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ABSTRACT Complex traits such as crop performance and human diseases are controlled by multiple
genetic loci, many of which have small effects and often go undetected by traditional quantitative trait locus
(QTL) mapping. Recently, bulked segregant analysis with large F2 pools and genome-level markers (named
extreme-QTL or X-QTL mapping) has been used to identify many QTL. To estimate parameters impacting
QTL detection for X-QTL mapping, we simulated the effects of population size, marker density, and
sequencing depth of markers on QTL detectability for traits with differing heritabilities. These simulations
indicate that a high (.90%) chance of detecting QTL with at least 5% effect requires 5000· sequencing
depth for a trait with heritability of 0.420.7. For most eukaryotic organisms, whole-genome sequencing at
this depth is not economically feasible. Therefore, we tested and confirmed the feasibility of applying deep
sequencing of target-enriched markers for X-QTL mapping. We used two traits in Arabidopsis thaliana with
different heritabilities: seed size (H2 = 0.61) and seedling greening in response to salt (H2 = 0.94). We used a
modified G test to identify QTL regions and developed a model-based statistical framework to resolve
individual peaks by incorporating recombination rates. Multiple QTL were identified for both traits, includ-
ing previously undiscovered QTL. We call our method target-enriched X-QTL (TEX-QTL) mapping; this
mapping approach is not limited by the genome size or the availability of recombinant inbred populations
and should be applicable to many organisms and traits.
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Phenotypic variation of complex traits such as crop performance and
human diseases are controlled bymultiple genetic loci, manywith small
effect size (Buckler et al. 2009; Plomin et al. 2009; Peiffer et al. 2014).
Identification of all the genetic loci contributing to the phenotypic
variation of a trait is an important step toward understanding the un-
derlying molecular mechanisms of trait evolution. Quantitative trait
locus (QTL) mapping and genome-wide association studies (GWAS)

are two common approaches for dissecting the genetic landscape of com-
plex traits. Compared with QTL mapping, GWAS usually have greater
mapping resolution, but the underlying population structure can cause
many false-positives (Korte and Farlow 2013). QTL mapping using pop-
ulations generated fromcontrolled crosses typically uses small populations
(a few hundred), which can lead to not only an underestimation of the
number of QTL but also an overestimation of the contributions of the
detected QTL to the observed phenotypic variation (Melchinger et al.
2004). To increase the detection capacity of the genetic loci underlying
complex traits with QTL mapping, a large population is required to in-
crease both statistical power and recombination events (Ehrenreich et al.
2010; Mackay et al. 2009). This is rarely done because genotyping and
phenotyping a large number of individuals is costly and labor intensive.

Bulked segregant analysis was developed as a fast approach to map
majorQTL,where individualswithphenotypes at two extremes are pooled
separately and geneticmarkers from each pool are compared to determine
the linkage between the markers and the phenotype (Michelmore et al.
1991). Recently, bulked segregant analysis with large F2 pools and
genome-level single-nucleotide polymorphism (SNP) markers (also
named extreme-QTL or X-QTL) has been applied in yeast and
Drosophilamelanogaster (Lai et al. 2007; Ehrenreich et al. 2010). This ap-
proach demonstrated the power of X-QTL mapping to dissect multiple
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loci contributing to complex traits. A large population size (Ehrenreich
et al. 2010) and 10–20% bulk size (Magwene et al. 2011) are necessary for
increasing the detection power of X-QTL mapping. In addition, high
sequencing depth was predicted to be necessary for increased QTL de-
tectability (Magwene et al. 2011). However, a comprehensive power
analysis for X-QTL mapping that considers all the major contributing
factors for increasing QTL detection power has not been conducted.

Here, we performed an in-depth power analysis to guide the choices
of experimental conditions for increased QTL detection using X-QTL
mapping. The simulations suggested that both a large population size
and high sequencing depth of markers are needed to increase the
detectionpowerofX-QTLmapping.Toachieve the required sequencing
depth at a reasonable cost, we used target enrichment to sequence SNP
markers anddeveloped a statistical framework based onmodel selection
to estimate intervals of mapped QTL peak locations. We call this
mapping approach target-enriched X-QTL, or TEX-QTL mapping.
In Arabidopsis thaliana, we applied TEX-QTL mapping to identify
QTL for two traits: 1) seedling greening in response to salt and 2) seed
size. Using both theoretical and empirical approaches, we demon-
strated increased QTL detection power of TEX-QTL mapping.

MATERIALS AND METHODS

TEX-QTL detectability simulations
To identify parameters that could increase QTL detection power using
TEX-QTL mapping, we wrote an R script (Supporting Information, File
S1) to perform simulations using the R (R Core Team 2013) package
hypred (Technow 2013). The genome was set up as five chromosomes
of 100 cM each. We chose additive QTL with no interactions and each
chromosome contained oneQTL.On the basis of experimental data in the
literature, the spontaneousmutation ratewas set to 7.0E-9 (Ossowski et al.
2010). Phenotypic values were assigned as the sum of genotypic and
random environmental effects (normally distributed). The maximal size
of the environmental effect was determined based on the heritability.

Two experimental designs were simulated: high vs. control bulks (one-
tailed bulk design) and high vs. low bulks (two-tailed bulk design). We
randomly selected 10% of the individuals as the control bulk, and top/
bottom10%of the individualswith the highest/lowest phenotypic values as
the high/low bulks. G-test was performed to detect markers with a signif-
icant difference in allele frequency between the twobulks at the significance
level of 0.01. The p-value was corrected for multiple testing by the
Benjamini-Hochberg method (Benjamini and Hochberg 1995). Under a
fixed set of parameters (QTL effect size, population size, marker density,
and sequencing depth), the probability of QTL detection was determined
based on 100 simulations for each of 10 heritability values ranging from
0 to 1. To simulate a QTL with 20% effect, five equally contributing QTL
for the five chromosomes were used. To simulate QTL with 10% and 5%
effects, fiveQTLwith effect sizes of 70%, 10%, 10%, 5%, and 5%were used.

To test the effect of population size, marker density was set to 5 per
cM. Population sizes of 200, 1000, 4000 and 10,000 were simulated by
randomly selecting individuals from the two bulks. To test the effect of
sequencing depth, population size was fixed to 10,000 and marker
density was set to five markers per cM. Sequencing depths of 100·,
500·, 1000·, and 5000· were selected for simulations. Finally, to test
the effect of marker density, population size was fixed to 10,000 and
sequencing depth was fixed to 1000·. Marker densities of 0.2, 1, 5, and
20 per cM were compared in the simulations.

Bulked segregant analysis
For the seed size trait analysis, plants were grown in a greenhouse with
16-hr/8-hr light/dark cycle at 22�. Reciprocal crosses between Sha

(ABRCstock number: CS22652) and Tsu-1 (ABRC stock number:
CS22641) parents were made. F2 seeds were separated by size with
sieves from Industrial Netting (Minneapolis, MN). Sieves with pore
sizes of 200, 250, 300, and 400 mm separated 140,000 F2 seeds into
four discrete bins: 1),200mm, 2) 200–250mm, 3) 250–300mm, and 4)
300–400mm.Most seeds sorted into the 250–300mmbin. The high bulk
had 10,000 seeds from the 300- to 400-mm bin, which made up 7.1% of
the population. While ~1% of the seeds were smaller than 200 mm, a lot
of chaff, debris, and broken seeds were in this bin. Therefore, this bin
was not used for further analysis. The 200- to 250-mm bin contained
the bottom 14% of the population. From this bin, 10,000 seeds were
selected randomly to form the low bulk. A Mettler MT5 microbalance
was used to measure seed mass. To measure seed dimensions, captured
stereomicroscope images were analyzed using the Bisque Seed Size tool
(Kvilekval et al. 2010). Assuming Arabidopsis seeds form an ellipsoid,
their volume was estimated using the formula: 4/3p(w/2)2(l/2) (where
w = seed width, l = seed length). Seeds from each bulk were grown
on media (1/2 ·Murashige and Skoog (MS), 0.05% 2-(N-morpholino)
ethanesulfonic acid, 3% sucrose, 0.7% agar, pH 5.7) for 5 d, and
seedlings were pooled for genomic DNA extraction and target
enrichment.

For salt tolerance bulked segregant analysis, 16,000 F2 individuals
descended from crossing Sha female (ABRC stock number: CS22652) to
Tsu-1 male (ABRC stock number: CS22641) were planted on growth
media (1/2 · MS, 0.05% 2-(N-morpholino)ethanesulfonic acid, 3%
sucrose, 0.7% agar, pH 5.7) containing 0 or 150 mM NaCl. Approxi-
mately 2000 seeds were planted on each 150 · 15-mmPetri dish. Plants
were grown in an environmentally controlled chamber with 16-hr/8-hr
light/dark cycle at 22�. A sample plate (60 · 15 mm) with approxi-
mately 200 seeds was used to estimate the proportion of green seed-
lings. The difference in seed density between the sample plate (7 seeds
per cm2) and the bulk-selection plates (11.3 seeds per cm2) did not
significantly affect the timing of seedling greening on salt plates under
these growth conditions (data not shown). Sixteen-thousand F2 indi-
viduals were germinated on agar plates containing 150 mMNaCl, and
the seedlings with green cotyledons were harvested between 96- to
120-hr after germination; these seedlings accounted for 10% of the
population and formed the high bulk (“salt-tolerant bulk”). For the
control bulk, we randomly selected 10% of seedlings from 16,000 F2
plants grown on agar plates without NaCl 72 hr after germination. We
used the control bulk rather than the 10% most sensitive seedlings for
comparison because poor germination on high salt could arise from
many reasons not directly related to salt stress response. In total, three
independent experiments were conducted.

Determining heritability
Todetermine the broad-sense heritability, the environmental and total
phenotypic variances were estimated by the mean within-accession
and between-accession variances of Sha and Tsu-1 (Griffiths et al.
2000). The heritability of seed size was estimated from 20 seeds per
accession (File S2) and that of seedling greening in response to salt
was estimated from data collected from four independent experi-
ments with 25259 seedlings per accession per experiment (File S3).
For seed size, the parental and F1 variances were used to measure
environmental variance.

Probe design
We used the “SNPs between accessions” tool provided on the Poly-
morphWeb site (Clark et al. 2007) to search for SNPs between Sha and
Tsu-1 genome using the TAIR7 Arabidopsis genome (www.arabidopsis.
org) as the reference genome. Because the sequence from only one
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accession can be used to design each probe, we positioned probes at
regions that are one or two nucleotide(s) away from the targeted SNP
positions to minimize capture bias. These sequences (File S4) were sent
to Agilent for the synthesis of biotinylated-RNA probes for target
enrichment.

DNA sample preparation
For each pooled tissue sample, genomic DNA was isolated with the
QIAGENplant genomicDNAmaxi prep kit. To removepolysaccharide
contamination, the isolated genomic DNA was re-extracted with a
cetyltrimethyl ammonium bromide (CTAB) concentration. For each

Figure 1 Simulations revealing
the probability of finding a quan-
titative trait locus (QTL) with 5%
effect for two target-enriched
extreme QTL mapping designs:
two-tailed (A2C) and one-tailed
(D2F). (A) and (D) Effect of
population size with individual
genotyping. Marker density was
set to 5 per cM. (B) and (E) Ef-
fect of sequencing depth. The
population size was fixed to
10,000, and the marker density
was set to five markers per cM.
(C) and (F) Effect of marker den-
sity. The population size and
sequencing depth are fixed
to 10,000 and 1000, respec-
tively. For each combination of
parameters, 100 simulations were
conducted.
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sample, 3 mg of genomic DNA was fragmented with a Covaris S220
Focused-ultrasonicator. The library preparation and probe hybridiza-
tion were conducted following the protocol of Agilent SureSelect target
enrichment system (Agilent 2013). To summarize briefly, fragmented
genomic DNA was end-repaired with a single adenine nucleotide over-
hang and ligated to sequencing adaptors with a single thymine nucle-
otide overhang. The successfully ligatedDNA fragmentswere amplified
by polymerase chain reaction and hybridized with biotin-labeled
RNA probes. The RNA/DNA hybrids were isolated by incubation with
streptavidin-coatedmagnetic beads,which bound the biotin. The enriched
genomic DNA fragments were released, bar-coded, and sequenced using
Illumina’s HiSeq with 100 base, paired-end sequencing (National Center
for Biotechnology Information accession number: SRX659684).

TEX-QTL mapping
Paired-end reads were aligned to the TAIR10 (Lamesch et al. 2012)
reference genome with the use of Bowtie2 (Langmead and Salzberg
2012). Mapped reads were reformatted with the mpileup function of
SAMtools (Li et al. 2009), and the allele frequencies at polymorphic
sites with Phred quality score of.20 and coverage.500 were counted
by varScan2 (Koboldt et al. 2012).

The G-test was used to detect the SNP markers whose Sha/Tsu-1
ratio between two bulk populations significantly differed. To reduce the
random binomial sampling noise of two alleles introduced by sequenc-
ing, the smoothedG test (G9 test) (Magwene et al. 2011) was performed
at each SNPmarker position with a sliding window of 9Mb (�36 cMas
determined in Results section) and the tri-cube weight function
(Cleveland 1979).

Simulations to determine the smoothing window size
of TEX-QTL
To investigate the effect of G9-test’s smoothing window sizes on the
number of false-positive and false-negative peaks, we simulated
TEX-QTL on a chromosome with one QTL by using a range of
smoothing window sizes. One hundred simulations were carried out
for each window size. The length of the chromosome was set to 100 cM.
The single QTL was positioned in the middle and flanked by 50 cM on
both sides. We used the high vs. control bulk design and the beneficial
allele in the high bulk was set to 0.6. The sequencing coverage was set to
5000·. The marker density was set to 5 per cM, which was used in our
experimental design. The tested smoothing window sizes were 16, 20,
24, 28, 32, and 36 cM.

We then applied TEX-QTL on a chromosome with two QTL using
36 cM as the smoothing window size, chosen based on the results of the
1-QTLsimulationsmentionedpreviously.TwoQTLwere set tohave the
same allele frequency of 0.6. Various distances between the two QTL
were simulated to determine the probability of two QTL merging into
one when their distance was smaller than the smoothing window size.
The distances of 8, 12, 16, 20, 24, 28, and 32 cM were compared. The
other parameters were the same as the single QTL simulations.

Data availability
Code used to generate the simulated data is provided in File S1. File S2
contains seed dimension data. File S3 contains green seedling response
to salt heritability data. File S4 contains all probe sequences and geno-
mic locations. File S5 contains seed weight data. File S6 contains the
TEX-QTL mapping program in Python. File S7 contains detailed de-
scriptions for generating the expected shape of G and G9 for linked
causal SNPs. Sequence data are available at GenBank with the accession
number: SRX659684.

RESULTS

Determining TEX-QTL mapping parameters using
power analysis
To increase the detection power of TEX-QTL mapping, we tested
parameters that can influence QTL detectability such as population
size, sequencing depth, marker density, heritability, and QTL effect size
using simulations. The bulk size was not simulated because a previous
simulation study showed that the bulk size of 10–20% is needed for
increased QTL detection power (Magwene et al. 2011). We simulated
two commonly used bulk-selection schemes, two-tailed (subpopula-
tions with phenotypes at the two extreme ends of the phenotypic dis-
tribution) and one-tailed (one subpopulation at one end of the
phenotypic distribution and a random selection of equal-size bulk from
the population). The one-tailed design is used where individuals from
one end of the phenotypic distribution cannot be effectively collected
(e.g., cell survival experiments) (Ehrenreich et al. 2010).

Our simulation results indicate that the detection power was pos-
itively correlatedwithheritability, populationsize, andsequencingdepth
(Figure 1). In addition, the one-tailed bulk design was less powerful
than the two-tailed bulk design at comparable population size, sequenc-
ing depth, and heritability (Figure 1). For traits with greater heritability
(.0.7), an F2 population size of 4000 is sufficient to detect all additive

Figure 2 Identification of seedling greening in re-
sponse to salt quantitative trait locus (QTL) by the use
of target-enriched extreme QTL (TEX-QTL) mapping
with F2 populations of Sha · Tsu-1 Arabidopsis thaliana
ecotypes. (A) A schematic of the TEX-QTL mapping pro-
cedure. (B) Differential seedling greening of Sha and
Tsu-1 parental lines grown on control or salt medium.
Pictures were taken 4 d after germination.
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QTL of greater than 5% effect size when the two-tailed bulk design was
used (Figure 1A), whereas a population size of 10,000 is needed to
achieve the same detection power with one-tailed bulk design (Figure
1D). If we consider the difference in the effect of the sequencing depth,
the two-tailed bulk design needs 1000· permarker for.99% chance of
detecting a 5%-effect QTL, whereas the one-tailed bulk design needs a
sequencing depth of 5000· (Figure 1, B and E) to reach equivalent
detection power. Similar trends were observed for traits with moderate
heritability (0.420.7). For example, 5000· sequencing depth is suffi-
cient for 99% chance of detecting a 5%-effect QTL with a two-tailed
bulk design, but has the detection power of just 90% with one-tailed
bulk design (Figure 1, B and E). In contrast, marker density (0.2220
markers per cM) had little effect on the detectability of QTL under both
designs (Figure 1, C and F). Our simulation of the effect of sequencing
depth was conducted with the assumption of a large population size
(.4000 F2 individuals) since a smaller population size would limit the
QTL detection power as shown in Figure 1, A and D.

Similarly, for QTL of 10%- or 20%-effect sizes, greater detection
power was observed in the two-tailed bulk design comparedwith that in
the one-tailed bulk design when population size, sequencing depth and
heritability were held equal (Figure S1). Moreover, larger population
size, greater sequencing depth, and increased heritability all contributed
to greater QTL detection power (Figure S1). In contrast, marker density
did not have a significant effect on detectability of QTL at the range of
0.2220 markers per cM (Figure S1C, F, I, and L). In addition, for QTL
with larger effect sizes, a similar detection power could be achievedwith
smaller population size, lower marker sequencing depth, and lower
heritability (Figure 1 and Figure S1).

Developing TEX-QTL mapping strategy using two
complex traits in Arabidopsis and different bulk-
selection schemes
Guidedbytheparametersdeterminedfromthesimulations,wedeveloped
the TEX-QTL mapping method by using two complex traits in Arabi-
dopsis thaliana: seed size with moderate (0.61) heritability and seedling
greening in response to salt with high (0.94) heritability (Figure 2A, File
S2, and File S3). The high vs. low bulk design was used to map seed size
QTL and high vs. control design was used to map salt response QTL.

For the seed size trait, Tsu-1 seeds are significantly larger than Sha
seeds (P , 0.001, one-way analysis of variance test) (Table 1, File S2).
We screened 140,000 F2 seeds from Sha and Tsu-1 crosses and used the
two-tailed bulk design to select top and bottom 7% as the high and low
bulks. Interestingly, a significant maternal effect on seed mass was
observed in F1 but not in F2 seeds (Table 1, File S5). When Tsu-1
was used as the female in crosses, the resulting F1 and F2 seeds were
heavier than those seeds descended from crosses where Sha was the

female.We thereforemappedQTLwith F2 populations generated from
reciprocal crosses.

For seedling greening in response to salt, a one-tailed bulk design
was employed because of the difficulty in obtaining the salt sensitive
bulk. We first screened 40 Arabidopsis thaliana accessions for their
ability to germinate and establish green seedlings when grown with
150 mM NaCl in the media. The 40 accessions belong to the 64 core
accessions collected world-wide representing a broad genetic diversity
(McKhann et al. 2004). Among the 40 accessions tested, Sha and Tsu-1
displayed contrasting seedling greening phenotype in the presence of
150 mMNaCl (Figure 2B).We performed bulked segregant analysis by
screening 16,000 F2 seeds derived from crossing Sha (female) andTsu-1
(male). The high bulk consisted top 10% (1600) of seedlings with green
cotyledons grown in 150 mM NaCl. The same number (1600) of seed-
lings from the control plate was selected as the control bulk.

Marker selection and quality assessment
The power analysis showed that sequencing depth is more important
than marker density for bulked segregant analysis with a large F2
population.We therefore incorporated the target enrichment technique,
which initially was developed to reduce genome-sequencing costs by
sequencing only exons (Summerer 2009), to enrich and sequence only
selected SNPs to achieve high sequencing depth desired for increased
QTL detection power.

We designed 110 bp probes against 2478 SNPs approximately
evenly distributed across the genome. The probes were enriched and
sequenced with Illumina HiSeq with an average sequencing depth of
2600· per probe for seedling greening in response to salt and 1610·
per probe for seed size. Approximately 200 bp surrounding each
probe was sequenced by paired-end sequencing, which resulted in the
detection of 4587 SNP markers.

Since the allelic status of the probe can influence the frequency of
captured allelic sequence at heterozygous loci (Asan et al. 2011), we
assessed the allelic bias of probe capture and the potential impact of the
capture bias on TEX-QTL mapping. To test this, we extracted genomic
DNA from Sha · Tsu-1 F1 plants from three biological replicates and
subjected it to target enrichment and sequencing at an average depth of
2600· from each replicate. If the capture is unbiased, the expected allele
frequency is 0.5 for both Sha and Tsu-1 alleles. We observed a range of
distribution for allelic frequency (Figure S2), indicating the presence of
allelic bias during the capture process. However, more than 97% of the
probes showed consistent allelic frequencies among the three indepen-
dent F1 capture events (standard deviation , 0.05). We discarded the
probes that showed allelic frequency and capture bias outside of the 95%
confidence interval of the expected mean of 0.5 (Figure S2). A total of
2425 probes and 4278 SNP markers were retained for further analysis.

n Table 1 Mass and size of seeds and progenitors used for QTL analysis

Genotype Seed Mass, mg N = 12 Seed Dimensions (length · width mm) N = 10 Unless Indicated

Sha (Parental) 18.5 6 0.8 477 6 6 · 269 6 4 N = 20
Tsu-1 (Parental) 26.9 6 0.8 512 6 12 · 320 6 8 N = 20
Sha� · Tsu-1 (F1) 28.5 6 0.8 1090 6 65 · 648 6 32 N = 12
Tsu-1� · Sha (F1) 37.6 6 0.6 1080 6 22 · 686 6 18 N = 12
Sha� · Tsu-1 (F2) 23.3 6 1.1 505 6 12 · 304 6 6
Tsu-1� · Sha (F2) 25.8 6 1.2 500 6 9 · 311 6 5
Sha� · Tsu-1 (F2) (upper bulk) 26.9 6 1.2 513 6 13 · 335 6 6
Sha� · Tsu-1 (F2) (lower bulk) 18.0 6 1.1 487 6 14 · 280 6 7
Tsu-1� · Sha (F2) (upper bulk) 31.0 6 1.2 538 6 9 · 343 6 3
Tsu-1� · Sha (F2) (lower bulk) 19.1 6 0.6 441 6 12 · 275 6 6
� Indicates the female parent in the cross. The mean 6 SE is reported. N indicates sample size. QTL, quantitative trait locus.
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We next assessed the reproducibility of TEX-QTL mapping. Using
three independent bulk selections of the salt response experiments, we
calculated pair-wise correlations of the G-values of all the 4278 SNP
markers between replicates.We observed good reproducibility between
each pair of the replicates with R2 = 0.63-0.66 (Figure S3). Recently, a
smoothed version of G test (G9 test) was developed to account for the
variation introduced by bulk selection and sequencing of the bulks
(Magwene et al. 2011). After we applied the G9 test, the correlation
between each pair of the replicates improved to R2 = 0.9020.94 (Figure
S3).

Because of the high overall reproducibility between the replicates,we
tested whether the data from the three biological replicates could be
combined to increase sequencingdepthof themarkersusingrepeatedG-
tests (McDonald 2009). For most of the SNP markers (3903/4278 for
salt response and 3158/4278 for seed size), we observed no significant
heterogeneity among the replicates. After removing the markers show-
ing significant deviations among the replicates, the data from the bi-
ological replicates were pooled to generate the final QTL maps, which
had an average sequencing depth of 7800· for the salt response trait
and 6440· for the seed size trait.

Identification of statistically significant markers
Theobserved allele frequencyof themarkers deviates fromthe true allele
frequency by two sources of variations: the sequencing coverage of the
SNP markers and binominal sampling of two alleles in the bulk
(Magwene et al. 2011), the latter being stochastic. Under the whole-
genome sequencing scheme, the former is also stochastic, since the
distribution of sequencing coverage is ideally Poisson (Lander and
Waterman 1988). Therefore, it is possible to simultaneously remove
both types of the random variations by kernel smoothing (Magwene
et al. 2011). However, sequencing coverage of the SNP markers cap-
tured by target enrichment did not follow a Poisson distribution (Figure
S4). The interquartile ranges (IQR) of the control bulk and high bulk of

green seedling in response to salt are 5792 and 7105, respectively, in-
dicating a highly nonuniform distribution compared to IQR = 119 for a
Poisson distribution when the mean coverage is 7800·. Similarly, IQR
of low and high bulk of seed size are 4321 and 4318, compared with
IQR = 108 for a Poisson distribution when the mean coverage is 6440·.

To address the sequencing depth variation of the markers, we
normalized them using a minimum threshold (set as 5000· for the salt
response trait and 3000· for the seed size trait). The SNP markers with
sequencing coverage higher than the threshold were downscaled pro-
portionally to the threshold and those with lower coverage were dis-
carded. After the normalization, 2653 and 2850 markers were retained
for the salt response and seed size traits, respectively.

After normalizing for the sequencing depth, the binomial sampling
variation was corrected by G9-test (Magwene et al. 2011). The G9
distributions of five chromosomes were plotted (Figure 3) and the
false-discovery rate (FDR) was determined empirically. For each trait,
the null distribution was calculated by performing G9 test among bi-
ological replicates. The distribution was then fitted to a log-normal
distribution (Figure S5). Based on the fitted null distribution, SNP
markers with FDR , 0.01 after we adjusted for multiple hypothesis
testing were deemed significant (Benjamini and Hochberg 1995).

Resolving QTL regions
Similar to a previous observation (Magwene et al. 2011), a large portion
of the SNPmarkers have significant G9 values, due to the closely linked
peaks on the same chromosome (Figure 3). To resolve linked QTL and
estimate their location intervals, we developed a model selection ap-
proach to fit the observed G9 values based on a multiple-QTL model
calculated from empirical recombination rates of Arabidopsis (Salomé
et al. 2012).

Model selection: To locate the regions with a high likelihood of
containing the QTL, we developed a method to find the multiple-QTL

Figure 3 Mapping results using
target-enriched extreme QTL. (A)
Quantitative trait locus (QTL) map
of Arabidopsis thaliana seedling
greening in response to salt. (B)
QTL map of Arabidopsis thaliana
seed size. Black dots are ob-
served G9 values of markers from
three replicated experiments
combined. The smoothing win-
dow of 36cM was used. Red
dots are fitted G9 values based
on the model-selection method.
Blue bars show the support
intervals of QTL peaks with 95%
confidence. Dashed horizontal
line shows the 1% false-discovery
rate threshold of G9 values.
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model that best fits the observed G9 curve. Here we call the SNP
marker that is closest to the causal site as the QTL marker. When
only a single QTL is present in a chromosome, the G9 curve is
expected to be unimodal (Magwene et al. 2011) and we can locate
the SNP marker that has the maximal G9score as the QTL marker:

G9ðxÞ.G9ðiÞ; for all i 6¼ x:

However, when multiple QTL are present in a chromosome, the allele
frequency of each marker is influenced by genetic linkage to the
flanking QTL, making the intuitive detection of the number and
positions of the QTL difficult (Figure 3, black lines). Here we used
model selection to fit a multiple-QTL model to the observed G9 val-
ues. Backward elimination strategy (Broman and Sen 2009) was ap-
plied to search the set of QTL positions that can best explain the
observed G’ values of all the SNP markers.

A QTL model for each chromosome consists of QTL markers
ðQTL1; QTL2; . . . ;QTLmÞ with their locations and allele frequencies
ðp1; p2; . . . ; pmÞ. The bestmodel was selected using the following steps:

Step 1. The initial model included all the local maxima of the ob-
served G9 curve as putative QTL markers. Local maximum was
determined as a SNP marker x that has G9 value strictly higher
than both of its flanking neighbors: G9ðxÞ.G9ðx2 1Þ and
G9ðxÞ.G9ðx þ 1Þ. In addition, local minima of the absolute
value of the first derivatives of G9 also were included as the
putative QTL markers. The first derivative of a certain SNP
marker was estimated by linear regression using SNP markers
surrounding the site. The window size was the same as the one
used in the G9-test. The one-to-one mappings of allele frequen-
cies of the QTL markers to their G9 values were calculated based
on the coverage, smoothing window of G9-test, and the bulk
design. They were then used to map from G9 values to allele
frequencies.

Step 2. The allele frequencies of all remaining markers were calcu-
lated based on the allele frequencies of the flanking putative QTL
markers and recombination rates using the three-locus model
assuming no interference from cross-overs (Liu 1997) (File S7).
We used empirical recombination rates that were calculated
based on crossover events averaged over a diverse set of F2
populations (Salomé et al. 2012). For markers between the ends

of the chromosome and the QTL marker, two-locus model (Liu
1997) was applied conditioned on the allele frequency of the
single flanking QTL marker. The computed allele frequencies
of the non-QTL markers were used to derive estimated G9 scores
of non-QTL markers.

Step 3. The estimated G9 curve was evaluated against the observed
G9 curve using goodness of fit by root mean squared error
(RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG9i2cG9iÞ2

n

s
;

where n is the total number of SNP markers, G9i is the observed G’
value of the ith SNP marker, and cG9i is the expected G’ value of the ith
SNP marker.

Step 4. Step-wise backward elimination was used to determine
whether any QTL marker in the current model should be omitted
to increase the goodness of fit. The number of parameters in the
model was penalized using Bayesian Information Criterion (BIC)
(Schwarz 1978). Assuming that the deviations between the fitted
model and observed G9 curve follow independent and identical
normal distribution with a mean of zero, BIC could be written as:

BIC ¼ 2n� lnðRMSEÞ þ 2m� lnðnÞ;

where n is the total number of SNPmarkers andm is the number of
QTL. If the BIC score decreased by removing a QTL marker, we
updated the model by removing that marker. The backward elimina-
tion continued until BIC could not be improved any further.

Step 5. The positions and allele frequencies of the QTL markers were
refined to improve the goodness of fit. Each QTL was chosen and
adjusted for both its allele frequency and position while keeping
all the other QTL markers fixed. The adjustment was iterated for
all QTL markers until no changes in any of the parameters
resulted in a better fit.

Step 6. We repeated steps 4 and 5 until no better model was found.

Figure 4 Assessing false-positive
and false-negative rates of quan-
titative trait locus (QTL) detection
by using simulations. (A) The prob-
ability of identifying false peaks for
a 1-QTL chromosome using dif-
ferent smoothing window sizes.
One hundred simulations were
carried out for each data point.
(B) The probability of missing true
peaks and identifying false peaks
for a two-QTL chromosome with
various distances between the
QTL. The two QTL have equal
contribution to the phenotypic
variation. The smoothing window
is fixed at 36 cM. One hundred
simulations were carried out for
each data point.
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Estimating the interval of QTL location: To identify regions with a
high likelihood to containQTL, we assumed the deviations between the
fitted model and observed G9 curve are independently and identically
distributed:

yi ¼ G9i 2 cG9i
yi � N

�
0; s2�;

where G9i and cG9i are the observed and fitted G9 value of the SNP
marker i, and s is the standard deviation of yi: For random variable
yi; i ¼ 1; 2; . . . n, P

i

�
yi20

�2
s2

follows a x2 distribution with n degrees of freedom, where n is the
number of SNPmarkers. To rewrite the equation into the form of root
mean square error (RMSE),

n� RMSE2

s2

follows a x2 distribution with n degrees of freedom. Using x2probability
distribution, we can define the 95% confidence interval of RMSE as:

P

�
x2a

2; n
#
n� RMSE2

s2 # x2
12 a

2; n

�
¼ 12a

where a is 95% here (and could be changed to other values as well).
Rearranging the formula, we will get the interval of s as:" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
x2
12 a

2; n

s
� RMSE;

ffiffiffiffiffiffiffiffiffiffi
n

x2
a
2; n

s
� RMSE

#

Therefore, we estimated the confidence interval of each QTL peak to
include all the nearby markers with smaller RMSE than the upper
bound of the best model’s 95% confidence interval when all the other
parameters were fixed.

Window size determination: The model selection method is sensitive
to the smoothing window size of G9-test in two ways. First, smaller
smoothing windows would leave more noise and potentially lead to
false-positive peaks. On the other hand, larger smoothing windows
would cause a decrease of resolution in peak identification because
multiple peaks within the same smoothing window are likely to merge
and become indistinguishable. Although a window size of 24–37 cM
was suggested previously (Magwene et al. 2011), it is not clear what the
best choice would be in terms of the model selection process. Here we
used simulations to find the most appropriate window size to balance
the number of false peaks with the possibility of merging closely lined
peaks.

To estimate the probability of identifying false peaks using different
smoothingwindowsizes,we simulateda singleQTLflankedby50cMon
both sides. The probability of identifying false peaks was defined as the
total number of false peaks foundby themodel selectionprocess divided
by the number of simulations, 100. As the window size increases, FDR
decreased linearly (Figure 4A).

To estimate the detection limit of closely linked QTL, we simulated
two equally contributing QTL linked on a 100 cM chromosome. We
simulated the detectability of both QTL with various distances set
between the two QTL. From the one-QTL simulations, we chose 36
cM as the smoothing window to minimize the false peaks. When the
distance was less than 16 cM, the twoQTLwere not distinguishable and
only one peak could be detected by TEX-QTL mapping (Figure 4B).
When the distance was between 16–24 cM, the chance of merging
decreased rapidly from 100 to less than 10%. When the distance was
more than 24 cM, two peaks were most likely to be separable with the
probability of less than 10%. We also tested the probability of detecting
false peaks with the two-QTL simulations. They were 0 for all config-
urations, proving the window size of 36 cM is sufficient tominimize the
noise of the G9 curve.

In summary, our simulations suggested that a larger window size
(16236 cM) decreases the chance of detecting false peaks. Our choice
of 36 cM smoothing window achieves the lowest false detection rate

n Table 2 Comparison of GRS QTL for Tsu-1 3 Sha mapped in this
study and salt tolerance QTL reported in the literature

Chromosome Name

Extrapolated
Position

of GRS, cM

Overlapping
Salinity Tolerance

QTL Peaks
in the Literature

1 GRS1 12.7–16.9 Ler · Sha and Bay ·
Sha (Ren et al. 2010)

Bay · Sha (Vallejo
et al. 2010)

Ler · Sha (Clerkx
et al. 2004)

1 GRS2 36.9241.1 None
1 GRS3 53.7256.6 None
1 GRS4 62.2273.5 None
1 GRS5 92.82100.4 None
2 GRS6 78.6298.3 None
3 GRS7 16.1218.3 None
4 GRS8 29.3236.8 None
5 GRS9 23.2227.5 None

GRS, greening response to salt; QTL, quantitative trait locus.

n Table 3 Comparison of SSQ QTL mapped for Tsu-1 3 Sha in this
study and the Ler 3 Cvi QTL described by Alonso Blanco et al.
(1999)

Chromosome Name

Extrapolated
Position

of SSQ, cM

Ler ·Cvi QTL position
in cM (Effect Size)

1 SSQ1 6.5215.3 3211 (10–15%)
1 SSQ2 28.5236.5 None
1 SSQ3 46.3253.1 None
1 SSQ4 63.4273.5 None
1 SSQ5 88.72100.4 79290 (5–10%)
1 SSQ6 111.32116.6 None
1 SSQ7 122.42127.3 None
2 SSQ8 75.5282.7 None
4 SSQ9 73.3278.1 65279 (<5%)
5 SSQ10 66.5280.0 65279 (<5%)
5 SSQ11 84.5297.5 912104 (5–10%)
5 SSQ12 100.82114.6 None
1 20229 (5–10%)
3 027 (5–10%)
3 31239 (5–10%)
4 43257 (<5%)
5 42255 (5–10%)

Bold-faced intervals are those QTLs from Alonso Blanco et al. (1999) that over-
lapped with Moore’s mapping results (Moore et al. 2013). SSQ, seed size QTL;
QTL, quantitative trait locus.
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within the range of our simulations. However, the limitation of our ap-
proach is the high chance of detecting two close-linked peaks (e.g., two
peaks with 20 cM or smaller distance) as a single merged peak.

TEX-QTL mapping on two complex traits
Using TEX-QTLmapping, we identified several previously unidentified
QTLaswell aspeaks thatwerepreviously reported (Table 2 andTable3).
For the greening in response to salt trait, the Sha allele increased salt
tolerance for eight of nine QTL (GRS127, GRS9). The Tsu-1 allele
contributed to salt tolerance for one QTL on chromosome 4 (GRS8).
Comparing our QTL with the published salt-tolerance QTL revealed
that only one QTL overlapped with the previously reportedQTL. GRS1
contains RAS1 (Ren et al. 2010), previously identified as a causal gene
for a QTL controlling variation in salt tolerance during early seedling
development between Sha and Landsberg erecta (Ler) (Ren et al. 2010).
Recently, it was shown to be a microProtein that regulates the TGA1
transcription factor (Magnani et al. 2014) (Table 2).

For the seed size trait, even though maternal effects were observed
(Table 1), no QTL showed parent-of-origin effects. Although seeds size
QTL were reported previously (Alonso-Blanco et al. 1999), this study
used different accessions. Nonetheless five SSQs overlapped with pre-
viously identified QTL (Table 3). Recently the QTL intervals reported
by Alonso-Blanco et al. (1999) were refined (Moore et al. 2013), but
because the genetic markers used for this study have not been placed on
the combined genetic and physical maps, we cannot determine whether
the recently refined peaks overlap with the SSQ intervals. Moore et al.
(2013) analyzed three Ler ·Cvimapping populations and reported that
some of these QTL overlapped with those found by Alonso-Blanco
(bold-face intervals in Table 3). The differences between these four
existing Ler · Cvi mapping populations were attributed to genotype
· environment interactions that were revealed when plants were grown
under different environmental conditions (Moore et al. 2013). The
interval for SSQ1 corresponds to a previously reported QTL that

accounts for 10–15% of the variation in seed size (Table 3). SSQ5,
SSQ9, SSQ10, and SSQ11 overlap with previously reported QTL,
each of which accounts for less than 5% or 5–10% of the variability
(Table 3). SSQ2, SSQ3, SSQ4, SSQ6, SSQ7, SSQ8, and SSQ12 are
novel QTL. Alonso-Blanco et al. (1999) found two seed size QTL on
chromosome 3, but these were not identified in this study. This could be
a problem of detection power, but more likely it is a difference in alleles
among the different accessions or epistatic interactions that permitted
loci to be found in RIL lines, but not in segregating F2 populations.

Assessing the effect of sequencing depth on QTL
detection power
Using the empirically derived sequence data, we evaluated the effect of
sequencing depth on QTL detectability for the greening in response to
salt trait.We iteratively sampled 10- and 100-fold fewer reads at random
(1000 iterations for each sequencing depth). Reducing the sequencing
depth by 10-fold (500· sequencing depth) resulted in a QTL map
similar to the one with 5000· sequencing depth, except for GRS6.
For a trait with a heritability of 0.94, we expect a sequencing depth of
500· to detect a QTL of at least 5% effect ~70% of the time (Figure 1E).
Therefore, the observed detection power (8/9 QTL) is consistent with
the predictions. Reducing the sequencing depth by 100-fold (50X se-
quencing depth) yielded no significant peaks (Figure 5B). The in silico
sampling experiments demonstrate the necessity of high sequencing
depth for increasing QTL detection in bulked segregant analysis.

DISCUSSION
Herewe developed aQTLmapping approach calledTEX-QTL analysis,
which increases the QTL detection power by incorporating deep se-
quencing of target-enriched SNP markers with bulked segregant anal-
ysis. Although bulked segregant analysis with large population size
(X-QTL mapping) can identify many QTL with small effect sizes and
additive effects (Lai et al. 2007; Ehrenreich et al. 2010), approaches that

Figure 5 Simulated mapping
derived from subsampling the
empirical target-enriched ex-
treme QTL mapping results of
Arabidopsis thaliana seedling
greening in response to salt.
(A) Simulated mapping result
for sequencing depth of 500·.
(B) Simulated mapping result
for sequencing depth 50·.
Dashed horizontal lines are 1%
false-discovery rate threshold for
G9 values.
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can increase the detection power of X-QTL have not been explored
fully. To date, X-QTL mapping mainly has used whole-genome se-
quencing or SNP arrays to capture allelic frequency differences of
SNP markers (Ehrenreich et al. 2010; Magwene et al. 2011; Yang
et al. 2013; Pais et al. 2014). SNP arrays are limited by the number of
SNP markers that could be spotted on the array. In contrast, whole-
genome sequencing detects a majority of the SNPs in the genome but
usually has relatively low sequencing depth per SNP marker to be cost-
effective. More recently, exome capture was used to reduce the repre-
sentation of genome sequencing for X-QTLmapping with relatively low
sequencing depth (952366·) (Chevalier et al. 2014). In theory, target
enrichment and deep sequencing of SNP markers should permit the
high sequencing depth needed for increased detection power. Our sim-
ulations suggested that by combining a large F2 population size, deeply
sequencedmarkers, and 10–20%bulk size, we could in theory identifymost
QTL within two generations (Figure 1, Figure S1, and File S1). We empir-
ically validated these theoretical predictions on two traits in Arabidopsis
thaliana: 1) seed size and 2) seedling greening in response to salt.

Both our empirical and simulation results indicated increased de-
tection power with TEX-QTLmapping. By sampling subpopulations of
the sequence reads, we demonstrated that the higher detection power
can be achievedwith increased sequencing depth (Figure 5). Despite the
reported multiple QTL mapping studies with different natural acces-
sions on salt tolerance (Quesada et al. 2002; Clerkx et al. 2004; Rus et al.
2006; Galpaz and Reymond 2010; Ren et al. 2010; Vallejo et al. 2010;
Derose-Wilson and Gaut 2011; Roy et al. 2013), this study detected
several newQTL peaks. These newly identifiedQTLmight be due to an
increased QTLmapping power using this TEX-QTL approach. It is also
possible that the newQTLmight reflect the unique genetic components
contributing to the phenotypic variation of the mapping population
derived from Sha · Tsu-1. Comparing TEX-QTL and traditional RIL-
based QTL mapping by using populations derived from same parental
lines should help address this issue in the future.

Wedeveloped a statistical pipeline to identify TEX-QTL peaks along
with interval estimates of their locations (File S6). In the framework of
whole-genome sequencing-based bulked segregant analysis, several sta-
tistical methods have been developed recently, including the smoothed
G test (Magwene et al. 2011), a dynamic Bayesian network (Edwards
and Gifford 2012), and a HiddenMarkov Model (Duitama et al. 2014).
Application of the latter twomethods to TEX-QTLmapping data yield-
ed poorly resolved QTL regions (data not shown), indicating that
these approaches might not be suitable for TEX-QTL mapping. The
smoothed G test uses neighboring SNPs to reduce the random noises
associated with the sequencing reads, but doesn’t identify putative QTL
peaks and their support intervals. Therefore, we developed and applied
a model-based method, which resolved linked QTL regions into more
discrete peaks (Figure 3).

One limitationof thecurrentmethod is thedetectionofclosely linked
QTL. As suggested in the simulation, two very closely linked QTL may
be identified as one QTL. Because the support intervals are calculated
under the assumption of one causal gene, and the center of the interval
would be positioned between two closely linked QTL, the interval may
not include both causal genes. It may be helpful to examine the loci
flanking outside of the support interval if no causal gene can be found
within the interval.

Another limitation of TEX-QTL mapping, similar to that of bulked
segregant analysis in general, is that the allele frequencyof the bulks does
not permit the detection of epistasis between QTL or calculation of the
contribution of each QTL to the phenotypic variation. Nevertheless,
TEX-QTL mapping is advantageous in that it offers a quick and cost-
effective way to identify a theoretically maximal number of QTL

(QTLwith both small and large effects) contributing to the variation of
a trait.

Here we demonstrated that TEX-QTL mapping increases the res-
olution of complex traits rapidly and reveals genetic architectures in a
cost-effectivemanner. TEX-QTLmapping is applicable tomany species
such as insects, fish, frogs, or any other organisms where genetic crosses
can bemade and large F2 populations can be generated. It is particularly
well suited to species with large genomes, for which obtaining the high
sequencing depth needed to achieve increased QTL detection power is
not practical with whole genome sequencing. This approach could
accelerate the discovery of genetic architectures underlying complex
traits and provides a powerful way to harness the genetic potential of
germplasm to increase crop or livestock performance through marker-
assisted breeding or genetic engineering.
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