A few previously reported PIB based crystalline block
copolymers are: poly(L-lactide-b-IB-b-L-lactide) (P16) triblock
copolymer (Sipos et al., 1995), poly[IB-b-ε-caprolactone
(ε-CL)] P(IB-b-ε-CL), (P17) diblock copolymer and poly(ε-
CL-b-IB-b-ε-CL); Storey et al., 2001 triblock copolymers.
Poly(L-lactide-b-IB-b-L-lactide) (P16) triblock copolymer was
synthesized by ROP of L-lactide using α,ω-dihydroxy-
polyisobutylene polymer as macroinitiator (Figure 5).
Pivalolactone (PVL) and IB based block copolymer synthesis
was accomplished by site transformation of living cationic
polymerization of IB to anionic ring-opening polymerization
(AROP) of PVL (Kwon et al., 2002). For the synthesis of
P(IB-b-PVL) (P18) diblock copolymers; first, PIB with
ω-carboxylate potassium salt was prepared by capping
mechanism of living cationic PIB with DPE which was
followed by quenching with 1-methoxy-1-trimethylsiloxy-
propene (MTSP), and further hydrolysis of
ω-methoxycarbonyl end groups to obtain the macroinitiator.
Then, the ω-carboxylate potassium salt was used as a
macroinitiator in tetrahydrofuran (THF) by the AROP
process, to obtain P(IB-b-PVL) block copolymers. Similarly,
P(PVL-b-IB-b-PVL) triblock copolymer was prepared by
combined living cationic and AROP methodology as
mentioned in the previous case, except for the difunctional
initiator used for the polymerization of IB in the first step was
taken as 5-tert-butyl-1,3-bis-(1-chloro-1-methylethyl)-benzene.

Novel glassy(A)-b-rubbery(B)-b-crystalline(C) linear
triblock copolymers have been reported where glassy A
block is poly(α-methylstyrene) P(αMeSt), rubbery B block is
PIB, and crystalline C block is poly(PVL) (PPVL). The
synthesis of P(αMeSt-b-IB) (P19) was accomplished by
living cationic sequential polymerization followed by site
transformation method using AROP to yield block
copolymer of PVL. In the first synthetic step, the gel
permeation chromatography (GPC) traces of P(αMeSt-b-IB)
copolymers with ω-methoxycarbonyl functional group
exhibited bimodal distribution in both refractive index (RI)
and UV traces, and the small hump at higher elution volume
was attributed to PαMeSt homopolymer. The homopolymer
PαMeSt was removed to obtain the pure P(αMeSt-b-IB)
macroinitiator by repeated fractionation using hexane/ethyl
acetate and then utilized as macroinitiator for polymerization
of PVL by AROP mechanism to produce P(αMeSt-b-IB-
b-PVL) triblock copolymer. Complete crossover from living
PαMeSt to IB is difficult. This was achieved modification of the
living P(αMeSt) chain end with a small amount of para-chloro
methylstyrene (pClαMeSt) after complete conversion of
αMeSt. The poly(αMeSt-b-IB) copolymer carrying
ω-carboxylate group, obtained from hydrolysis of
ω-methoxycarbonyl group of the block copolymer, was used
to initiate AROP of PVL in conjunction with 18-crown-6 in

THF at 60°C, to produce P(αMeSt-b-pClαMeSt-b-IB-b-PVL)
copolymer (Kwon and Faust, 2005).

Synthesis of poly(IB-b-ethylene oxide) diblock copolymer by
combined living cationic and ROP has been reported by
Groenewolt et al. (2005) Initially, HO-functional PIB was
prepared by hydroboration/oxidation of allyl functional PIB,
prepared from the reaction of living PIB and allyl trimethyl
silane. The PIB alkoxide anion in conjunction with the bulky
phospazene t-BuP4 is used as macroinitiator for ROP of ethylene
oxide. Block copolymer of lactide (LA) and vinyl ether was
reported, which showed thermo-responsiveness due to the
poly(vinyl ether) segment. P(LA-b-vinyl ether) was precisely
synthesized via successive living cationic polymerization of 2-
methoxyethyl vinyl ether and ROP of lactide (Seki et al., 2018).

Combination of Living Cationic
Polymerization with Anionic Polymerization
The combination of living cationic and anionic techniques
provides new scope for synthesis of block copolymers not
obtainable by other methods. For example, IB and MMA
monomers can be polymerized only by different mechanisms.
P(IB-b-MMA) block copolymers were synthesized by coupling
reaction of two corresponding living homopolymers, i.e., by living
cationic and group transfer polymerization (GTP), respectively
(Takács and Faust, 1995). Synthesis of P(MMA-b-IB-b-MMA)
triblock copolymer has been reported using the site
transformation method, using α,ω-dilithiated PIB as the
macroinitiator (Kitayama et al., 1991; Kennedy et al., 1991).
The key aspect is to cautiously control α—or ω-end
functionality, as they are capable of initiating polymerization
of the second monomer. Researchers have reported novel site
transformation reaction by quantitative metalation of DPE-
capped PIB carrying methoxy or olefin functional groups
(Feldhusen et al., 1997). Metalation of DPE-capped PIB
requires Na/K alloy as organolithium compounds. Polymers
such as diblock P(IB-b-tBMA) (P20) and triblock P(MMA-
b-IB-b-MMA) copolymers are also synthesized via this
technique (Feldhusen et al., 1998). Another new synthetic
route has been developed for the synthesis of P(IB-b-tBMA)
by combining living cationic and anionic polymerizations, which
involves metalation of 2-polyisobutylenyl-thiophene with
n-butyllithium in THF at −40°C. The tBMA monomer was
successfully polymerized using the synthesized stable
macrocarbanion (PIB-T-Li+) initiator via living anionic
polymerization, yielding P(IB-b-tBMA) block copolymers
(Figure 5; Martinez-Castro et al., 2003). Similarly, synthesis of
poly(IB-b-methyl methacrylate or hydroxyethyl methacrylate)
block copolymers have also been reported by the combination
of living cationic and anionic polymerization. DPE end-
functionalized PIB (PIB-DPE) was prepared from the reaction
of living PIB and 1,4-bis(1-phenyl ethenyl)benzene (PDDPE),
and the resulting diphenyl carbenium ion was further methylated
with dimethylzinc. The macroinitiator was generated by
quantitative metalation of PIB-DPE with n-butyllithium in
THF at room temperature. The final macroinitiator thus
prepared could efficiently initiate the living polymerization of
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methacrylate monomers at –78°C to generate block copolymers with
high block efficiency (Cho et al., 2006). Recently, Hadjichristidis et al.
reported a series of hydroxyl-terminated poly(isobutylene-
b-ethylene) P(IB-b-ethylene) (P22) copolymers using living
cationic polymerization and polyhomologation (Zhang et al., 2016).

Combination of Living Cationic
Polymerization and Click Chemistry
Click coupling reactions, in particular copper(I)-catalyzed
cycloadditions, have been successfully applied to prepare varieties
of block copolymers. However, very few reports are there on
synthesis of block copolymer by combination of living cationic
polymerization and click chemistry. Diblock copolymer of azido
functionalized PIB and alkyne terminated monomethyl ether was
synthesized, using azido/alkene click chemistry in toluene solvent at
75°C to give PIB-b-PEO (P21) (Binder and Sachsenhofer, 2008).
Similarly, azide/alkyne click reaction was used to synthesize three-
armed star block copolymers of triazido-telechelic PIB and alkyne-
terminated triethylene glycolmonomethyl ether (Rother et al., 2010).
The [1+3] cyclo-addition reaction between azido and alkene of azido
end-functionalized polyethylenes and alkyne end-functionalized or
telechelic PIBs respectively in a mixture of toluene and
dimethylformamide at 110°C results in formation of di- and
triblock copolymers P(IB-b-ethylene) (P22) and P(ethylene-IB-
b-ethylene) (P23) (Espinosa et al., 2013). These new block
copolymers are biocompatible and have potential application as
thermoplastic elastomers.

Combination of Cationic Polymerization
with Other Polymerization Techniques
Living cationic ring-opening polymerization (CROP) of 2-
substituted 2-oxazoline provides new scope for synthesis of
different architectures. Zhang et al. (2009) reported graft
copolymer using dual functional monomer, 2-isopropenyl-2-
oxazoline. First, the monomer undergoes free radical or living
anionic polymerization to form the backbone, which is converted
to macroinitiator salt for CROP of 2-Oxazolines. These grafted
polymers show molecular brush architecture which can further be
applied in biomedical fields. CROP of 2-Oxazolines may be carried
out by microwave-assisted heating (Petit et al., 2017). Recently, Zhu
et al. (2000) reported free-radical-promoted cationic polymerization
of cyclohexene oxide, n-butyl vinyl ether, and N-vinyl carbazole
under chemiluminescence irradiation.

CONCLUSIONS AND PERSPECTIVES

Presently, design and synthesis of polymers with well-defined
complex architectures having advanced properties is an
important field of research in polymer science for varied
industrial applications. Numerous reports are present for the
synthesis of functional copolymers with varied architectures like
block, graft, star, and brush by simple controlled living
polymerizations; but are limited to monomers polymerizable by
the same polymerization mechanism and on their relative
monomer reactivity. In this review we have summarized recent
advancements in synthetic processes of novel block copolymers
with well-knownmonomers by combining different polymerization
mechanisms like anionic, ATRP, RAFT, NMP, and ROPwith living
cationic polymerization. Thus, this review reveals many innovative
breakthroughs and huge developments in the area of block
copolymer synthesis by the combination of living cationic
polymerization and other polymerization methods.

Synthesis of new polymeric architectures by combining two
techniques is quite challenging. By the discussed approaches a
whole new range of copolymers can be prepared that were not
available by polymer preparation using only coupling or
sequential monomer addition. Copolymers may be synthesized
by site transformation reaction from one polymerization
technique to another or by applying a dual functional initiator
capable of polymerizing two types of monomers by two different
techniques. These approaches open a new avenue in the field of
complex macromolecular architecture development. Up to now,
site transformation reactions and synthesis of new dual initiators
have made tremendous progress. The investigation of
structurally well-defined polymers and their synthetic
procedure will remain a hot topic to pursue, in both industry
and academia.
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