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ABSTRACT
Background: Emerging evidence links underhydration and habitual low water intake to higher cardiometabolic risk, but

evidence is limited in community-dwelling older adults.

Objectives: The objective is to examine if higher water intake and better hydration are associated with better

cardiometabolic health.

Methods: This cross-sectional analysis using general linear models included 2238 participants from the Framingham

Heart Study Second Generation and First Generation Omni cohorts with an estimated glomerular filtration rate

>30 mL·min–1·1.73 m–2 and a valid FFQ for assessment of water intake. Of these participants, 2219 had fasting spot

urinary creatinine data and 950 had 24-h urine creatinine data to assess hydration. Cardiometabolic risk factors included

fasting glucose, triglycerides (TGs), total cholesterol (TC), HDL cholesterol, and calculated LDL cholesterol; glycated

hemoglobin (HbA1c); C-reactive protein (CRP); and systolic (SBP) and diastolic (DBP) blood pressure.

Results: The combined cohorts were on average aged 70 y; 55% were women. Mean (95% CI) daily total water

intakes were 2098 (2048, 2150) mL for men and 2109 (2063, 2156) mL for women. Total daily water, beverage

(including plain water), and plain water intakes demonstrated significant positive trends with HDL cholesterol (P < 0.01).

TG concentrations were significantly lower among the highest plain water consumers (P < 0.05). The 24-h urine

concentration, as measured by creatinine, was positively associated with LDL cholesterol and TG concentrations (

P < 0.01) and inversely associated with HDL cholesterol concentrations (P < 0.002). Neither water intake nor urine

concentration was associated with glucose or HbA1c (P > 0.05).

Conclusions: Our findings of a consistent pattern between circulating lipid concentrations and different water sources

and hydration markers support an association between hydration and lipid metabolism in older adults and add to the

growing evidence that inadequate water intake and underhydration may lead to higher cardiometabolic risk. J Nutr

2021;151:3205–3213.
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Introduction

Water is essential to life and is both the largest constituent of the
human body (37–65% of body mass) (1) and the most abundant
nutrient in the diet. If consumed in accordance with the Institute
of Medicine adequate intakes of 2.7 and 3.7 L of total water
each day, respectively, for adult women and men (2), adult
women and men would consume ∼985 kg and 1350 kg of water
yearly. Of this, ∼70–80% of total water intake is estimated to
come from drinking water and other beverages (2).

Although water is an essential nutrient, it has often been
overlooked in nutrition and health research (3). Over the past 25

y, epidemiologic evidence has slowly emerged tying lower water
intake or biomarkers associated with underhydration (4) with
various aspects of cardiometabolic health, such as obesity; lower
HDL cholesterol and higher triglyceride (TG), glucose, and
insulin concentrations; higher glycated hemoglobin (HbA1c)
concentrations; and higher incidence of type 2 diabetes (T2D)
and cardiovascular disease (5–18).

Limited data exist on hydration and cardiometabolic health
in community-dwelling older adults. Stookey et al. documented
a high prevalence of plasma hypertonicity in community-
dwelling older adults (19) and found that hyperglycemia
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progressed faster to T2D in the presence of plasma hypertonicity
(20), suggestive of insufficient hydration. In the same cohort of
older adults, baseline plasma hypertonicity was also associated
with increased risk of incident disability over 4 y and death over
8 y of follow-up (21). Moreover, Saleem et al. (22) documented
that copeptin, a surrogate biomarker for arginine vasopressin
(AVP), was an independent risk factor for insulin resistance and
the metabolic syndrome in two cohorts of adults with mean ages
of 59 and 64 y. It is important to note, however, that although
hypertonicity or high copeptin can be suggestive of insufficient
hydration, both biomarkers may also reflect other factors, such
as high solute intake or high stress (as any stressful event can
trigger AVP release, not only osmotic stress). Neither of these
studies reported water or beverage intake.

There remain many gaps in our understanding of water
intake, hydration, and metabolic health of older individuals. To
help address these gaps, we undertook the present investigation
of the role of water intake and hydration on markers of
cardiometabolic health in older adult participants from the
Framingham Heart Study (FHS) cohorts to test the hypothesis
that higher water intake and better hydration are associated
with better cardiometabolic health.

Methods
The participants in this cross-sectional analysis were derived from the
FHS Second Generation (Gen2) (23) and First Generation FHS Omni
(Omni1) (24) cohorts, with the latter cohort composed of minority
residents of Framingham created to enhance the minority representation
in the FHS cohorts. The examinations for the Gen2 and Omni1
cohorts occur concurrently and use the same protocols. Each cohort
undergoes clinic examinations about every 4 y. For the present study,
we use data from participants involved in the ninth Gen2 cohort and
the fourth Omni1 cohort examinations (2011–2014). Of the 2731
participants who attended Gen2 examination 9 (n = 2430)/Omni1
examination 4 (n = 301), 2340 had valid FFQ data for assessment
of water intake (see details below). We excluded 53 participants with
an estimated glomerular filtration rate ≤30 mL·min–1·1.73 m–2 (25)
and 49 participants with missing data on cardiometabolic risk factors
and covariate information. Our final sample included 2238 participants
(n = 2025 Gen2 examination 9/n = 213 Omni1 examination 4;
Figure 1). Of these 2238 participants, 2219 also had spot urinary
creatinine data and 950 Gen2 participants had 24-h urine creatinine
data for assessment of hydration.

The original FHS protocols were approved by the Institutional
Review Board at Boston University Medical Center, and written
informed consent was obtained from all participants. The present study
was reviewed and approved by the Tufts University Health Sciences
Institutional Review Board.
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Dietary assessment and water intake
Dietary intake was assessed in the FHS cohorts using the Harvard
semiquantitative FFQ (26, 27). The FFQ questionnaires were mailed to
the participants before the examination, and the participants were asked
to bring the completed questionnaire with them to their appointment,
where they were reviewed for completeness. The FFQ consisted of a
list of 126 foods with a standard serving size and a selection of 9
frequency categories ranging from “never or <1 serving/month” to
“≥6 servings/day.” Participants were asked to report their frequency of
consumption of each food item during the past year. Nutrient content
of each food was derived from the Harvard nutrient composition
database, which included food composition values from the USDA and
is supplemented by additional published sources and communications
with laboratories and manufacturers (27). The FFQ has been studied
thoroughly for reproducibility and validity for nutrient and food intakes
(26–29) and dietary patterns (30) using long-term diet records and
biomarkers of nutrient status (31–38).

A modification to the FFQ adding tap and bottled (plain) water
consumption was implemented in 2008, allowing for the assessment
of total water and beverage intake starting at examinations 9 and
4, respectively, for the Gen2 and Omni1 cohorts. The FFQ used
at these examinations included 27 questions on water and other
beverage consumption. We assessed water intake from plain water
(bottled/tap water), other beverages, and food. Water from beverages
(beverage intake) included plain water, 100% fruit and vegetable
juices (including prune juice, orange juice calcium fortified, orange
juice regular, grapefruit juice, apple juice, other fruit juice, tomato
juice), sugar-sweetened beverages (including carbonated beverages with
caffeine, carbonated beverages without caffeine, and other sugared
beverages—punch, lemonade, sports beverages, and sugared ice tea),
nonnutritive sweetened carbonated beverages (including low-calorie
beverages with caffeine and low-calorie beverages without caffeine),
skim milk, low fat (1–2%) milk, whole milk, soy milk, herbal and
decaffeinated tea, caffeinated tea including green tea, coffee with
caffeine, decaffeinated coffee, dairy coffee beverages, regular beer, light
beer, red wine, white wine, and liquor beverages. Water from foods
included water contained in fruits and vegetables, soups, cereals and
grains, nonmilk dairy, meats, and fish. We also characterized total water
intake from both beverages and food.

Water content of each food and beverage item was calculated from
the Harvard FFQ nutrient tables, which are based on USDA and market
share databases. Reported water content per 100 g of food and gram
weight per serving of each food listed on the FFQ were used to derive
water content (g/serving) for each line item on the FFQ. Market share
data were used to determine specific foods for some line items (e.g.,
yogurt) and the distribution of foods for combined items (e.g., “raisins
or grapes” and “apples or pears”). For each participant, consumed
water for every line item was calculated by multiplying the water
content g/serving by the number of servings reported per day. Line item
data were then summed into the broader categories of water intake g/d
from beverages, plain water, and food. We expressed water intake as
mL/d (1 mL water = 1 g) and also in mL/kg/d, using the latter to quantify
water intake relative to body size.

Hydration
Biomarkers of urine concentration have been shown to vary with
total water intake in community-dwelling adults (39–43). Furthermore,
highly concentrated urine is suggestive of underhydration, a state in
which total body water is maintained despite insufficient water intake
through sustained antidiuretic effort (higher AVP secretion, low urine
volume) (4). For this analysis, we assessed hydration using urinary
creatinine concentration as a proxy for urine dilution (44). Although
urinary creatinine is not commonly used as an indicator of hydration,
the ratio of spot urine osmolality to creatinine has found to be consistent
in the steady state (i.e., in the absence of a water-loading challenge) (45).
Spot urine specimens were collected from all participants at their clinic
examination, typically between 07:00 and 09:00 after an overnight fast.
In addition, 24-h urine creatinine concentration was assessed in a subset
of the Gen2 cohort who provided 24-h urine samples at examination 9
(n = 950).
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FIGURE 1 Flowchart of participants from the Framingham Heart Study Second Generation and First Generation Omni cohorts included in
analyses. eGFR, estimated glomerular filtration rate; Gen2, FHS Second Generation cohort; Omni1, FHS First Generation Omni cohort.

Cardiometabolic risk factors
Outcomes included the following cardiometabolic risk factors: fasting
plasma glucose, TGs, total cholesterol (TC), HDL cholesterol, and
calculated LDL cholesterol; HbA1c; serum C-reactive protein (CRP);
and systolic blood pressure (SBP) and diastolic blood pressure (DBP).
All testing, except for HDL cholesterol, was performed on a Roche
Cobas 501 using Roche reagents (Roche Diagnostics). HDL cholesterol
was an offline precipitation step with dextran sulfate–Mg2+, followed
by measurement of cholesterol as described above in the non–
apo-B–containing supernatant. LDL cholesterol was calculated per
the Friedewald equation modified by Martin et al. (46) as TC
– HDL cholesterol – (TG/adjustable factor). SBP and DBP were
measured twice by a physician using a sphygmomanometer and
averaged.

Covariates
Potential confounders of the relation between water intake or hydration
and the cardiometabolic risk factors were considered as covariates,
including age (years); sex; education (<college, ≥college); BMI (kg/m2);
regular smoking in the prior year (yes/no); pharmacologic treatment
for hypertension, dyslipidemia, or diabetes (all yes/no); and a physical
activity index (PAI). PAI was expressed in metabolic equivalents
and calculated by averaging the number of hours spent on specific
activities (i.e., sleep, sedentary, slight activity, moderate activity, and
heavy activity) with each activity weighted by the oxygen consumption
required to perform the activity. For the analyses of urinary creatinine,
we also included prevalent hypertension and diabetes as covariates.
Prevalent hypertension was defined as SBP ≥140 mm Hg or DBP
≥90 mm Hg (based on the average of 2 physician readings) or current
use of antihypertensive medication. Presence of diabetes was defined as
a plasma fasting glucose concentration ≥7.0 mmol/L or current use of
hypoglycemic drug therapy.

Statistical analyses
All analyses were conducted with SAS statistical software (version
9.4; SAS Institute). Outcome variables were examined for normality,
and natural log transformations were applied when needed. Mean
values and percentages of participant characteristics and water intake
were calculated and compared by sex because of the different water
requirements for men and women using general linear models with

significance defined as a 2-tailed P ≤ 0.05. General linear models
were also used to examine associations between quartile categories of
water intake and cardiometabolic risk factors to test the hypothesis
that higher water intake is associated with better cardiometabolic
health. All results are presented as least squares means and 95%
CIs, with the exposures presented both as mL/d and mL/(kg·d) of
water intake. Outcomes needing log transformation are presented
as geometric means and 95% CIs. To assess trends across quartile
categories, the median intake of each quartile category was assigned
to individuals with intake in that category, and this variable was
used as a continuous measure in our models. Models were adjusted
for age (years), sex, cohort, BMI, education (<college, ≥college),
current smoker (yes/no), physical activity score, and medication use
(yes/no) as appropriate. Lipid outcomes were adjusted for lipid-lowering
medication use, glucose and HbA1c for diabetic medication use, and
blood pressure for antihypertensive use. Identical analyses were done
using quartile categories of urinary creatinine (spot and 24-h) and
cardiometabolic risk factors with water intake exposures presented as
mg/dL (spot) and mg/(L·d) (24 h) and with additional adjustment for
prevalent hypertension and diabetes (yes/no).

We did not consider energy in our original models for water from
beverage and food because we viewed energy intake as a possible
mediator of the impact of water intake on cardiometabolic risk.
However, we performed sensitivity analyses adjusting for energy intake
to determine if it might influence our findings.

Results

The combined Gen2 and Omni1 cohorts were on average aged
70 y (range: 44–95 y) and 55% of the participants were women.
Men were more likely to have attended college or obtained
a college or graduate degree (Table 1). Men were also more
likely to have higher BMI, waist circumference, DBP, glucose,
and energy intake; have a greater prevalence of hypertension
and T2D; and use medications, including medications for
hypertension, hypercholesterolemia, and diabetes. Women, on
the other hand, had higher TC, HDL cholesterol, LDL
cholesterol, and CRP than the men.
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TABLE 1 Characteristics for study participants from the Framingham Heart Study Second Generation and First Generation Omni
cohorts by sex: mean or % (95% CI)1

Characteristic All (n = 2238) Men (n = 999) Women (n = 1239) P value

Age, y 69.9 (69.6, 70.2) 70.0 (69.5, 70.5) 69.8 (69.3, 70.2) 0.53
Education—highest grade completed, %

High school or less 24.8 (23, 26.6) 20.4 (17.8, 23.1) 28.3 (25.9, 30.7) <0.001
Some college/associate’s degree 30.3 (28.3, 32.2) 26.4 (23.5, 29.3) 33.3 (30.7, 35.9) <0.001
College 22.2 (20.4, 23.9) 26 (23.3, 28.6) 19.1 (16.8, 21.5) <0.001
Postgraduate 21.6 (19.9, 23.3) 26.1 (23.5, 28.7) 18 (15.7, 20.3) <0.001

Current smoker, % 5.2 (4.3, 6.1) 4.4 (3, 5.8) 5.8 (4.6, 7) 0.14
BMI,2 kg/m2 27.9 (27.7, 28.1) 28.6 (28.2, 28.9) 27.4 (27.1, 27.7) <0.001
Waist circumference, cm2 100 (100, 101) 104 (104, 105) 97.3 (96.6, 98.0) <0.001
Systolic blood pressure, mm Hg 127 (126,127) 127 (126,128) 126 (125,127) 0.18
Diastolic blood pressure, mm Hg 72 (71.6, 72.4) 73.2 (72.6, 73.8) 71.1 (70.5, 71.6) <0.001
Total cholesterol,2 mg/dL 180 (178, 182) 165 (163, 167) 193 (191, 195) <0.001
HDL cholesterol,2 mg/dL 59.3 (58.6, 60.1) 51.7 (50.8, 52.6) 66.3 (65.3, 67.3) <0.001
LDL cholesterol,2,3 mg/dL 94.2 (93.0, 95.4) 87.8 (86.1, 89.5) 99.7 (98.0, 101.4) <0.001
Triglycerides,2 mg/dL 103 (101, 105) 101 (98, 104) 104 (101, 106) 0.18
C-reactive protein,2 mg/L 1.6 (1.5, 1.6) 1.4 (1.3, 1.5) 1.7 (1.6, 1.8) <0.001
Glucose,2 mg/dL 102 (101, 103) 106 (104, 107) 99 (98, 100) <0.001
Hypertension, % 71 (69.1, 72.9) 74.6 (71.8, 77.5) 68 (65.5, 70.6) <0.001
Diabetes, % 13 (11.6, 14.4) 15.8 (13.7, 17.9) 10.8 (8.9, 12.6) <0.001
Medication use, %

Antihypertensive 56.4 (54.3, 58.4) 61.2 (58.2, 64.3) 52.4 (49.7, 55.2) <0.001
Cholesterol lowering 52.3 (50.2, 54.4) 59 (55.9, 62) 46.9 (44.1, 49.7) <0.001
Antidiabetic 11 (9.7, 12.3) 13.8 (11.9, 15.8) 8.7 (7, 10.5) <0.001

Energy intake,2 kcal/d 1829 (1804, 1856) 1930 (1889, 1971) 1752 (1719, 1786) <0.001

1Maximum number of participants from the Framingham Heart Study Second Generation and Omni First Generation cohorts who had valid FFQs, estimated glomerular
filtration rate >30 mL·min–1·1.73 m–2, complete covariate information, and at least 1 spot or 24-h urinary creatinine value.
2Geometric means and 95% CIs are presented.
3Calculated LDL cholesterol.

Average daily total water intake (the sum of water from
foods and beverages) was the same in men and women when
expressed in mL (P = 0.76) but was higher in women when
characterized as mL/kg body weight (P < 0.001) (Table 2).
Daily beverage intake (plain water and other beverages) in
mL was slightly higher in men (P = 0.02) but substantially
higher in women when expressed as mL/kg body weight
(P < 0.001). Plain water intake and water intake from foods
were significantly higher in women irrespective of how they
were expressed (P < 0.001). Overall, ∼30% of total water
came from foods, whereas 70% came from beverages. Within
the beverage category, plain water was the main source of
water, accounting for ∼35% of water from beverages (∼40%
for women and 30% for men). Coffee was the second highest
source of water from beverages (data not shown). Detailed
distributions of beverage intakes based on selected percentiles
are shown in Supplemental Table 1. Spot urinary creatinine
concentrations and 24-h urinary creatinine concentrations
(obtained only in a subset of participants from the Gen2 cohort)
were significantly higher in men (P < 0.001) (Table 2).

Total daily water, beverage, and plain water intakes all
demonstrated significant positive trends with HDL cholesterol
concentrations across quartile categories of intake characterized
as mL (Table 3). TG concentrations were observed to be
significantly lower among the highest plain water consumers
(P < 0.05), but the inverse associations were only marginally
statistically significant (P < 0.10) for total water and beverage
intakes. We observed no associations between total water
intake, beverage intake, or plain water intake and TC, LDL

cholesterol, glucose, HbA1c, SBP, DBP, or CRP. The associations
between daily water intakes characterized as mL/kg and the
cardiometabolic risk factors were very similar to those for
water intake expressed in mL (Supplemental Table 2). We
further adjusted for energy intake in a sensitivity analysis, which
generally resulted in a modest strengthening of the observed
associations between the cardiometabolic risk factors and
intakes of total water, beverages and plain water (Supplemental
Table 3) .

We observed significant positive trends between 24-h
urine creatinine concentrations and LDL cholesterol (P-
trend = 0.004) and TG (P-trend = 0.006) concentrations,
as well as a significant inverse trend between the 24-h urine
creatinine concentrations and HDL cholesterol concentrations
(P-trend = 0.002) (Table 4). The spot urine creatinine
concentrations were unrelated to any of the cardiometabolic
risks with the exception of TGs, with which they were positively
associated (P = 0.01). As with water intake, we observed no
associations between urine creatinine measures and glucose,
HbA1c, SBP, DBP, or CRP.

Water from food was unrelated to any of the cardiometabolic
risk factors considered except for an inverse relation with
CRP concentrations expressed as mL (P-trend < 0.001) and
mL/kg (P-trend = 0.004) (Supplemental Table 4). As seen
for total water, beverage and plain water intakes, further
adjustment for energy intake in a sensitivity analysis generally
resulted in a modest strengthening of the observed associations
between the cardiometabolic risk factors and water from foods
(Supplemental Table 5).
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TABLE 2 Daily water intake and urinary creatinine for study participants from the Framingham Heart Study Second Generation and
First Generation Omni cohorts by sex: geometric means (95% CI)1

Characteristic All (n = 2238) Men (n = 999) Women (n = 1239) P value2

Total water intake
mL 2104 (2070, 2139) 2098 (2048, 2150) 2109 (2063, 2156) 0.76
mL/kg 27.5 (27.0, 28.0) 24.4 (23.7, 25.0) 30.2 (29.5, 30.9) <0.001

Beverage intake3

mL 1422 (1392, 1454) 1462 (1415, 1510) 1392 (1352, 1433) 0.02
mL/kg 18.6 (18.1, 19.0) 17.0 (16.4, 17.6) 19.9 (19.3, 20.5) <0.001

Plain water
mL 496 (478, 513) 424 (398, 451) 553 (530, 578) <0.001
mL/kg 6.6 (6.4, 6.9) 5.0 (4.6, 5.3) 8.0 (7.7, 8.3) <0.001

Water from food
mL 641 (629, 653) 609 (592, 626) 668 (652, 684) <0.001
mL/kg 8.4 (8.2, 8.5) 7.1 (6.9, 7.3) 9.6 (9.3, 9.8) <0.001

Urinary creatinine, mg/dL
Spot urine 87.9 (85.5, 90.3) 109.5 (105.4, 113.8) 73.6 (71.1, 76.2) <0.001
24-h urine 77.5 (75.2, 79.9) 98.6 (94.8,102.5) 63.0 (60.8, 65.4) <0.001

1N for urinary creatinine: total = 2219, men = 990, women = 1239; 24-h creatinine: total = 941, men = 435, women = 506.
2P value comparing geometric means in men and women.
3Water from beverages (beverage intake) included plain water, 100% fruit and vegetable juices, sugar-sweetened and nonnutritive-sweetened carbonated beverages, milk
(skim/low fat and whole), soy milk, tea, coffee (with and without caffeine), dairy coffee beverages, and beer, wine, and liquor beverages.

Discussion

There is limited, but accumulating, evidence that water intake
and hydration may play a role in cardiometabolic health in
younger adults (9–14), but apart from the well-documented
adverse effects of dehydration (47–49), we know little of the
health effects of habitual low water intake or evidence of
underhydration on chronic conditions in older adults. We
undertook the present study to extend our understanding of
hydration and cardiometabolic health in older adults, using
measures of water intake as well as measures of urine concentra-
tion to assess hydration. Our most consistent finding was that
water intake and hydration were beneficially associated with
circulating lipid concentrations. Specifically, total water, bever-
age intake, and plain water intake all demonstrated beneficial
associations with HDL cholesterol concentrations, and similar
beneficial associations were seen with TG concentrations. These
findings are supported by the observations that better hydration
(as assessed by 24-h urine creatinine concentrations) was
associated with lower TG and LDL cholesterol and higher
HDL cholesterol concentrations. Hydration status based on
spot urine collections was also beneficially associated with TG
concentrations. The consistent pattern of findings observed with
the circulating lipid concentrations across the different water
sources and hydration markers supports an association between
hydration and lipid metabolism. Although underhydration due
to habitual low daily water intake is thought to play a role
in cardiometabolic risk through osmotic stimulation of AVP
release, which together with corticotrophin-releasing hormone,
mediates adrenocorticotropic hormone release, a key player in
the stress response (50–53), and through the indirect effect
of substitution of water as a calorie-free beverage for other
caloric beverages (9), an understanding of the mechanisms
relating hydration and lipid metabolism will need to await
future work as our findings cannot directly address potential
mechanisms.

We also observed that CRP concentrations were significantly
lower among individuals with the highest intakes of water
from foods. However, given that there was no evidence that
water intakes from nonfood sources or hydration markers was

related to CRP concentrations, the association with water from
foods may be a consequence of the composition of the foods,
such as vegetables and fruit, providing higher water intakes.
Moreover, the mean CRP concentrations were only modestly
elevated, and the differences between means for the highest and
lowest quartile categories of daily water intake from food were
small.

The associations we observed between water intake and
urine concentration with circulating lipids, to the best of our
knowledge, have not been previously reported in older adults.
Two previous studies have reported associations between higher
copeptin (an equimolar surrogate for AVP secretion) and blood
lipids in community-dwelling adults (22, 54). The current
analysis adds evidence for a direct association between low
water intake or high urine concentration and a poorer blood
lipid profile in older adults.

We were unable to replicate observations from earlier studies
in generally younger individuals that observed cross-sectional
or longitudinal associations between copeptin or water intake
and measures of glycemic control (9, 12–14, 16, 17, 54–
57). This discrepancy may be due to the older age of our
population [mean age of 70 y compared with mean ages of
∼58 and 49 in Swedish (11) and Dutch (55) cohorts] and worse
metabolic health. Mean plasma fasting glucose in our sample
was 5.7 mmol/L compared with 5.1 and 4.6–4.9 mmol/L in
the Swedish and Dutch cohorts. We also did not observe any
associations between water intake or hydration and systolic
or diastolic blood pressure, but more than half of the current
sample was taking hypertensive medication, limiting our ability
to observe any possible associations. A further complicating
factor is that certain blood pressure medications exert an
influence on water (and sodium) balance.

The work benefited from a large, well-characterized
population-based cohort of older men and women with a
large array of cardiometabolic phenotypes. Another strength
of this study was the inclusion of both reported water
intakes from beverages and food sources and urinary markers
of hydration. However, there are also notable limitations.
Although commonly used in epidemiologic studies, FFQs are
not without their limitations. Although they do not provide
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TABLE 3 Geometric means (95% CIs) for cardiometabolic risk factors for study participants from the Framingham Heart Study
Second Generation and First Generation Omni cohorts by quartile categories of daily water intake (mL)1

Quartile 1 Quartile 2 Quartile 3 Quartile 4
Characteristic (n = 558) (n = 559) (n = 560) (n = 561) P-trend

Total cholesterol, mg/dL2

Total water intake3 175 (171, 178) 176 (173, 180) 177 (174, 181) 176 (172, 179) 0.43
Beverage intake4 173 (170, 176) 178 (174, 181) 176 (173, 180) 177 (174, 181) 0.07
Plain water intake 173 (170, 177) 177 (173, 180) 178 (174, 181) 176 (172, 179) 0.20

LDL cholesterol,2 mg/dL
Total water intake 91.9 (89.0, 94.9) 93.1 (90.1, 96.2) 93.1 (90.1, 96.2) 91.2 (88.3, 94.2) 0.65
Beverage intake 91.1 (88.3, 94.0) 94.2 (91.2, 97.3) 92.5 (89.5, 95.6) 91.9 (88.9, 95.0) 0.92
Plain water intake 90.7 (87.9, 93.6) 93.7 (90.6, 97.0) 93.6 (90.7, 96.6) 91.7 (88.7, 94.8) 0.69

HDL cholesterol,2 mg/dL
Total water intake 56.6 (55.0, 58.2) 56.8 (55.1, 58.5) 58.2 (56.5, 60.0) 58.9 (57.2, 60.7) 0.004
Beverage intake 56.0 (54.4, 57.6) 57.0 (55.4, 58.7) 58.3 (56.5, 60.0) 59.8 (58.0, 61.6) <0.001
Plain water intake 56.7 (55.1, 58.4) 55.8 (54.1, 57.6) 58.7 (57.0, 60.4) 58.2 (56.5, 59.9) 0.01

Triglycerides,2 mg/dL
Total water intake 102 (97, 106) 101 (97, 106) 99 (94, 104) 98 (94, 103) 0.10
Beverage intake 102 (97, 106) 102 (97, 107) 99 (94, 104) 98 (93, 103) 0.08
Plain water intake 102 (97, 106) 105 (100, 110) 98 (93, 102) 99 (94, 104) 0.05

Fasting glucose,5 mg/dL
Total water intake 103 (101, 104) 102 (100, 103) 102 (101, 104) 104 (102, 105) 0.24
Beverage intake 102 (101, 104) 102 (100, 104) 103 (101, 104) 103 (102, 105) 0.23
Plain water intake 103 (102, 105) 101 (100, 103) 103 (101, 104) 102 (101, 104) 0.73

HbA1c,5 %
Total water intake 5.78 (5.74, 5.83) 5.78 (5.74, 5.82) 5.81 (5.76, 5.85) 5.79 (5.75, 5.83) 0.66
Beverage intake 5.80 (5.76, 5.84) 5.78 (5.74, 5.83) 5.78 (5.74, 5.83) 5.79 (5.75, 5.84) 0.83
Plain water intake 5.79 (5.75, 5.84) 5.78 (5.74, 5.83) 5.80 (5.76, 5.84) 5.77 (5.73, 5.82) 0.44

C-reactive protein, mg/L
Total water intake 1.57 (1.41, 1.74) 1.47 (1.32, 1.64) 1.43 (1.28, 1.60) 1.44 (1.29, 1.61) 0.13
Beverage intake 1.55 (1.39, 1.72) 1.43 (1.28, 1.60) 1.48 (1.32, 1.66) 1.44 (1.29, 1.61) 0.32
Plain water intake 1.49 (1.34, 1.66) 1.52 (1.35, 1.70) 1.45 (1.31, 1.62) 1.45 (1.30, 1.62) 0.47

Systolic blood pressure,6 mm Hg
Total water intake 126 (125, 128) 128 (126, 130) 128 (126, 129) 128 (126, 130) 0.10
Beverage intake 126 (125, 128) 127 (125, 129) 128 (126, 130) 128 (126, 130) 0.06
Plain water intake 126 (125, 128) 127 (125, 129) 128 (126, 130) 128 (126, 130) 0.11

Diastolic blood pressure,6,7 mm Hg
Total water intake 72.0 (71.0, 73.0) 73.0 (71.9, 74.0) 72.6 (71.6, 73.6) 72.2 (71.1, 73.2) 0.98
Beverage intake 72.1 (71.1, 73.1) 72.6 (71.6, 73.6) 73.0 (71.9, 74.0) 72.1 (71.0, 73.1) 0.96
Plain water intake 72.1 (71.1, 73.1) 72.2 (71.2, 73.3) 72.8 (71.8, 73.8) 72.6 (71.6, 73.6) 0.26

1Adjusted for age (years), sex, cohort, BMI (kg/m2), education (<college, ≥college), current smoker (yes/no), and physical activity score.
2Additional adjustment for cholesterol-lowering medication use (yes/no).
3Total water from foods and beverages.
4Water from beverages (beverage intake) included plain water, 100% fruit and vegetable juices, sugar-sweetened and nonnutritive-sweetened carbonated beverages, milk
(skim/low fat and whole), soy milk, tea, coffee (with and without caffeine), dairy coffee beverages, and beer, wine, and liquor beverages.
5Additional adjustment for insulin lowering medication (yes/no).
6Additional adjustment for antihypertensive medication use (yes/no).
7Arithmetic mean.

truly quantitative intakes and likely underreport energy intake,
FFQs provide good estimates of relative intake, giving us the
ability to distinguish between high and low consumers of a
particular food. Moreover, validation studies of the Harvard
FFQ, which we used in the present study, demonstrated that
beverage intake assessed by multiple 7-d diet records completed
over the course of 1 y generally correlates well with intake
assessed by this FFQ completed at the end of the year. For
example, correlations for most of the important beverage water
sources in women (29) and men (28), respectively, were 0.81
and 0.88 for skim/low-fat milk, 0.84 and 0.78 for orange juice,
0.78 and 0.93 for coffee, 0.93 and 0.77 for tea, 0.84 in both
men and women for cola beverages, and 0.94 and 0.83 for beer.
The correlation for other juice (0.89) was assessed only in men,
as was that for plain water, which was more modest than for

other beverages at 0.52. Also, given the possible impact of age
on water consumption and hydration biomarkers, the wide age
range of our participants may have limited the strength of the
observed associations.

Although urinary creatinine is a proxy for urine dilution
(44), urine concentration is usually measured more by its specific
gravity or osmolality, which has been shown to vary with water
intake (58, 59). In the absence of measured urine osmolality
or specific gravity in this data set, urine creatinine was the
best proxy for urine concentration available. Moreover, as the
findings based on urinary creatinine largely corroborate the
associations found based on water intake, the use of urinary
creatinine does not diminish the validity of our findings. The
cross-sectional nature of the study is another limitation, as
we cannot assess the temporal relation between water intake
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TABLE 4 Geometric means (95% CIs) for cardiometabolic risk factors for study participants from the Framingham Heart Study
Second Generation and First Generation Omni cohorts by quartile categories of urinary creatinine concentrations (spot and 24 h)1

Quartile 1 Quartile 2 Quartile 3 Quartile 4
Characteristic (n = 546/238)2 (n = 550/235) (n = 546/227) (n = 543/231) P-trend

Total cholesterol,3 mg/dL
Spot creatinine, mg/dL 175 (172, 179) 177 (173, 180) 176 (172, 179) 178 (175, 182) 0.21
24-h creatinine, mg/dL 173 (168, 179) 174 (168, 179) 178 (172, 183) 178 (172, 184) 0.08

HDL cholesterol, mg/dL
Spot creatinine, mg/dL 57.3 (55.6, 59.1) 58.5 (56.8, 60.3) 57.1 (55.5, 58.9) 57.7 (56.0, 59.5) 0.98
24-h creatinine, mg/dL 60.2 (57.4, 63.1) 57.4 (55.0, 60.0) 57.9 (55.3, 60.6) 54.9 (52.4, 57.5) 0.002

LDL cholesterol, mg/dL
Spot creatinine, mg/dL 93.4 (90.3, 96.6) 92.3 (89.3, 95.4) 93.0 (90.0, 96.1) 93.5 (90.4, 96.6) 0.81
24-h creatinine, mg/dL 90.4 (85.6, 95.3) 90.1 (85.7, 94.7) 93.5 (88.8, 98.4) 97.6 (92.6,102.9) 0.004

Triglycerides, mg/dL
Spot creatinine, mg/dL 96.6 (92.0, 101.4) 99.0 (94.4, 103.8) 99.2 (94.7, 104.0) 103.4 (98.6, 108.4) 0.01
24-h creatinine, mg/dL 89.5 (83.0, 96.5) 98.7 (92.0,105.9) 99.0 (92.1,106.5) 102.5 (95.2,110.4) 0.006

Glucose,4 mg/dL
Spot creatinine, mg/dL 102 (100, 103) 102 (101, 104) 102 (101, 104) 103 (101, 104) 0.28
24-h creatinine, mg/dL 101 (98, 103) 101 (98, 103) 101 (99.0, 104) 102 (100, 105) 0.29

HbA1c,4 %
Spot creatinine, mg/dL 5.77 (5.73, 5.82) 5.77 (5.73, 5.81) 5.79 (5.75, 5.83) 5.79 (5.74, 5.83) 0.52
24-h creatinine, mg/dL 5.74 (5.68, 5.81) 5.75 (5.69, 5.81) 5.76 (5.70, 5.83) 5.76 (5.70, 5.83) 0.60

C-reactive protein, mg/L
Spot creatinine, mg/dL 1.42 (1.26, 1.59) 1.44 (1.28, 1.61) 1.42 (1.27, 1.59) 1.55 (1.38, 1.73) 0.15
24-h creatinine, mg/dL 1.38 (1.15, 1.66) 1.49 (1.25, 1.76) 1.43 (1.19, 1.70) 1.38 (1.15, 1.66) 0.83

Systolic blood pressure,5 mm Hg
Spot creatinine, mg/dL 127 (126, 129) 128 (126, 130) 127 (126, 129) 127 (126, 129) 0.63
24-h creatinine, mg/dL 127 (125, 130) 126 (123, 128) 129 (126, 131) 126 (124, 129) 0.92

Diastolic blood pressure,5,6 mm Hg
Spot creatinine, mg/dL 72.5 (71.5, 73.4) 72.4 (71.4, 73.3) 72.5 (71.6, 73.5) 72.8 (71.8, 73.8) 0.48
24-h creatinine, mg/dL 71.5 (70.0, 73.1) 72.3 (70.9, 73.8) 72.9 (71.5, 74.4) 72.8 (71.2, 74.3) 0.18

1Adjusted for age (years), sex, cohort, BMI (kg/m2), education (<college, ≥college), current smoker (yes/no), physical activity score, hypertension (yes/no) and diabetes
(yes/no). HbA1c, glycated hemoglobin.
2Number of participants per quartile category for the total sample and 24-h urine subsample.
3Additional adjustment for cholesterol-lowering medication use (yes/no).
4Additional adjustment for diabetes medication use (yes/no).
5Additional adjustment for antihypertensive medication use (yes/no).
6Arithmetic mean.

and hydration and the metabolic risk factors. Many hydration
factors are affected by age, and our sample covered a wide
age range, which may result in greater misclassification of
hydration status in older participants based on the intake
and urine creatinine concentrations, but such misclassification
would tend to result in underestimation of the associations
with cardiometabolic risk factors. We initially hypothesized
that some of the impact of water intake on cardiometabolic
risk might be mediated by a reduced energy intake, but
adjusting for energy intake modestly strengthened the observed
associations, contrary to our expectations. While we were
unable to accurately control for potential confounding or
modification by total energy intake based on the FFQ, we
addressed this by including BMI and a physical activity index
as covariates in our models, although the latter is based on self-
report and also subject to misclassification. Finally, despite the
inclusion of the FHS Omni1 cohort participants in this study,
the study participants remain largely Caucasians of European
ancestry.

Our findings add to the growing evidence that inadequate
water intake and underhydration may lead to higher car-
diometabolic risk. Understanding the role of hydration for
metabolic health is critical, given the potential public health
impact of inadequate hydration, particularly among older
individuals. Based on our findings in conjunction with earlier

evidence, prospective studies of hydration and changes in car-
diometabolic health are warranted to address limitations of the
existing evidence and the current gaps in our knowledge of this
relation.
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