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ABSTRACT We previously demonstrated that 13 bacterial isolates from Lake Erie,
when grown in groups of four to five isolates per group, degraded the cyanobacte-
rial toxin microcystin-LR (MC-LR) into nontoxic fragments. Whole-genome sequenc-
ing of these bacteria was performed to provide genus and species information and
to predict putative MC-LR-degrading genes.

Cyanobacteria can form large aggregations (i.e., harmful algal blooms [HABs]) that
foul water bodies and threaten human health by releasing cyanotoxins, including

microcystin-LR (MC-LR) (1). MC-LR causes many human health problems, including liver
cancer, and its cyclic structure makes it stable in the environment (2–5). MC-LR
threatens drinking water around the world, and while municipal water treatment
facilities have treatment options for removing MC-LR, these processes have limited
capacity, are inhibited by organic materials, are expensive, and generate other toxic
by-products which must be further mitigated (2, 6, 7). Bioremediation—the use of
microbes to remove contaminants or toxic materials— has been proposed as a poten-
tial solution for mitigating HAB toxins (8). For example, a Sphingomonas sp. was found
to degrade MC-LR using the mlrABCD operon, and sand filters containing this bacterium
removed 90% of MC-LR from contaminated water (9, 10). Subsequently, other MC-LR-
degrading bacteria have been reported (11). We previously isolated and provided
preliminary species identification of 13 bacterial isolates from Lake Erie that degraded
MC-LR into nontoxic fragments (12). Interestingly, degradation was observed only
when isolates were combined into small groups of bacteria, not by individual bacterial
isolates. Additionally, mlrABCD-related genes were not detected in our isolates, indi-
cating degradation by one or more unique pathways. Here, genomic sequencing was
performed to better characterize these isolates and identify putative MC-LR degrada-
tion pathways.

Isolates were plated onto Reasoner’s 2A (R2A) agar medium (BD) containing 10 �g/L
MC-LR (Cayman Chemical) and incubated at room temperature for 48 to 72 h, and
genomic DNA was extracted from single colonies using the NucleoSpin microbial DNA
kit (Macherey-Nagel). Libraries were constructed using the Nextera XT kit, and single-
end sequencing was performed using the Illumina MiSeq v3 SE150 platform. The total
number of reads generated for each isolate is listed in Table 1. The raw sequencing
reads were filtered using BBDuk v38.79 (sourceforge.net/projects/bbmap) and Trimmo-
matic v0.36 (13), with default parameters. The filtered reads were assembled using
SPAdes v3.13.0 (14), with a minimum contig size of 500 bp and �5� genome coverage.
For 12 of the 13 isolates, genome assembly resulted in �350 contigs (Table 1). Because
of high contig numbers, isolate ODNR6CL was resequenced using the Illumina v2 Micro
PE150 platform and subjected to the same assembly parameters described above,
resulting in 34 final contigs (Table 1). Genus (�25% nucleotide identity) and species
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(�97% nucleotide identity) designations were assigned by submitting 10-kb sequences
from each isolate for NCBI BLASTn analysis (15) (Table 1). Compared to previous 16S
rRNA genus and species assignments (12), genome sequencing resulted in 6 genus
changes and 5 species changes (Table 1). The ranges of genera/species, genome
sizes, predicted coding genes, and GC contents highlight the diversity of MC-LR-
degrading bacteria (Table 1). The bacterial genomes were putatively annotated
using NCBI PGAP (16). Confirming our previous results (12), no known mlrABCD
orthologs were identified in the draft genomes. Efforts are currently focused on
identifying putative MC-LR-degrading enzymes and confirming these predictions by
transcriptomic analyses.

Data availability. All sequencing data are available in the NCBI Sequence Read
Archive (SRA), and the assembled genomes are available in GenBank (see Table 1 for
accession numbers). The collective data are available under BioProject accession num-
ber PRJNA593853.
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TABLE 1 Genomic sequencing information for 13 bacterial isolates that degrade MC-LR

Isolate
name Putative species

No. of
reads
generated

No. of
contigs

Genome
size (bp)

No. of
coding
genes

Genome
coverage
(�)

GC
content
(%)

N50

(bp)
SRA
accession no.

GenBank
accession no.

ODNR4P Emticicia sp.a 2,388,911 225 6,616,476 5,087 54.16 37.5 80,332 SRX7288241 JAAAKT010000000
ODNR4SY Pseudomonas putidab 841,168 165 5,754,181 5,121 21.93 62.0 96,929 SRX7288242 JAAAKU010000000
CRIBPO Emticicia sp.a 3,179,355 39 6,060,560 5,119 78.69 43.7 416,347 SRX7288246 JAAAKV010000000
SLFW Pseudomonas sp.b 996,033 55 6,493,286 5,774 23.01 60.2 317,538 SRX7288247 JAAAKW010000000
ODNR1LW Pseudomonas sp.b 1,244,030 343 9,409,464 8,628 19.83 62.2 63,532 SRX7288248 JAAAKX010000000
ODNR6CL Pseudomonas monteiliia 1,031,645 34 5,682,232 5,135 27.23 62.2 857,913 SRX7288249 JAAAKY010000000
CRIBMP Runella sp.b 2,113,625 57 7,136,464 5,783 44.43 44.8 400,856 SRX7288250 JAAAKZ010000000
SLTY Caulobacter sp.a 1,536,802 87 4,082,691 3,988 56.46 68.3 103,333 SRX7288251 JAAALA010000000
BC115SP Cellulophaga sp.a 2,804,750 208 7,086,307 5,482 59.37 37.2 130,583 SRX7288252 JAAALB010000000
1163BD Sphingobium yanoikuyae 1,006,399 148 5,459,634 5,014 27.65 64.4 96,382 SRX7288253 JAAALC010000000
CRIBSB Rhizobium sp.a 1,247,980 180 7,187,913 6,853 26.04 63.0 124,346 SRX7288243 JAAALD010000000
SLTP Porphyrobacter sp. 957,166 35 3,409,488 3,164 42.11 64.6 178,339 SRX7288244 JAAALE010000000
BC115LW Pseudomonas sp.b 731,624 124 5,904,409 5,315 18.59 61.0 75,282 SRX7288245 JAAALF010000000
a Indicates new genus and species assignments, compared to the previous publication (12).
b Indicates revised species assignment, compared to the previous publication (12).
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