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Abstract

Conservation of DNA sequence over evolutionary time is a strong indicator of function, and gain or loss of sequence
conservation can be used to infer changes in function across a phylogeny. Changes in evolutionary rates on particular
lineages in a phylogeny can indicate shared functional shifts, and thus can be used to detect genomic correlates of
phenotypic convergence. However, existing methods do not allow easy detection of patterns of rate variation, which
causes challenges for detecting convergent rate shifts or other complex evolutionary scenarios. Here we introduce
PhyloAcc, a new Bayesian method to model substitution rate changes in conserved elements across a phylogeny. The
method assumes several categories of substitution rate for each branch on the phylogenetic tree, estimates substitution
rates per category, and detects changes of substitution rate as the posterior probability of a category switch. Simulations
show that PhyloAcc can detect genomic regions with rate shifts in multiple target species better than previous methods
and has a higher accuracy of reconstructing complex patterns of substitution rate changes than prevalent Bayesian
relaxed clock models. We demonstrate the utility of PhyloAcc in two classic examples of convergent phenotypes: loss of
flight in birds and the transition to marine life in mammals. In each case, our approach reveals numerous examples of
conserved nonexonic elements with accelerations specific to the phenotypically convergent lineages. Our method is
widely applicable to any set of conserved elements where multiple rate changes are expected on a phylogeny.
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Introduction
One of the major revelations of comparative genomics has
been the discovery of regions of the genome falling well out-
side protein-coding genes that nonetheless exhibit consider-
able levels of conservation across evolutionary time (Bejerano
et al. 2004; Siepel et al. 2005; Woolfe et al. 2005; Venkatesh
et al. 2006; Lindblad-Toh et al. 2011). Changes in conservation
of elements, such as conserved noncoding or nonexonic ele-
ments, in a subset of lineages are often associated with altered
regulatory activity and ultimately phenotypic divergence
(McLean et al. 2011; Booker et al. 2016). Numerous studies
have used changes in sequence conservation of conserved
elements as means to identify regulatory regions which may
be of particular importance for lineage-specific phenotypes.
For example, Pollard et al. (2006) identified 202 regions accel-
erated in the human genome but conserved in other verte-
brates, some of which are RNA genes and tissue-specific
enhancers. Kostka et al. (2018) discovered similar lineage-
specific accelerated regions near developmental genes in all
five apes. Holloway et al. (2016) identified 4,797 regions ac-
celerated at the base of therian mammals, many of which are
noncoding and located close to developmental transcription

factors. Booker et al. (2016) discovered 166 bat-accelerated
regions overlapping with enhancers in developing mouse
limbs, including one that likely regulated expression of the
HoxD cluster important for forelimb development. Such stud-
ies demonstrate that noncoding elements play a crucial role
in molding morphological diversity across diverse clades.

Phenotypic convergence, in which the same function or
morphology evolves multiple times independently, often due
to adaption to similar environmental changes, is generally
believed to be a strong signature of natural selection
(Kishida et al. 2007; Brawand et al. 2008; Stern 2013;
Meredith et al. 2014). However, we generally do not have a
robust understanding of the genomic changes underlying
phenotypic convergence (Wray 2013; Rosenblum et al.
2014). Do convergent phenotypes arise from repeated use
of the same underlying genetic elements, or do they arise
via independent genetic pathways (Orr 2005; Tenaillon
et al. 2012; Parker et al. 2013; Storz 2016)? Convergence at
the molecular level can arise because of identical substitu-
tions, and convergent rate changes can arise via consistent
shifts in substitution rate in genomic regions influencing par-
ticular phenotypic targets of natural selection (Chikina et al.
2016; Partha et al. 2017; Muntan�e et al. 2018). In this article,
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we focus on detecting genomic regions with convergent shifts
of substitution rate that are correlated with convergent phe-
notype changes. These regulatory elements are often quite
short, ranging from a few base pairs to several thousand, and
hence may require sensitive tools to detect branches of the
tree with different substitution rates.

Statistical tests for rate changes along a phylogeny have
been a part of phylogenetic methodology for several decades,
and are closely tied to tests for a molecular clock
(Huelsenbeck and Crandall 1997; Huelsenbeck and Rannala
1997). Several existing relaxed clock models (Drummond and
Suchard 2010; Heath et al. 2012) explicitly model substitution
rate variation across phylogeny. The random local clock
model implemented in BEAST (Drummond and Suchard
2010) assumes an indicator variable for rate change at each
node, enumerating all possible local clock configurations, and
estimates the location and magnitude of rate changes be-
tween local clock regions on the phylogeny. These methods
allow users to estimate both a phylogeny and divergence
times while allowing for rate variation among lineages, but
are less powerful at detecting evolutionary shifts in rate that
are correlated with a specific phenotype change since they do
not explicitly incorporate such correlations in the model.
Moreover, although highly accurate and useful for validating
various clock models, these methods are not easily scalable to
genome-wide data such as is typically encountered when
testing for rate changes in conserved elements across a clade
for which whole-genomes have been sequenced (McLean
et al. 2011; Booker et al. 2016; Holloway et al. 2016).

Molecular clock tests are closely linked to tests for associ-
ations between rate shifts and specific convergent pheno-
types on the tree, and several recent methods have been
proposed to identify these associations. The “Forward
Genomics” method (Hiller et al. 2012; Prudent et al. 2016)
tests the significance of the Pearson correlation between nor-
malized substitutions and hypothetical phenotypic states on
each branch. Chikina et al. (2016), studying protein-coding
genes with convergent substitution rate shifts in marine
mammals, quantified the difference of relative substitution
rates between “terrestrial” and “marine” branches using a
nonparametric test (Wilcoxon rank sum test); the same ap-
proach has subsequently been extended to noncoding
regions (Partha et al. 2017). The PHAST method (Hubisz
et al. 2011) tests a model allowing substitution rates shift in
a specified subset of branches against a null model with con-
stant rate for all branches using likelihood ratio. However,
these methods for detecting genomic regions with parallel
substitution rate changes are generally limited to testing a
single prespecified shift pattern on a phylogeny, which is less
powerful because many possible shift patterns would be con-
gruent with a correlation with phenotypes of extant species.
Furthermore, as we show here, these methods do not always
distinguish among strong acceleration in a single tip branch,
weaker acceleration across multiple clades, and acceleration
on lineages other than the target lineages.

Other model-based methods do not require prespecified
shift patterns, but have other limitations. Coevol (Lartillot and
Poujol 2011) jointly models parameters of substitution

process (e.g., substitution rates) and continuous phenotypes
as a multivariate Brownian process and outputs the posterior
distribution of the correlation between phenotypes and sub-
stitution parameters, but does not allow for discrete pheno-
types. To our knowledge, the only model-based method for
associating molecular rate changes with discrete phenotypes
and which considers multiple patterns of rate/character tran-
sitions is TraitRate (Mayrose and Otto 2011; Levy Karin et al.
2017). This method models the probability of rate shifts along
a fixed ultrametric tree, an approach that was shown to de-
teriorate the performance in practice (Mayrose and Otto
2011). Additionally, TraitRate only estimates the likelihood
ratio indicating the association between sequence evolution
and a given trait; it does not model the pattern of shifts in
substitution rate explicitly.

Here, we introduce PhyloAcc, a Bayesian method to model
multiple substitution rate changes on a phylogeny. PhyloAcc
does not require predetermination of the history of rate shifts
but instead relies on estimating the conservation state of each
branch for a given element based on sequences of extant
species. The method allows each genomic region tested to
have a different pattern of shifts of substitution rate. Using
Markov chain Monte Carlo (MCMC) (Liu 2001) to sample
from the posterior distribution, PhyloAcc outputs the most
probable evolutionary pattern of rate shifts as well as its un-
certainty for each genomic region. PhyloAcc also evaluates
the strength of the association between rate shifts at a geno-
mic region and phenotypic states using Bayes factors (Kass
and Raftery 1995). Unlike previous methods using maximum
likelihood estimators of substitution rates and a single pattern
of rate shifts, PhyloAcc considers the uncertainty of estimated
substitution rates and all possible changes of substitution
rates by marginalizing all nuisance parameters either numer-
ically or analytically given the phenotypes of extant species.
To demonstrate the power of PhyloAcc on real data, we apply
the method to two classic examples of phenotypic conver-
gence: loss of flight in birds (Mitchell et al. 2014; Sackton et al.
2019) and transition to marine life in mammals (McGowen
et al. 2014; Foote et al. 2015; Chikina et al. 2016). In both cases,
we use genome-wide data from hundreds of thousands of
conserved elements to identify those elements with specific
patterns of convergent rate shifts associated with our target
phenotype, revealing novel, putative regulatory regions that
may be repeatedly associated with these evolutionary
transitions.

New Approaches

Hierarchical Bayesian Phylogenetic Model: Overview
The goal of our model is to identify branches on a phylogeny
on which particular genomic elements change their substitu-
tion rate. We take as input a phylogenetic tree, with branch
lengths representing the expected number of substitutions
along each branch averaged across the genome. Such a start-
ing tree is often available from phylogenomic studies and
branch lengths can be estimated, for example, from a class
of sites thought to be neutral, such as 4-fold degenerate sites
(Hubisz et al. 2011). We assume that the substitution process

Bayesian Detection of Convergent Rate Changes . doi:10.1093/molbev/msz049 MBE

1087

Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: since 
Deleted Text: -
Deleted Text: -
Deleted Text: four


follows a standard continuous-time Markov process. To
model rate variation, we introduce the relative substitution
rate per branch, r, such that the expected number of sub-
stitutions along a given branch for a given element will be r
times the background average. Given many genomic ele-
ments of interest are relatively conserved and short in length,
estimating substitution rates for each branch accurately is
difficult, as the number of substitutions which are informative
will often be very low. To overcome this challenge, we use a
local clock model where the substitution rate of a given
branch is expected to correlate with that of its parent branch,
and hence will be informed by more substitutions.

We assume that, for each element, a limited number of
rate categories occur on the phylogeny. We define Zi ¼ ðZi1;
Zi2; . . . ; ZinÞ to denote the latent conservation state on each
of n branches for element i; the substitution rate for each
element, ri on a branch depends on its latent conservation
state. The transitions in Z are modeled as a Markov chain,
that is, the state of a branch only depends on the state of its
parent branch. The transition probability matrix of Z is
denoted by U. Such a model permits independent gain and
loss of conservation on multiple lineages and also encourages
nearby branches to have the same state and substitution
rate, which is reasonable for closely related species and
branches in a phylogeny and is also a common assump-
tion in phylogenetics (Thorne et al. 1998; Rannala and
Yang 2007). The posterior distribution of Z indicates
where changes of substitution rates occur in the tree,
and the posterior ratio of substitution rates for each la-
tent state indicates the magnitude of change. The proce-
dure is illustrated in figure 1 and supplementary figure S1,
Supplementary Material online.

To test a priori patterns of substitution rate shifts that
might be associated with phenotype changes, we compare
the marginal likelihoods of three nested models by restricting
the transition probability matrix U in some or all lineages: a
null model without the specified shift pattern, a lineage-
specific model satisfying the specific test pattern, and a full
model allowing arbitrary shifts. We then compute two Bayes

factors, BF1 ¼ PðYjM1Þ
PðYjM0Þ and BF2 ¼ PðYjM1Þ

PðYjM2Þ, where PðYjM�Þ is

the marginal likelihood of data set Y under model 0, 1 or 2, as
criteria to identify DNA elements with specific evolutionary
patterns. A larger Bayes factor implies stronger evidence from
the sequence data in support of the specified pattern of rate
shift (M1).

Specific Model for Detecting Multiple Accelerations
We focus on a model of conserved element evolution in
which particular elements initially evolve at some background
rate, become conserved at the root or some other branch on
the phylogeny, and later potentially lose conservation in some
lineages and thus evolve with an accelerated rate. We desig-
nate a conserved state with a lower substitution rate than
sequences used to estimate background branch lengths
(r1 < 1); an accelerated state with a substitution rate higher
than that of the conserved state (r2 > r1); as well as a back-
ground state with the same substitution rate as those used in
the input tree (r0 ¼ 1, by definition). Informally, this model
captures a process by which conservation arises as a transition
from background to conserved state and is subsequently lost
as when changing from the conserved to accelerated state,
although the framework of PhyloAcc is flexible enough to
model alternate scenarios. Note that in this model the

FIG. 1. Illustration of the use of PhyloAcc to detect multiple accelerations and test hypotheses using Bayes factors. The left panel shows the Bayesian
phylogenetic model; right panel shows some examples of acceleration patterns in three nested models: null (M0), lineage-specific (M1), and full
model (M2), respectively. Our method can recover shifts of substitution rate such as the top-left figure and select target-accelerated elements
fitted by M1 (not M0). In the trees, target species are shown as blue; branch lengths represent the background substitution rates and branch colors
indicate the latent states of substitution rate for a given element.
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accelerated rate is defined relative to the conserved rate, not
the background rate, and thus accelerated rate can be less
than, equal to, or greater than the defined background rate, as
long as it is greater than the conserved rate. This allows us to
model a variety of scenarios whose biological interpretation
might include partially relaxed constraint or positive selection
with a rate greater than background. Future extensions of
PhyloAcc with more rate categories could allow these alter-
natives to be distinguished. For example, it is straightforward
to model multiple acceleration states in which a given ele-
ment loses conservation in independent clades on deeper or
more recent branches, and thus have different numbers of
substitutions realized on affected branches, or to allow for a
loss of conservation state followed by a positive selection
state with r� 1. Although our model is flexible, it is ulti-
mately agnostic as to the biological processes ascribed to
the various estimated rate classes (see Discussion).

Formally, each branch is in either the background,
conserved or accelerated state (i.e., Zis 2 0; 1; 2g;f
s ¼ 1; 2; . . . ; n), with substitution rates ri0 ¼ 1; ri1 < 1
and ri2 > ri1, respectively, for element i. We will refer to
branches in state Zis¼2 with rate ri2 as “accelerated,”
but we note that this acceleration is relative to the con-
served rate, ri1. Such branches will always have rates
greater than that of the conserved state, but could in
principle have rates lower than the background rate
r0 ¼ 1: Given that our candidate genomic regions
(e.g., CNEEs) are mostly conserved, we expect that, for
any element, most branches are in the conserved state.
In practice, most branches in the accelerated state do
indeed have estimated values of ri2> 1, with only a small
percentage having values < 1.

To model how changes in latent conservation state occur
along the phylogeny, we start by assuming that each element
is in either the background or the conserved state at the root
of the tree. In this way we can account for the fact that each
element may not be conserved in all species in the tree, es-
pecially when distant outgroups are included. We assume
that Dollo’s irreversible evolution hypothesis (Gould 1970)
holds for transitions from conserved to accelerated states,
so that along each lineage Zis can transit from a background
to a conserved state, and then to an accelerated state but not
the reverse (Felsenstein 1973). By the irreversibility assump-
tion, the transition probability matrix Z, has a simplified form:

Ui ¼

1� ai ai 0

0 1� bi bi

0 0 1

2
664

3
775;

where ai is the probability of gain conservation and bi is the
probability of loss of conservation. The model allows different
transition probabilities U for each element, thereby allowing
each element to be characterized by distinct evolutionary
patterns.

As with many rate models, we assume a Gamma distribu-
tion for the priors of element-wise substitution rates (ri1 and
ri2). Different hyperparameters of the priors for ri1 and ri2

distinguish conservation states. By adjusting the hyperpara-
meters of the priors, the substitution rate for the accelerated
state can be made stochastically higher than that of con-
served state a priori. The hyperparameters of the priors are
estimated by the sequence data from all elements in the data
set, most of which will likely not change rate across the tree
(supplementary text, Supplementary Material online). This
approach pools information from all elements to make esti-
mates of substitution rates and latent states more reliable.
Such pooling plays a larger role in cases where only a few
branches are accelerated, and/or few substitutions occur per
element. We used a Beta prior, which is conjugate to the
likelihood function of Z, for the state transition probabilities
(ai and bi) for computational convenience.

In summary, the model has four parameters for each ele-
ment: substitution rates in conserved and accelerated states
(ri1 and ri2), transition probabilities to conserved and accel-
erated states (ai and bi); and two latent random variables for
each species or branch on the tree: the ancestral sequences
and conservation states Z. Our method iteratively updates
unobserved DNA sequences of ancestral species, latent states
Z, substitution rates r, and state transition probabilities U for
each element by using collapsed Gibbs sampling (Liu 1994)
and adaptive Metropolis–Hasting algorithms (Roberts and
Rosenthal 2009) and outputs draws from the posterior dis-
tribution of Z. The resulting output can be used to recon-
struct the sequence of shifts in rate, including the number of
independent accelerations of a particular element, and quan-
tifies the uncertainty of where in the tree (on which branch)
accelerations occur. It also supplies posterior distributions of
substitution rates r, indicating the magnitude of rate shifts
(supplementary text, Supplementary Material online).

Testing Parallel Accelerations in Target Species
To test for an association between rate shifts and a set of
prespecified target lineages (phenotypically convergent spe-
cies), for each element we compare marginal likelihoods be-
tween a null model assuming no acceleration in any lineage,
and alternate models allowing either accelerations only in
lineages associated with the convergent trait or accelerations
in arbitrary lineages. In the null model (M0), all branches are in
either the background or conserved state; in the lineage-
specific model (M1), substitution rates on the branches lead-
ing to target species with the trait of interest can be acceler-
ated whereas all other branches must be in either the
background or conserved state; in the full model (M2), the
latent conservation states Z can take any configuration across
the phylogeny; in our implementation here, it is modeled so
that Dollo’s irreversibility assumption on conservation states
is not violated.

Formally, for M0 we restrict the transition probability from
conserved to accelerated state (b) to be zero for all branches,
and for M1 we restrict b ¼ 0 only to branches connecting the
root to nontarget species. In our applications, we assume
b ¼ 0 for branches within outgroups in all three models
such that all outgroup species cannot be in an accelerated
state. To compare models, we compute the marginal likeli-
hood PðYjMiÞ for each model and compute two Bayes
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factors, BF1 and BF2 as described above, as criteria to identify
DNA elements accelerated exclusively in target lineages.
Including BF2 to identify elements with a specific evolutionary
pattern is crucial to exclude elements accelerated in nontar-
get species not associated with the specific phenotypic
change, which might include regulatory elements with
broader functions. The model and selection procedure are
illustrated in figure 1.

Results

Applications of PhyloAcc to Examples of Phenotypic
Convergence
To demonstrate the power of PhyloAcc, we conducted a
simulation to compare the ability of PhyloAcc to distinguish
various patterns of rate shifts where previous methods can-
not. We then focus on two classic cases of convergent evo-
lution: loss of flight in palaeognath birds (Mitchell et al. 2014;
Sackton et al. 2019) and the transition to marine environ-
ments in mammals (McGowen et al. 2014; Foote et al. 2015;
Chikina et al. 2016). We start by simulating data under the
phylogenetic model for birds or mammals to verify the per-
formance of our method, and then test for noncoding ele-
ments accelerated one or multiple times in flightless birds or
marine mammals. We compared PhyloAcc with three alter-
native methods for selecting lineage-specific accelerated ele-
ments: phyloP in phast, which tests for clade-specific
acceleration using a likelihood ratio test (Pollard et al.
2010), and two two-step procedures that first estimate
branch-wise substitution rates using PAML (Yang 2007)
and then measure the correlation between rates and traits
using either Wilcoxon rank sum test (denote as
PAMLþWilcoxon) or phylogenetic ANOVA (Revell 2012;
denoted as PAMLþphylANOVA).

Simulation Study: Avian Topology
To verify our ability to detect the correct evolutionary pat-
tern, we simulated DNA elements with different patterns of
rate shifts (i.e., different Zs) using a tree mirroring a recent
phylogeny of birds (Jarvis et al. 2014), augmented by new
genomes from palaeognathous birds (Sackton et al. 2019).
Recent phylogenetic work supports the conclusion that the
ratites (including ostrich, emu, cassowaries, kiwis, rheas, and
the extinct moas and elephant bird) are paraphyletic, imply-
ing convergent loss of flight in these lineages (Harshman et al.
2008; Baker et al. 2014; Mitchell et al. 2014; Yonezawa et al.
2017; Sackton et al. 2019). This scenario, in which target
lineages are clustered in paraphyletic clade, is particularly
challenging for existing methods. In most of our simulations,
we set the length of each element to be 200 bp, which is
about the median length in real data (Sackton et al. 2019).
We also simulated one example with different element
lengths to test the robustness of PhyloAcc. We generated
nine cases with different numbers of independent accelera-
tions either within ratites and tinamous or neognath birds:
1) all branches are conserved, 2) only kiwi clade accelerated,
3) only ostrich accelerated, 4) only emu/cassowary branches
accelerated, 5) only rhea clade accelerated, 6) all ratites

accelerated except ostrich and moa, 7) all ratites accelerated,
8) both ratites and volant tinamous accelerated, and 9) five
random species of nonratite birds (neognaths plus tinamous)
accelerated (supplementary fig. S4, Supplementary Material
online). The total length of branches on which acceleration
occurs increases from cases 1 to 8. We designed case 8 to
demonstrate the specificity of our method, since the vo-
lant tinamou clade resides within the ratite clade, making
it difficult to distinguish genomic elements accelerated
from the ancestor of both tinamous and ratites from
those only accelerated in ratites. In each case, we simu-
lated 500 elements whose conserved and accelerated
rates are generated randomly from gamma distributions
(supplementary fig. S5C, Supplementary Material online,
Materials and Methods). The average proportion of
nucleotide differences per element between pairs of spe-
cies varies from 0.06 (case 1) to 0.13 (case 8). We first
filtered out elements with BF2 < 1, a result indicating
that species other than target lineages (ratites in this
case) might be accelerated. We then ranked all other
elements based on BF1. Similarly, each element was
ranked and selected based on the test statistic or P-values
output by other methods.

To test the sensitivity and specificity of our method in
discerning target-specific accelerated elements from non-
accelerated elements, we mixed the simulated accelerated
elements with some nonaccelerated elements from case 1
for each of the six ratite accelerated cases from cases 2–7.
Receiver operating characteristic (ROC) curves resulting from
varying selection thresholds are shown in figure 2A. Not sur-
prisingly, among different acceleration cases, all methods
achieve a higher sensitivity when more accelerated target
lineages are present. PhyloAcc consistently performed the
best (except for the ostrich-accelerated case [case 3], in which
phyloP is the best) at detecting elements accelerated among
ratites based on BF1, whose distribution for different ratite-
specific accelerated and background elements is shown in
supplementary figure S6A, Supplementary Material online.
Because phyloP performs similarly or better than
PAMLþWilcoxon and PAMLþphylANOVA, we mainly focus
on comparisons with phyloP, over a variety of sequence
lengths: 100, 200, and 400 bp (fig. 2B). Both methods perform
better with longer sequences and PhyloAcc is better for all
lengths in most cases. PhyloAcc is also robust to different
choices of the priors for substitution rates (supplementary
fig. S7, Supplementary Material online). Thus, under a variety
of evolutionary scenarios, PhyloAcc has high power to detect
lineage-specific rate shifts in conserved elements.

Because phyloP can only test one predefined shift along a
tree, a shift that moreover is usually not known with certainty
a priori, we tested two common choices of accelerated
branches: all tips of target species and all subtrees within
target lineages, which is the acceleration pattern inferred by
parsimony (Materials and Methods). With the second choice
of accelerated branches, phyloP and PhyloAcc have compa-
rable performances and phyloP is only better for shorter se-
quence in some cases (supplementary table S1,
Supplementary Material online).
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To compare the statistical power of different methods
while controlling false discovery rate (FDR), we mixed 100
elements from cases 2–9 together and with 5,000 elements
without acceleration from case 1, a situation that imitates the

small proportion of target-specific accelerated elements in
real data. Positive outcomes include cases 2–7, in which accel-
erations occur only within target species; other cases involve
negative cases, in which either no acceleration occurs or
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Case 5: Rhea accelerated
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FIG. 2. Simulated results on the avian topology. (A) ROC curves for PhyloAcc, phyloP and PAMLþWilcoxon, PAMLþphylANOVA in different ratite
acceleration cases. (B) ROC curves for PhyloAcc and phyloP in different ratite acceleration cases and different lengths of elements. We treated
elements with each acceleration pattern (cases 2–7 separately) as positive and all conserved elements (case 1) as negative, and compared
sensitivity and specificity of PhyloAcc to others.
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accelerations occur outside target lineages. At 5% FDR, all
methods except PhyloAcc could only identify a small number
of true target-specific accelerated elements, because they in-
correctly selected elements from case 8 as target-specific accel-
erated. In contrast, PhyloAcc successfully identified almost all
the target-specific accelerated elements across all cases at low
FDR (supplementary table S2, Supplementary Material online).

The main reason for the superior performance of PhyloAcc
in terms of controlling FDR is that PhyloAcc will not select
elements accelerated in nontarget lineages, for example, in
case 8 where acceleration occurs in the ancestors of ratites
and tinamous. Other methods are not designed to control for
this case; indeed the test statistic from phyloP or the two-step
methods can be even larger in case 8 than in some target-
specific accelerated cases. As an example, we showed the
distribution of log-likelihood ratio output by phyloP com-
pared with log-BF1 and log-BF2 by PhyloAcc in different cases
(supplementary fig. S5B, Supplementary Material online). In
case 8, log-BF2 is<�5 for 95% of elements, because only the
full model (M2), which allows for rate shifts on arbitrary
branches, fits the data adequately. Thus, almost all elements
are reported as not target-specific. By contrast, very few ele-
ments have log-BF2 <0 in cases 1–7, because the Bayes fac-
tors favor the simpler model if both models fit the data
equally well (supplementary fig. S6B, Supplementary
Material online). Thus, our method achieves high specificity
using BF2 as a filtering criterion. In additional simulations
(supplementary fig. S5A, Supplementary Material online),
we show that our method has a lower false positive rate
and a higher power in identifying elements with a shift in
substitution rate within a set of species, and is thus well suited
to identify either shared or independent rate changes.

Inferring the Pattern of Acceleration of Individual Genomic

Elements
We confirmed that PhyloAcc can recover the true pattern of
acceleration (pattern of latent states) for individual genomic
elements by comparing the model estimated latent states
with the true simulated values. For each simulated element,
we compared the posterior probability of Z under the full
model output from PhyloAcc with the true simulated pattern
and defined the result as “correct” if the posterior probabil-
ities of the true latent state on each branch are all above 0.7.
Accuracy is then defined as the proportion of correctly
detected elements. In our simulations, the ratio between ac-
celerated and conserved rates is typically around 5–10, and
the accuracy is above 60% in all cases. The accuracy is limited
primarily by the posterior uncertainty of conservation state
on short branches due to the lack of sufficient signal on those
branches.

Previous methods selecting accelerated elements on par-
ticular branches do not always distinguish different patterns
of acceleration from the score they produce. To illustrate this,
we compared the log-likelihood ratio using phyloP and the P-
value from Wilcoxon rank sum test (Pollard et al. 2010;
Chikina et al. 2016) in the simulation cases above. As these
scores depend on both the magnitude and pattern of

acceleration, it is not hard to find elements with the same
log-likelihood ratios and P-values having either strong accel-
eration in a single lineage, multiple independent accelerations
or a weak acceleration over an entire clade. As shown in
supplementary figure S3, Supplementary Material online,
the second element is accelerated convergently in all target
species (case 7) and thus more likely to be associated with the
convergent phenotype. But the P-values of both likelihood
ratio test and Wilcoxon rank sum test cannot distinguish
between this pattern and one in which all ratites and tina-
mous are slightly accelerated (case 8) or in which only one
lineage is accelerated (case 3). In contrast, PhyloAcc can iden-
tify both elements 1 and 2 as ratite-accelerated elements,
indicted by large log-BF1, but can also exclude element 3
because it has a negative log-BF2.

To compare the ability of PhyloAcc and other software to
apply rate shifts to specific branches, we turned to BEAST2
(Bouckaert et al. 2014), because phyloP cannot output the
pattern of acceleration on each branch. We designated the
pattern detected by BEAST2 as correct if the posterior prob-
ability of rate shifts on branches with true state transitions is
above 0.7 and below 0.3 for others. As seen in figure 3, the
accuracy of both methods increases as the ratio between ac-
celerated and conserved rates increases, because the conser-
vation state of short internal branches is easier to determine
when we observe more substitutions, which will tend to occur
when accelerated rates are high. In accordance with accuracy,
for PhyloAcc, BF1 also increases with the rate ratio, and BF2
stays below zero and decreases as r2=r1 grows in cases 8 and 9
(supplementary fig. S6C, Supplementary Material online).

BEAST2 has a comparable accuracy when no clade or a
large clade is accelerated, but performs worse than PhyloAcc
in cases with multiple independent rate shifts (e.g., cases 7
and 9) or with rate shifts on short branches (e.g., case 2). The
model implemented in BEAST2 allows transitions between
conserved and accelerated rates in both directions. As a con-
sequence, BEAST2 tends to misplace the origin of an acceler-
ation at a node deeper than the true node and then infer a
regain of conservation in the clade whose rate is unchanged.
For example, in the case in which only the rhea clade is ac-
celerated (case 5), some elements are estimated as acceler-
ated at the ancestor of rheas, kiwis, emu and cassowary, and
then regain conservation in this clade except for rheas. There
might be too few substitutions on these short internal
branches for BEAST2 to determine their conservation state.
Even when this type of “loss-regain” pattern inferred by the
algorithm is counted as correct, PhyloAcc still performed bet-
ter (fig. 3). We also show that our model can recover the true
conservation state with a high certainty (posterior of true
latent state is around 1) for all but the shortest branches
(supplementary figs. S8B and S9, Supplementary Material on-
line), and that it also appears robust to the presence of indels
in the alignment (supplementary fig. S10, Supplementary
Material online).

Simulation Study: Mammalian Phylogeny
We next sought to validate our method in a second simula-
tion study, this time focusing on the common scenario where
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a convergent phenotype arises in multiple, distantly sepa-
rately lineages on a phylogeny. We used a recent tree for 62
mammals (Murphy et al. 2004), focusing on the transition to
marine habit (Foote et al. 2015; Chikina et al. 2016), and
simulated DNA elements under different patterns of substi-
tution rates variation. We compared PhyloAcc with phyloP,
PAMLþWilcoxon and PAMLþphylANOVA in various cases:
1) all lineages conserved; 2) cetaceans (dolphin and killer
whales) accelerated; 3) pinnipeds (seal and walrus) acceler-
ated; 4) manatee, seal and dolphin accelerated, that is, one
species from each of the three independent lineages; 5) all
five marine mammals accelerated; 6) pinnipeds and panda
(sister lineage of pinnipeds) accelerated; and 7) species
descending from the common ancestor of cat and pinni-
peds (supplementary fig. S11, Supplementary Material on-
line). Cases 2 through 5 are marine mammal-specific
accelerated cases, whereas cases 6 and 7 are a case of non-
specific acceleration. The average proportion of per-element
nucleotide differences between pairs of species ranges from
0.09 (case 1) to 0.12 (case 7).

We conducted an analysis similar to that of the avian data
set to compare the sensitivity and specificity of PhyloAcc and

other methods for identifying substitution rate shifts.
PhyloAcc has higher sensitivity to detect genomic elements
accelerated within marine mammals than other methods, will
exclude elements accelerated in species other than marine
mammals by the BF2 criterion (supplementary fig. S12,
Supplementary Material online), and the FDR drops below
5% when selecting elements with log-BF2> 0 and log-
BF1> 0 (supplementary fig. S12B, Supplementary Material
online). In combination with the avian simulation, these
results suggest that the sensitivity and specificity of
PhlyoAcc is expected to be high for a wide range of evolu-
tionary scenarios regardless of the topology of target species
on the phylogenetic tree.

Detecting Accelerated CNEEs in Real Data: Avian Case
We next applied PhyloAcc to detect ratite-accelerated con-
served noncoding regions based on a set of 284,001 CNEEs
identified in birds (Sackton et al. 2019). Using PhyloAcc, we
identified 786 CNEEs with strong evidence for ratite-specific
acceleration (log-BF1> 20 and log-BF2> 0), among which
80% have posterior median of accelerated rate >1 under
the full model. The rhea clade is the most likely lineage to
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FIG. 3. Comparison of accuracy recovering substitution rate shift patterns between BEAST2 and PhyloAcc in each simulation case. In each case, we
ordered and categorized the simulated elements into ten equal-sized groups according to the ratio between substation rates of accelerated and
conserved states (the quantiles of r2=r1 in each group are shown in supplementary fig. S8A, Supplementary Material online). X axis shows the
boundary of the ratio in each group; red curves are the accuracy of PhyloAcc (using different priors on substitution rates) and blue curves are of
BEAST2. c1 and c2 are Gamma(5, 0.04) and Gamma(1, 0.2), respectively, narrow and wide prior for conserved rate; n1 and n2 are Gamma(10, 0.2)
and Gamma(4, 0.5), respectively, narrow and wide prior for accelerated rate. “cXnX” means a combination of them. “BEAST2 exact” shows the
accuracy recovering the true pattern, whereas “BEAST2 extend” shows the accuracy allowing “loss-regain” pattern (see main text).
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be accelerated among the 786 ratite-specific accelerated
CNEEs, followed by kiwis, with the ostrich branch less likely
accelerated among all ratites (fig. 4A). PhyloAcc outputs the
posterior probability of the conservation state on each
branch, which are used to infer how many species of ratites
are accelerated for each element as well as how many inde-
pendent accelerations occurred within ratites (see supple-
mentary text, Supplementary Material online). Many of
these CNEEs have experienced multiple independent accel-
erations within ratites: 54 (7%) CNEEs have three or more
expected independent accelerations; 175 (22%) have been
accelerated 2–3 times; and 480 (61%) have accelerated 1–2
times (supplementary table S3, Supplementary Material on-
line; Sackton et al. 2019).

Among CNEEs that show strong signals of acceleration in
ratites indicated by very large Bayes factors (BF1), many are
accelerated in a single clade with one acceleration (e.g.,
mCE600387 accelerated only in kiwis, fig. 4B) whereas some
are accelerated in more than one clade (e.g., mCE1217964
accelerated in both rheas and kiwis, fig. 4C; mCE1148428

accelerated in rheas, emu and cassowary, fig. 4D). These are
interesting candidate regulatory regions for further functional
studies (e.g., Sackton et al. 2019).

Detecting Accelerated CNEEs in Real Data:
Mammalian Case
As a second case study, we examined CNEEs accelerated in
marine mammals. Though these mammals exhibit similar
phenotypes upon transition to marine environments, the
extent of molecular convergence in this system has been
controversial, and largely focused on protein-coding genes
(Foote et al. 2015; Chikina et al. 2016). Most genes with con-
vergent sequence signatures are physiological and structural
genes, with little evidence for convergent evolution in
protein-coding genes controlling morphological adaptations,
which may typically involve regulatory regions (Carroll, 2008).
We applied PhyloAcc to 283,369 CNEEs identified from a
whole-genome alignment of 62 mammalian species, and
identified 2,106 elements showing evidence of substitution

A B

C D

FIG. 4. (A) Number of accelerated elements per branch among ratite-specific accelerated CNEEs. Phylogeny for avian data set (only a subset of
species are shown for illustration). Palaeognaths consist of the flightless ratites and volant tinamous. Ratites are shown in blue. Branch lengths
represent the background substitution rates. The gradient of the color indicates the expected number of elements being accelerated under the full
model on that branch among 786 ratite-specific accelerated CNEEs. (B–D) Examples of ratite-accelerated CNEEs. For each element, the shift
pattern of substitution rates under the full model is shown on the left represented by a phylogenetic tree with branch lengths proportional to the
posterior mean of the substitution rate and colored by the posterior mean of Z (green is the conserved, red is the accelerated, and purple is the
background state). Longer and redder branch indicates acceleration occurred at a higher rate or earlier on the branch, whereas shorter and greener
one means later on the branch or no acceleration. Below the tree shows two log-BFs and conserved (r1)/accelerated rate (r2). In the sequence
alignment heatmap on the right, each column is one position, each row is a species, and the element length is shown below. For each position, the
majority nucleotide (T, C, G, A) among all species is labeled as “consensus” and colored as orange; others are labeled as “substitution” and colored as
blue; unknown sequence is labeled as “N” and colored as gray; indels are shown as white space.
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rate shifts specifically in marine mammals, with examples of
acceleration on a single (fig. 5A) and multiple clades (fig. 5B).
Compared with a random control group of mammals (aard-
vark, alpaca, camel, microbat, and David’s myotis bat) with no
obvious shared characters but matching the topology of the
five marine mammals (supplementary fig. S2B,
Supplementary Material online), we found more CNEEs
showing substitution rate shifts in marine mammals than in
control species (2,106 for marine-accelerated vs. 1,472 for
control-accelerated elements with log-BF1> 5 and log-
BF2> 5). We observed a larger Bayes factor between the
lineage-specific model and the null model for marine-
accelerated elements than for control-accelerated elements,
indicating more dramatic changes of substitution rates affect-
ing more species in marine mammals (supplementary fig. S14,
Supplementary Material online). In addition, more marine-
accelerated CNEEs show parallel shifts in target lineages than
controls: 696 (33%) of marine-accelerated elements show ac-
celeration in three or more target lineages compared with 374
(25%) for control-accelerated elements (supplementary table
S4, Supplementary Material online); 93 (4.4%) of marine-
accelerated elements show more than two independent
accelerations compared with 33 (2.2%) for
control-accelerated elements (supplementary table S5,
Supplementary Material online). To control for the chance
that marine-accelerated elements are generally accelerated in

more species, we compared the number of accelerated non-
target species in each marine-accelerated CNEEs with that in
control-accelerated CNEEs. We observed acceleration in only
a small number of nontargeted species for marine-accelerated
CNEEs and fewer than that in control-accelerated CNEEs
(supplementary fig. S14, Supplementary Material online).

We tested for functional enrichment of genes near marine-
accelerated CNEEs in mammalian genomes using GREAT
(McLean et al. 2010). Among other functions, marine-
accelerated CNEEs are predicted to regulate genes related
to nervous and immune system including protein polygluta-
mylation, cerebellum morphogenesis, complement activa-
tion, and hindbrain morphogenesis; these genes are also
enriched in mammalian phenotype terms such as olfactory
bulb granule cell layer morphology, hippocampus layer mor-
phology, and subplate morphology (fig. 5C and D). Many of
the enriched functional terms are related to morphological
traits, which reveals molecular adaptations overlooked by
previous studies, which focused primarily on protein-coding
genes. Checking individual genes associated with these
enriched functional annotations, we found several genes sur-
rounded by multiple top marine-accelerated CNEEs, includ-
ing TTLL3, a beta-tublin polyglutamylase modifying
microtubules, and highly expressed in nervous system
(Ikegami et al. 2006); PROX1, a member of the homeobox
transcription factor family, associated with cerebellum

A B

DC

FIG. 5. (A, B) Examples of marine mammal-accelerated CNEEs. For each element, the shift pattern of substitution rates under the full model is
shown on the left represented by a phylogenetic tree with branch lengths proportional to the posterior mean of the substitution rate and colored
by the posterior mean of Z Color scheme of tree and alignment, and statistics below each tree, are as in Fig. 4. Enriched GO terms (C) and
mammalian phenotypes (D) of genes near marine-accelerated CNEEs. Only the top 20 terms are shown (all of them with FDR <0.01).
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morphogenesis; C8B, one component of the membrane at-
tack complex, and in the complement pathway as part of the
body’s immune response; DAB1, a key regulator of Reelin
signaling pathway, playing an important role for neurogenesis;
KLF7, a transcription factor, crucial for neuronal morphogen-
esis in olfactory and visual systems, the cerebral cortex, and
the hippocampus (Laub et al. 2005); FOXG1, a transcription
repressor, essential for brain development, especially for the
region controlling sensory perception, learning and memory
(Martynoga et al. 2005); and GAS1 and GLI2, which function
as transcription regulators in the hedgehog (Hh) pathway,
important for embryogenesis (Martinelli and Fan 2007). In
contrast, control-accelerated CNEEs are enriched in only a
few general gene ontology (GO) terms, such as cell fate de-
termination, regulation of transcription and translation (sup-
plementary fig. S15, Supplementary Material online).

PhyloAcc Software
We implemented our method in the program PhyloAcc,
which was written in Cþþ, tested on Mac and Linux systems,
and is available at https://xyz111131.github.io/PhyloAcc/, last
accessed March 15, 2019. It requires as input: 1) a rooted
phylogeny in .mod format (such as one produced by
phyloFit in the PHAST package; Siepel and Haussler 2004);
2) a multiple alignment file concatenating sequences of all
input (conserved) elements in FASTA format; 3) a bed file
with the position of each individual element in the coordinate
of concatenated alignment file (0-based); and 4) a parameter
file. The .mod file should contain the transition rate matrix Q
and the phylogenetic tree in Newick format with branch
lengths (in units of substitutions per site) for background
(neutral) sequences. The parameter file contains information
on species names and parameters for the MCMC. For each
element, PhyloAcc will output the posterior distribution of
the latent conservation state (Z) for each branch, indicating
neutral, conserved or accelerated states under the null,
lineage-specific, and full models, respectively, and the mar-
ginal log-likelihood under each model as well as Bayes factors.
The runtime of PhyloAcc compared with BEAST2 is shown in
supplementary text, Supplementary Material online. A de-
tailed description of the usage as well as example simulation
data sets and results are available in the GitHub repository.
We also provide R scripts to generate figures summarizing the
rate shift patterns as in this study.

Discussion
PhyloAcc provides a flexible framework to detect substitution
rate changes along phylogenetic trees based on multiply
aligned DNA sequences, conditional on annotated conserved
sequence elements of interest (e.g., from PHAST or other
tools). The method not only identifies DNA elements exhib-
iting changes of substitution rate in the lineages of interest
but also determines the branches, leading to either single or
multiple lineages, experiencing changes of substitution rate
(e.g., Sackton et al. 2019). We show here that PhyloAcc out-
performs existing methods in simulations across a wide range
of parameter space. Application to two biological data sets
(loss of flight in ratites and shifts to marine habitat in

mammals) revealed a number of noncoding elements accel-
erated independently on multiple phenotypically convergent
lineages, suggesting that molecular convergence in regulatory
regions may be commonly associated with phenotypic
convergence.

The idea of matching sequence divergence profiles of ei-
ther protein-coding genes or noncoding regions with re-
peated losses or gains of a given trait in multiple
independent lineages to gain insight into the molecular basis
of phenotype differences was first proposed as “Forward
Genomics” by Hiller et al. (2012). Since then, this approach
has been used in various groups of organisms, often yielding
important insights into genome evolution and links between
genotype and phenotype (Chikina et al. 2016; Prudent et al.
2016; Berger et al. 2018; Partha et al. 2017; Roscito et al. 2018).
Compared with previous methods testing a predefined evo-
lutionary history, our method can distinguish genomic ele-
ments with multiple independent accelerations within a
target lineage from a single strong acceleration across the
entire lineage. Our method also achieves a low false positive
rate by contrasting the marginal likelihoods of models either
allowing or prohibiting acceleration outside target species.
Moreover, by averaging over the parameter space in compet-
ing models, Bayes factors offer a method of identifying accel-
erated elements that is more robust than previous two-step
procedures and the likelihood ratio test implemented in
phyloP. Two-step procedures that first use point estimates
of branch-wise substitution rates and then test the correla-
tion between rates and phenotypic traits often ignore the
uncertainty in estimating branch-rates, which is quite uneven
across different branches. The likelihood ratio test between
constant rate and two-rate models is not appropriate in some
extreme cases, such as when only a few branches have many
substitutions.

The core utility of our software PhyloAcc is to detect
changes of substitution rate on a tree for many conserved
DNA elements, yielding the posterior distribution of substi-
tution rates per conservation state (i.e., r1 and r2) for each
element on each branch, from which the direction of rate
change can be inferred. In the current implementation, we
assume the same substitution rate for all accelerated
branches, although our model can be extended to allow for
different acceleration rates for each independently evolving
clade. By introducing additional latent states, this extension
can also allow for models distinguishing simple loss of con-
servation from acceleration due to natural selection or in-
creased mutation rate. In addition, via Dollo’s assumption of
irreversibility, our model allows at most two shifts for each
lineage on the phylogeny, which may not be efficient for
detecting elements that regain conservation after an ancient
episode of adaptation. To relax this assumption, we could
adjust the transition probability matrix of conservation states
(Z) to allow for a small probability of transition from accel-
erated to conserved state. However, in many scenarios, the
Dollo’s assumption is helpful, because the sequence data of
extant species often do not provide enough information to
distinguish consecutive substitution rate changes with oppo-
site directions from no change at all, as illustrated in the
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simulation section when comparing with BEAST2.
Additionally, the marginal likelihood is more difficult to com-
pute for more complex models. Without doubt, our model is
more specific in its goals than those implemented in more
general phylogenetic packages (Drummond et al. 2006;
Drummond and Suchard 2010; Heath et al. 2012; Ogilvie
et al. 2017). As currently implemented, it is efficiently tailored
to the one goal of detecting rate shifts in genome-wide non-
coding elements on a phylogenetic tree. Further extensions of
our framework would allow detection of rate shifts in protein-
coding regions, with advantages to distinguishing various
closely related scenarios similar to those as studied here.

Although our method accounts for variation in back-
ground substitution rates across the tree, the background
rate is likely not constant across different regions of the ge-
nome, a pattern that may impact our method and other
previous methods (Hodgkinson and Eyre-Walker 2011).
However, we suspect that genome-wide variation in the local
substitution rate is not a serious issue for our model, because
our model detects acceleration relative to the conserved sub-
stitution rate at each genomic locus. Though the rate of back-
ground substitution is constant across the genome in our
model, in our examples, only a few outgroup lineages are
typically in the background state, so the actual value of the
background rate has relatively little impact on the estimated
foreground rates. Nevertheless, the priors of substitution rate
should reflect genome-wide variation in this background rate.
For example, for a mutational cold-spot, both the conserved
and accelerated rates might be low relative to the genome-
wide average; if the prior for the accelerated rate is too high,
the accelerated state might not be detectable; whereas for a
mutational hot-spot, if the prior for the conserved rate is too
low, the conserved state might be identified as background or
accelerated. One way to tackle this genome-wide rate hetero-
geneity is to adjust the input background substitution rates
and branch lengths on the phylogenetic tree for different seg-
ments of the genome, though this may introduce a degree of
arbitrariness in the decision as to how to segment the genome.

Another major issue not addressed by our model is the
possible heterogeneity in the topologies of gene trees across
elements and across the genome. Heterogeneity in the topol-
ogy of gene trees is expected to occur, especially during rapid
radiations (Edwards 2009). Misspecifying the phylogenetic
tree can lead to misestimation of substitution rates on gene
trees (Angelis and dos Reis 2015; Hahn and Nakhleh 2016;
Mendes and Hahn 2016). Bayesian multispecies coalescent
models like *BEAST and starBEAST2 consider gene tree var-
iations and can give more accurate estimate of per-species
substitution rates (Heled and Drummond 2010; Ogilvie et al.
2017). It is possible to combine the multispecies coalescent
model with our framework to test the correlation between
rate shifts and phenotypes per genomic region accounting for
phylogenetic uncertainty due to gene tree error or incom-
plete lineage sorting. This can be done by summing the like-
lihood over all probable gene trees given a species tree under
the multispecies coalescent model, and then comparing the
marginal likelihood integrating out the uncertainty of gene
trees under different hypotheses.

Although in our examples we focus on loss of conservation
accompanied by faster substitution rates, we do not attempt
to distinguish among various processes—different types of
mutation, increased mutation rates or natural selection—
producing a specific pattern. GC-biased gene conversion
(gBGC) is one of the factors that can increase local substitu-
tion rates across the genome and is often a confounding
factor for the detection of adaptive evolution (Duret and
Galtier 2009; Kostka et al. 2012; Capra et al. 2013). Focusing
on the avian example, we observed that ratite-accelerated
elements have a higher GC content in ratites (supplementary
fig. S13, Supplementary Material online), which suggests a role
for gBGC in acceleration. Although the current version of
PhyloAcc focuses on detecting acceleration but not distin-
guishing between positive selection and other processes, to
demonstrate an approach for accounting for gBGC, we ex-
tended our method to jointly model gBGC and the effect of
natural selection on substitution rates, using the framework
that Kostka et al. (2012) applied to phyloP (supplementary
text, Supplementary Material online). We found that �30%
of ratite-accelerated elements also exhibited evidence for
gBGC in accelerated lineages. We also provide an extended
version of PhyloAcc online that can decouple the effect of
gBGC from that of selection.

Identifying functions of regulatory regions is still a chal-
lenging task. Linking patterns of sequence evolution from
diverse species with organism-level phenotypes has the po-
tential to shed light upon regulatory functions of conserved
noncoding regions. Such methodologies are still in their in-
fancy. For example, Marcovitz et al. (2016) used parsimony to
reconstruct traits and genome transitions and estimate their
correlations, but in doing so were unable to account for the
uncertainty of conservation pattern estimated from the se-
quencing data or the probability of a chance match between
sequence evolutionary history and phenotype. Our method
can be extended to provide the probability of a match be-
tween evolutionary profile of genetic elements with presence/
absent patterns of hundreds of traits to predict phenotype–
genotype pairs, an extension of the “Reverse Genomics” ap-
proach (Marcovitz et al. 2016). Additionally, our model could
be extended to study functionally related genomic regions
(e.g., using a Dirichlet process as prior for Z) based on similar
patterns in sequences to discover novel functional groups of
loci that may or may not influence known physiological and
morphological traits. For example, a recent method, “CLIME”
(Li et al. 2014, 2018), uses a Bayesian approach similar in spirit
to our model to cluster phylogenetic profiles of proteins to
identify functionally related proteins. Jointly modeling a
group of functionally related genomic regions in different
species will provide more comprehensive insight of the evo-
lutionary history and functional interaction of regulatory
regions (Marcovitz et al. 2017).

Materials and Methods

Data Sources for Bird and Mammal CNEEs
We obtained a whole-genome alignment of 42 species (birds
and nonavian reptiles) for ratite-accelerated region detection
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from Sackton et al. (2019; see this study for full details on data
collection). Conserved regions in the genome alignment were
called by PhastCons using the Phast package (Siepel et al.
2005). A total of 284,001 CNEEs were extracted as DNA
regions not overlapping any exons and at least 50 bp in
length. Sequence from the extinct moa was subsequently
added to CNEE alignments based on a pairwise moa–emu
whole-genome alignment (see Sackton et al. 2019 for details).
For the mammalian data set, we started with the UCSC 100-
way vertebrate alignment (Blanchette et al. 2004; http://
hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/;
last accessed March 15, 2019), removed all nonmammalian
sequences, and then extracted sequence for 383,185 CNEEs in
a fashion similar to that for birds (conserved regions identified
by PHAST, each at least 50 bp and not overlapping any
exons). The list of species is in supplementary material,
Supplementary Material online. We filtered out CNEEs with
poor alignment quality in 62 mammal species if the length of
alignment gaps was longer than 80% of the whole alignment
in more than 50 species, yielding 283,369 candidate CNEEs.
For both phylogenies, we obtained branch lengths, parame-
ters in the rate matrix of the nucleotide substitution model
(GTR, General Time Reversible) and equilibrium nucleotide
frequencies from phyloFit (Sackton et al. 2019 or UCSC, re-
spectively) using background, putatively neutral sequences
(in our case 4-fold degenerate sites; Siepel et al. 2005).

Simulating DNA Sequences
We simulated DNA sequences according to the joint model
of sequences and conservation states (eq. 2 in supplementary
text, Supplementary Material online) using the same phylo-
genetic tree and estimated rate matrix Q from sequence
alignments as in the avian or mammalian data set using an
in-house program. For the ratite simulation, we simulated 500
elements in cases 2–9 and 5,000 elements in case 1 with
length 200, 100, and 400 bp under different configurations
of Z. For the mammal simulation, we simulated 500 elements
(200 bp each) for each case. The conserved rate r1 was sam-
pled from Gammað5; 0:04Þ and the accelerated rate r2 was
sampled from Gammað15; 0:1Þ, which are about the range
of conserved and accelerated rates observed from real data
(supplementary figs. S5C and S12D, Supplementary Material
online).

Detecting Substitution Rate Shifts Using BEAST2
We used BEAST version 2.4 in our simulation. The control file
was generated by Beauti v2.4.7 with a fixed tree topology and
branch lengths, the parameters of the substitution model
taken at the true values, and no rate variation across sites
within an element (supplementary material, Supplementary
Material online). To get the substitution rate shift pattern, we
used the random clock model, which has a binary variable
indicating changes of rate and a clock rate for each branch.
The priors (Gamma distribution for clock rate and Poisson
distribution for shifts) and MCMC updates (total 106 itera-
tions and saved every 103 steps) are set as default. Finally, we
discarded first 20% of steps as burn-in and extracted the

posterior distribution of the indicator variable from the
MCMC log file.

Detecting Substitution Rate Shifts Using PhyloP
To compare the performance of different methods for select-
ing elements with specific acceleration patterns, we used the
phyloP program from PHAST v1.3 with the options –features
(bed file) –method LRT –mode ACC –branch (target species)
in our simulations, which used the likelihood ratio test to
detect acceleration in all ratites or marine mammals. For
simulations on the mammalian phylogeny, we only specified
the tip branches of marine mammals as accelerated, whereas
for the ratite analysis we specified both tip branches and the
clade containing all ratites, which requires the minimum
number of accelerations (see supplementary text,
Supplementary Material online).

Detecting Substitution Rate Shifts Using PAML
We first estimated the branch lengths for each element using
the baseml program in PAML (version 4.8). We used “no
molecular clock model” option, GTR (REV) nucleotide sub-
stitution model, and homogenous rate across sites within a
region (by setting alpha¼ 0), which are the same settings as
our simulations. For details, see the control file in the supple-
mentary material, Supplementary Material online. Then, we
did a nonparametric test (Wilcoxon rank sum test) and phy-
logenetic ANOVA (using phylANOVA function in the R pack-
age phytools; Revell 2012), comparing the substitution rates
in ratites with other species. We obtained the P-values or test
statistics from both tests in each simulated case.

Function Prediction of CNEEs Using GREAT
To predict the regulatory functions of CNEEs in the mamma-
lian data set, we first extracted the genomic coordinates of
CNEEs using the human (hg19) genome as reference. To as-
sociate CNEEs with nearby genes, we used the “Basal plus
extension” (up to 500 kb) option in GREAT. Then, we com-
pared genes associated with marine- or control-accelerated
CNEEs to genes near all CNEEs (background) and searched for
any functional enrichment in GO biological processes and
mammalian phenotypes from the Mouse Gene Ontology
Project (http://www.informatics.jax.org/mgihome/GO/proj-
ect.shtml; accessed March 16, 2019). We only retained anno-
tation terms that contained more than five genes in total,
including at least two genes associated with accelerated
CNEEs and at least 1.5-fold enrichment of tested CNEEs
over all CNEEs.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Elk CE, Hunter ME, Joshi V, et al. 2015. Convergent evolution of the
genomes of marine mammals. Nat Genet. 47(3): 272–275.

Gould SJ. 1970. Dollo on Dollo’s law: irreversibility and the status of
evolutionary laws. J Hist Biol. 3(2): 189–212.

Hahn MW, Nakhleh L. 2016. Irrational exuberance for resolved species
trees. Evolution 70(1): 7–17.

Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, Chojnowski
JL, Hackett SJ, Han K-L, Kimball RT, Marks BD, et al. 2008.

Phylogenomic evidence for multiple losses of flight in ratite birds.
Proc Natl Acad Sci U S A. 105(36): 13462–13467.

Heath TA, Holder MT, Huelsenbeck JP. 2012. A Dirichlet process prior for
estimating lineage-specific substitution rates. Mol Biol Evol. 29(3):
939–955.

Heled J, Drummond AJ. 2010. Bayesian inference of species trees from
multilocus data. Mol Biol Evol. 27(3): 570–580.

Hiller M, Schaar BT, Indjeian VB, Kingsley DM, Hagey LR, Bejerano G.
2012. A “forward genomics” approach links genotype to phenotype
using independent phenotypic losses among related species. Cell
Rep. 2(4): 817–823.

Hodgkinson A, Eyre-Walker A. 2011. Variation in the mutation rate
across mammalian genomes. Nat Rev Genet. 12(11): 756–766.

Holloway AK, Bruneau BG, Sukonnik T, Rubenstein JL, Pollard KS. 2016.
Accelerated evolution of enhancer hotspots in the mammal ances-
tor. Mol Biol Evol. 33(4): 1008–1018.

Hubisz MJ, Pollard KS, Siepel A. 2011. PHAST and RHAST: phylogenetic
analysis with space/time models. Brief Bioinform. 12(1): 41–51.

Huelsenbeck JP, Crandall KA. 1997. Phylogeny estimation and hypothesis
testing using maximum likelihood. Annu Rev Ecol Syst. 28(1):
437–466.

Huelsenbeck JP, Rannala B. 1997. Phylogenetic methods come of age:
testing hypotheses in an evolutionary context. Science 276(5310):
227–232.

Ikegami K, Mukai M, Tsuchida JI, Heier RL, MacGregor GR, Setou M.
2006. TTLL7 is a mammalian b-tubulin polyglutamylase required for
growth of MAP2-positive neurites. J Biol Chem. 281(41):
30707–30716.

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC,
Nabholz B, Howard JT, et al. 2014. Whole-genome analyses resolve
early branches in the tree of life of modern birds. Science 346(6215):
1320–1331.

Kass RE, Raftery AE. 1995. Bayes factors. J Am Stat Assoc. 90(430):
773–795.

Kishida T, Kubota S, Shirayama Y, Fukami H. 2007. The olfactory receptor
gene repertoires in secondary-adapted marine vertebrates: evidence
for reduction of the functional proportions in cetaceans. Biol Lett.
3(4): 428–430.

Kostka D, Holloway AK, Pollard KS. 2018. Developmental loci harbor
clusters of accelerated regions that evolved independently in ape
lineages. Mol Biol Evol. 35(8): 2034–2045.

Kostka D, Hubisz MJ, Siepel A, Pollard KS. 2012. The role of GC-biased
gene conversion in shaping the fastest evolving regions of the hu-
man genome. Mol Biol Evol. 29(3): 1047–1057.

Lartillot N, Poujol R. 2011. A phylogenetic model for investigating cor-
related evolution of substitution rates and continuous phenotypic
characters. Mol Biol Evol. 28(1): 729–744.

Laub F, Lei L, Sumiyoshi H, Kajimura D, Dragomir C, Smaldone S, Puche
AC, Petros TJ, Mason C, Parada LF, et al. 2005. Transcription factor
KLF7 is important for neuronal morphogenesis in selected regions of
the nervous system. Mol Cell Biol. 25(13): 5699–5711.

Levy Karin E, Wicke S, Pupko T, Mayrose I. 2017. An integrated model of
phenotypic trait changes and site-specific sequence evolution. Syst
Biol. 66(6): 917–933.

Li Y, Calvo SE, Gutman R, Liu JS, Mootha VK. 2014. Expansion of bio-
logical pathways based on evolutionary inference. Cell 158(1):
213–225.

Li Y, Ning S, Calvo SE, Mootha VK, Liu JS. Forthcoming 2018. Bayesian
hidden Markov tree models for clustering genes with shared evolu-
tionary history. Ann Appl Stat. arXiv:1808.06109v1

Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S,
Kheradpour P, Ernst J, Jordan G, Mauceli E, et al. 2011. A
high-resolution map of human evolutionary constraint using 29
mammals. Nature 478(7370): 476–482.

Liu JS. 1994. The collapsed Gibbs sampler in Bayesian computations with
applications to a gene regulation problem. J Am Stat Assoc. 89(427):
958–966.

Liu JS. 2001. Monte Carlo strategies in scientific computing, New York:
Springer-Verlag.

Bayesian Detection of Convergent Rate Changes . doi:10.1093/molbev/msz049 MBE

1099



Marcovitz A, Jia R, Bejerano G. 2016. “Reverse genomics” predicts func-
tion of human conserved noncoding elements. Mol Biol Evol. 33(5):
1358–1369.

Marcovitz A, Turakhia Y, Gloudemans M, Braun BA, Chen HI, Bejerano
G. 2017. A novel unbiased test for molecular convergent evolution
and discoveries in echolocating, aquatic and high-altitude mammals.
bioRxiv; doi: https://doi.org/10.1101/170985; last accessed March 15,
2019.

Martinelli DC, Fan CM. 2007. Gas1 extends the range of Hedgehog action
by facilitating its signaling. Genes Dev. 21(10): 1231–1243.

Martynoga B, Morrison H, Price DJ, Mason JO. 2005. Foxg1 is required for
specification of ventral telencephalon and region-specific regulation
of dorsal telencephalic precursor proliferation and apoptosis. Dev
Biol. 283(1): 113–127.

Mayrose I, Otto SP. 2011. A likelihood method for detecting trait-
dependent shifts in the rate of molecular evolution. Mol Biol Evol.
28(1): 759–770.

McGowen MR, Gatesy J, Wildman DE. 2014. Molecular evolution tracks
macroevolutionary transitions in Cetacea. Trends Ecol Evol. 29(6):
336–346.

McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger
AM, Bejerano G. 2010. GREAT improves functional interpretation of
cis-regulatory regions. Nat Biotechnol. 28(5): 495–501.

McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C,
Indjeian VB, Lim X, Menke DB, Schaar BT, et al. 2011. Human-specific
loss of regulatory DNA and the evolution of human-specific traits.
Nature 471(7337): 216–219.

Mendes FK, Hahn MW. 2016. Gene tree discordance causes apparent
substitution rate variation. Syst Biol. 65(4): 711–721.

Meredith RW, Zhang G, Gilbert MTP, Jarvis ED, Springer MS. 2014.
Evidence for a single loss of mineralized teeth in the common avian
ancestor. Science 346(6215): 1254390.

Mitchell KJ, Llamas B, Soubrier J, Rawlence NJ, Worthy TH, Wood J, Lee
MSY, Cooper A. 2014. Ancient DNA reveals elephant birds and kiwi
are sister taxa and clarifies ratite bird evolution. Science 344(6186):
898–900.

Muntan�e G, Farre X, Rodriguez JA, Pegueroles C, Hughes DA, De
Magalhaes JP, Gabaldon T, Navarro A. 2018. Biological processes
modulating longevity across primates: a phylogenetic genome-
phenome analysis. Mol Biol Evol. 35(8): 1990–2004.

Murphy WJ, Pevzner PA, O’Brien SJ. 2004. Mammalian phylogenomics
comes of age. Trends Genet. 20(12): 631–639.

Ogilvie HA, Bouckaert RR, Drummond AJ. 2017. StarBEAST2 brings faster
species tree inference and accurate estimates of substitution rates.
Mol Biol Evol. 34(8): 2101–2114.

Orr HA. 2005. The probability of parallel evolution. Evolution 59(1):
216–220.

Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter
SJ. 2013. Genome-wide signatures of convergent evolution in echo-
locating mammals. Nature 502(7470): 228–231.

Partha R, Chauhan BK, Ferreira Z, Robinson JD, Lathrop K, Nischal KK,
Chikina M, Clark NL. 2017. Subterranean mammals show conver-
gent regression in ocular genes and enhancers, along with adapta-
tion to tunneling. Elife 6:e25884.

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of
nonneutral substitution rates on mammalian phylogenies.
Genome Res. 20(1): 110–121.

Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, Siepel A,
Pedersen JS, Bejerano G, Baertsch R, et al. 2006. Forces shaping the
fastest evolving regions in the human genome. PLoS Genet. 2(10):
e168.

Prudent X, Parra G, Schwede P, Roscito JG, Hiller M. 2016. Controlling for
phylogenetic relatedness and evolutionary rates improves the dis-
covery of associations between species’ phenotypic and genomic
differences. Mol Biol Evol. 33(8): 2135–2150.

Rannala B, Yang Z. 2007. Inferring speciation tunes under an episodic
molecular clock. Syst Biol. 56(3): 453–466.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative
biology (and other things). Methods Ecol Evol. 3(2): 217–223.

Roberts GO, Rosenthal JS. 2009. Examples of adaptive MCMC. J Comput
Graph Stat. 18(2): 349–367.

Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C,
Bickle M, Rodrigues MT, Hiller M. 2018. Phenotype loss is associated
with widespread divergence of the gene regulatory landscape in
evolution. Nat Commun. 9: 4737 doi:10.1038/s41467-018-07122-z.

Rosenblum EB, Parent CE, Brandt EE. 2014. The molecular basis of phe-
notypic convergence. Annu Rev Ecol Evol Syst. 45(1): 203–226.

Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP,
Clarke JA, Baker AJ, Clamp M, et al. Forthcoming 2019. Convergent
regulatory evolution and loss of flight in palaeognathous birds.
Science.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier LDW, Richards S, et al. 2005.
Evolutionarily conserved elements in vertebrate, insect, worm, and
yeast genomes. Genome Res. 15(8): 1034–1050.

Siepel A, Haussler D. 2004. Phylogenetic estimation of context-
dependent substitution rates by maximum likelihood. Mol Biol
Evol. 21(3): 468–488.

Stern DL. 2013. The genetic causes of convergent evolution. Nat Rev
Genet. 14(11): 751–764.

Storz JF. 2016. Causes of molecular convergence and parallelism in pro-
tein evolution. Nat Rev Genet. 17(4): 239–250.

Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF,
Long AD, Gaut BS. 2012. The molecular diversity of adaptive con-
vergence. Science 335(6067): 457–461.

Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of
the rate of molecular evolution. Mol Biol Evol. 15(12): 1647–1657.

Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J,
Dandona N, Viswanathan LD, Tay A, Venter JC, et al. 2006.
Ancient noncoding elements conserved in the human genome.
Science 314(5807): 1892.

Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T,
Smith SF, North P, Callaway H, Kelly K, et al. 2005. Highly conserved
non-coding sequences are associated with vertebrate development.
PLoS Biol. 3(1): e7.

Wray GA. 2013. Genomics and the evolution of phenotypic traits. Annu
Rev Ecol Evol Syst. 44(1): 51–72.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 24(8): 1586–1591.

Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, Endo H, Akiyoshi
A, Kohno N, Nishida S, Wu J, et al. 2017. Phylogenomics and mor-
phology of extinct paleognaths reveal the origin and evolution of the
ratites. Curr Biol. 27(1): 68–77.

Hu et al. . doi:10.1093/molbev/msz049 MBE

1100


