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Abstract

The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S)
system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is
secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously identified as a
T3S control protein. Since HpaC promotes secretion of translocon and effector proteins but inhibits secretion of HrpB2,
HpaC presumably acts as a T3S substrate specificity switch protein. Protein–protein interaction studies revealed that HpaC
interacts with HrpB2 and the C-terminal domain of HrcU, a conserved inner membrane component of the T3S system.
However, no interaction was observed between HpaC and the full-length HrcU protein. Analysis of HpaC deletion
derivatives revealed that the binding site for the C-terminal domain of HrcU is essential for HpaC function. This suggests
that HpaC binding to the HrcU C terminus is key for the control of T3S. The C terminus of HrcU also provides a binding site
for HrpB2; however, no interaction was observed with other T3S substrates including pilus, translocon and effector proteins.
This is in contrast to HrcU homologs from animal pathogenic bacteria suggesting evolution of distinct mechanisms in plant
and animal pathogenic bacteria for T3S substrate recognition.
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Introduction

Many Gram-negative bacterial pathogens of plants and animals

depend on a type III secretion (T3S) system to successfully infect

their hosts [1]. The term ‘‘T3S system’’ refers to both

translocation-associated and flagellar T3S systems that evolved

from a common ancestor [2]. Eleven components of the

membrane-spanning basal body are conserved, suggesting a

similar overall architecture of the secretion apparatus [1,3]. Main

structural differences are found in the extracellular appendages

associated with the basal body. The flagellar T3S apparatus is

connected via an extracellular hook to the filament, the key

bacterial motility organelle [4]. By contrast, the basal body of

translocation-associated T3S systems is associated with an

extracellular pilus (plant pathogens) or needle (animal pathogens),

which serve as conduits for secreted proteins to the host-pathogen

interface [1,5]. Pilus and needle are proposed to be linked to the

T3S translocon, a channel-like protein complex that is inserted

into the eukaryotic plasma membrane and allows protein

translocation into the host cell cytosol [6,7].

Translocation-associated T3S systems secrete two types of

proteins, i.e., extracellular components of the secretion apparatus

such as needle/pilus and translocon proteins, and effectors that are

translocated into the host cell [3]. Efficient secretion and/or

translocation of T3S substrates depends on a signal in the N

terminus, which is not conserved on the amino acid level [1,8,9].

In many cases, specific T3S chaperones bind to one or several

homologous T3S substrates in the bacterial cytoplasm and

promote stability and/or secretion of their respective binding

partners. T3S chaperones are small, acidic and leucine-rich

proteins that presumably guide secreted proteins to the secretion

apparatus at the inner membrane [1,10,11].

Given the architecture of the T3S system, it is conceivable that

secretion of extracellular components of the secretion apparatus

precedes effector protein translocation. In translocation-associated

and flagellar T3S systems from animal pathogenic bacteria,

experimental evidence suggests that substrate specificity is altered

by so-called T3S substrate specificity switch (T3S4) proteins, e.g.,

YscP from Yersinia spp. and the flagellar homolog FliK [12–14].

The substrate specificity switch depends on the C-terminal

cytoplasmic domain of a conserved inner membrane protein of

the FlhB/YscU family [12,13]. T3S4 proteins are not highly

conserved among different pathogens and have so far only been

identified in animal pathogenic bacteria [14,15]. It therefore

remained enigmatic whether plant pathogenic bacteria employ

similar mechanisms to orchestrate secretion of different T3S

substrates.

In our laboratory, we study T3S of the plant pathogenic

bacterium Xanthomonas campestris pv. vesicatoria, the causal agent of

bacterial spot disease in pepper and tomato. The T3S system of X.

campestris pv. vesicatoria is essential for bacterial growth and disease

symptom formation in susceptible host plants and the induction of

the hypersensitive response (HR) in resistant plants. The HR is a

rapid programmed cell death at the infection site that is triggered
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upon recognition of individual effector proteins, also termed

avirulence (Avr) proteins, in plants that carry a cognate disease

resistance gene [16,17]. In susceptible plants, effector proteins

presumably modulate host cellular pathways to the pathogen’s

benefit and thus primarily act as virulence factors [18,19].

The T3S system from X. campestris pv. vesicatoria is encoded by

the 23-kb chromosomal hrp (hypersensitive response and pathoge-

nicity) gene cluster, which is organized in eight operons and

contains 25 genes [20–23]. Eleven genes (termed hrc for hrp

conserved) encode proteins that are conserved among plant and

animal pathogenic bacteria [24]. Most hrp genes are essential for

bacterial pathogenicity [25]. Several Hrp proteins are secreted and

thus constitute extracellular components of the T3S system such as

the pilus protein HrpE and the translocon protein HrpF [25–27].

T3S of extracellular components of the secretion apparatus and

effector proteins is presumably controlled by the products of hpa

(hrp-associated) genes that are encoded in the hrp gene cluster and

contribute to pathogenicity [28–31]. Examples are the export

control protein HpaC, which is required for the efficient secretion

of translocon and some effector proteins, and the global T3S

chaperone HpaB, which promotes secretion and translocation of

multiple effector proteins [30,31].

In this study, we analyzed HrpB2, which is an essential

pathogenicity factor of X. campestris pv. vesicatoria. HrpB2 is a 13.7-

kDa protein that is encoded by the second gene of the hrpB operon

and is secreted by the T3S system [25,32]. Homologous proteins

are present in Xanthomonas spp., Burkholderia spp. and Ralstonia

solanacearum, suggesting that HrpB2 also plays an important role in

other pathogens. In X. campestris pv. vesicatoria, HrpB2 is essential

for pilus formation and T3S and is therefore presumably one of

the first proteins that travel the T3S apparatus [25,26]. However,

the mode of HrpB2 action is unknown because HrpB2 does not

share significant sequence or structural similarity with a protein of

known function. Here, we provide experimental evidence that

secretion of HrpB2 is required for bacterial pathogenicity.

Secretion of HrpB2 is significantly enhanced in the absence of

the export control protein HpaC. Protein-protein interaction

studies showed that HrpB2 binds to HpaC and to the C-terminal

domain of the conserved inner membrane protein HrcU, which

also interacts with HpaC. Our data suggest that the interaction

between HpaC and the C-terminal domain of HrcU promotes a

switch in substrate specificity of the T3S system from HrpB2

secretion to secretion of translocon and effector proteins.

Results

HrpB2 is essential for bacterial pathogenicity and T3S
Previously, we identified HrpB2 as a T3S substrate of X.

campestris pv. vesicatoria strain 85-10 [25]. Infection studies with

hrpB2 deletion mutant strains revealed that HrpB2 is crucial for

disease symptoms in susceptible and the HR induction in resistant

pepper plants [25]. Similar results were obtained with strains 85*

and 85*DhrpB2, which carry hrpG*, a mutated version of the key

regulatory gene hrpG in the bacterial chromosome (Fig 1A). hrpG*

leads to constitutive expression of the T3S system and is key for the

analysis of in vitro T3S [33]. It is noteworthy that in planta growth of

hrpG* strains is like wild-type [34]. The hrpB2 mutant phenotype

could be complemented by ectopic expression of hrpB2, suggesting

that loss of pathogenicity was specifically due to the deletion of

hrpB2 and did not result from a polar effect of the mutation on

expression of other genes in the hrpB operon (Fig. 1A).
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Figure 1. HrpB2 is essential for pathogenicity and T3S. (A) HrpB2
is crucial for disease symptom formation and HR induction. X.
campestris pv. vesicatoria strains 85* (wt) and 85*DhrpB2 (DhrpB2)
carrying the empty vector (-) or synthesizing HrpB2 and HrpB2D10–25 as
indicated were inoculated into susceptible ECW and resistant ECW-10R
pepper plants. Dashed lines indicate the infiltrated areas. Disease
symptoms and the HR were photographed five days after infiltration. (B)
In vitro secretion of translocon and pilus proteins is abolished in the
hrpB2 deletion mutant. Strains 85* (wt) and 85*DhrpB2 (DhrpB2) were
incubated in secretion medium and total cell extracts (TE) and culture
supernatants (SN) were analyzed by immunoblotting, using antibodies
specific for HrpF, XopA and AvrBs3, respectively. HrpE1–50-AvrBs3D2
was expressed from an ectopic plasmid under control of the native hrpE
promoter.
doi:10.1371/journal.ppat.1000094.g001

Author Summary

The Gram-negative plant pathogenic bacterium Xantho-
monas campestris pv. vesicatoria is the causal agent of
bacterial spot disease in pepper and tomato. Pathogenicity
of X. campestris pv. vesicatoria depends on a type III
protein secretion (T3S) system that injects bacterial
effector proteins directly into the host cell cytosol. The
T3S system is a highly complex nanomachine that spans
both bacterial membranes and is associated with an
extracellular pilus and a translocon that inserts into the
host cell membrane. Given the architecture of the
secretion apparatus, it is conceivable that pilus formation
precedes effector protein secretion. The pilus presumably
consists of two components, i.e., the major pilus subunit
HrpE and HrpB2, which is required for pilus assembly.
Secretion of HrpB2 is suppressed by HpaC that switches
substrate specificity of the T3S system from secretion of
HrpB2 to secretion of translocon and effector proteins. The
substrate specificity switch depends on the cytoplasmic
domain of HrcU, which is a conserved inner membrane
protein of the T3S apparatus that interacts with HrpB2 and
HpaC.

Control of HrpB2 Secretion
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The fact that secretion of the effector protein AvrBs3 is

abolished in hrpB2 deletion mutants suggested that HrpB2 is

involved in T3S [25]. To investigate the contribution of HrpB2 to

secretion of additional T3S substrates, strains 85* and 85*DhrpB2

were incubated in secretion medium, and total cell extracts and

culture supernatants were analyzed by immunoblotting using

specific polyclonal antibodies. We tested secretion of the putative

translocon proteins HrpF and XopA, and the pilus protein HrpE.

For technical reasons, HrpE was studied as a fusion protein

consisting of the N-terminal 50 amino acids of HrpE and the

reporter protein AvrBs3D2, which is a derivative of AvrBs3.

AvrBs3D2 lacks the first 152 amino acids and thus the secretion

and translocation signal [35]. It was previously demonstrated that

the N-terminal 50 amino acids of HrpE restore secretion but not

translocation of AvrBs3D2, indicating that they contain a

functional T3S signal [36]. Fig. 1B shows that HrpF, XopA and

HrpE1–50-AvrBs3D2 were present in the culture supernatant of the

wild-type strain but were not detectable in the supernatant of the

hrpB2 deletion mutant, suggesting that HrpB2 is essential for

secretion of these proteins.

Secretion of HrpB2 is inhibited by HpaC
Since HrpB2 is secreted and is also required for T3S, it is

presumably one of the first substrates that travel the T3S apparatus

[25]. Notably, the amount of HrpB2 present in the culture

supernatant of strain 85* is at the detection limit of the HrpB2-

specific antibody [25]. Similar results were observed for a C-

terminally c-Myc epitope-tagged version of HrpB2, suggesting that

HrpB2 is only weakly secreted by the T3S system (Fig. 2A). To

investigate whether HrpB2 secretion is regulated by the known

export control proteins HpaB and HpaC, we performed in vitro T3S

assays with strains 85*, the hpaB deletion mutant 85*DhpaB and the

hpaC deletion mutant 85*DhpaC. We did not detect any influence of

the global T3S chaperone HpaB on secretion of HrpB2.

Interestingly, however, significantly increased amounts of HrpB2

were secreted by strain 85*DhpaC (Fig. 2). This was not due to a

general increase of T3S in strain 85*DhpaC since secretion of the

translocon protein HrpF was reduced when compared to the wild-

type strain 85* (Fig. 2A and C). This is in agreement with the

previous finding that HpaC is required for the efficient secretion of

translocon and some effector proteins [31]. Oversecretion of HrpB2

in strain 85*DhpaC was specifically due to deletion of hpaC since the

secretion phenotype was complemented by ectopic expression of

hpaC-c-myc (Fig. 2B). We did not detect HrpB2 in the culture

supernatant of the T3S double mutant 85*DhpaCDhrpE, which

additionally lacks the Hrp pilus gene hrpE (Fig. 2C). We therefore

conclude that increased HrpB2 secretion in strain 85*DhpaC was

mediated by the translocation-associated T3S system.

The N terminus of HrpB2 is crucial for protein function
Next, we investigated whether secretion of HrpB2 is crucial for

protein function. For this, we analyzed N-terminal HrpB2 deletion

derivatives. Surprisingly, deletion of the N-terminal 10 amino

acids of HrpB2 did not abolish its secretion in wild-type and hpaC

deletion mutant strains (data not shown). By contrast, secretion of

a HrpB2 deletion derivative lacking amino acids 10 to 25 was

severely reduced in strain 85*DhpaC, suggesting that amino acids

10 to 25 harbour at least part of the secretion signal (Fig. 2D).

Notably, HrpB2D10–25 did not complement the hrpB2 mutant

phenotype with respect to disease symptom formation in

susceptible and HR induction in resistant pepper plants (Fig. 1A).

This was not due to the presence of the C-terminal c-Myc epitope

since complementation studies were performed with untagged

HrpB2 and derivatives. Immunoblot analysis of bacterial total cell

extracts revealed that HrpB2D10–25 was stably synthesized in strain

85*DhrpB2 (Fig. 2D). We therefore conclude that amino acids 10

to 25 are crucial for efficient secretion of HrpB2 and that HrpB2

secretion is presumably required for protein function.

HrpB2 interacts with HpaC
To investigate whether oversecretion of HrpB2 in the hpaC

deletion mutant was due to increased hrpB2 transcript levels, we

performed reverse transcriptase (RT)-PCR analysis of strains 85*

and 85*DhpaC grown under secretion-permissive conditions.

Fig. 3A shows that hrpB2 transcript levels were comparable in

both strains, suggesting that deletion of hpaC did not affect the

transcriptional regulation of hrpB2.

We therefore studied whether there is an interaction between

HrpB2 and HpaC proteins using glutathione S-transferase (GST)

pull-down assays. For this, GST and a GST-HpaC fusion protein

were synthesized in Escherichia coli, immobilized on glutathione

sepharose matrix and incubated with an E. coli lysate containing

HrpB2-c-Myc. Bound proteins were eluted from the matrix and

analyzed by immunoblotting using c-Myc epitope- and GST-

specific antibodies. HrpB2-c-Myc specifically eluted with GST-

HpaC but not with GST alone, indicating that HrpB2 interacts

with HpaC (Fig. 3B). Similar results were obtained with an N-

terminal HrpB2 deletion derivative that lacks the first 26 amino

acids and thus at least part of the T3S signal (Fig. 3B; see above).

The interaction between HpaC and HrpB2 is reminiscent of our

previous finding that HpaC binds to different T3S substrates

including translocon and effector proteins [31]. We did not

observe an interaction between HrpB2 and the global T3S

chaperone HpaB (Fig. 3C), which is in line with the fact that HpaB

does not control HrpB2 secretion (see above).

HrpB2 binds to the C-terminal domain of HrcU that is
proteolytically cleaved

In animal pathogenic bacteria T3S substrate recognition is

mediated by members of the conserved FlhB/YscU family of inner

membrane proteins [37–39]. YscU, FlhB and their homologs

contain four predicted transmembrane domains and a C-terminal

cytoplasmic protein region that is cleaved between the asparagine

and proline residues of the conserved NPTH motif [39–43]. To

investigate a possible cleavage of the YscU/FlhB homolog HrcU

from X. campestris pv. vesicatoria, we synthesized a C-terminally c-

Myc epitope-tagged HrcU derivative in both E. coli and X.

campestris pv. vesicatoria and analyzed protein extracts by immuno-

blotting using a c-Myc-specific antibody. We detected two proteins

of approximately 50 kDa and 20 kDa in E. coli and X. campestris pv.

vesicatoria extracts irrespective of the growth medium (Fig. 4A).

Both proteins presumably correspond to full-length HrcU

(39 kDa+5 kDa epitope tag) and the predicted C-terminal

cleavage product (10 kDa+5 kDa epitope tag). The HrcU proteins

migrate slower than predicted, which was previously also reported

for other T3S system-associated proteins from X. campestris pv.

vesicatoria [27,29].

Because yeast two-hybrid-based interaction studies of proteins

from Xanthomonas axonopodis pv. citri suggested an interaction

between HrpB2 and the C-terminal domain of HrcU [44], we

performed GST pull-down assays with HrpB2 and HrcU from X.

campestris pv. vesicatoria. For this, we generated expression

constructs encoding GST-HrcU, GST-HrcU-c-Myc and GST-

HrcU255–357, the latter of corresponds to the C-terminal

cytoplasmic domain of HrcU. To test for proteolytic cleavage,

GST-HrcU and GST-HrcU-c-Myc were analyzed by immuno-

blotting of E. coli protein extracts, using GST- and c-Myc-specific

antibodies. Both proteins and several degradation products were

Control of HrpB2 Secretion
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visualized by a GST-specific antibody (Fig. 4B). Furthermore,

GST-HrcU-c-Myc and a smaller protein of approximately 20 kDa

were also detected by a c-Myc specific antibody. The smaller

protein presumably corresponds to the C-terminal cleavage

product of HrcU (see Fig. 4A), indicating that GST-HrcU fusions

are proteolytically cleaved (Fig. 4B).

For protein-protein interaction studies, GST-HrcU and GST-

HrcU255–357 (HrcU C-terminal domain), immobilized on gluta-

thione sepharose, were incubated with HrpB2-c-Myc. HrpB2-c-

Myc eluted with GST-HrcU and GST-HrcU255–357, but not with

GST alone, suggesting that HrpB2 interacts with the C-terminal

domain of HrcU (Fig. 5A and B).
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Figure 2. Secretion of HrpB2 is suppressed by HpaC. (A) Secretion of HrpB2-c-Myc is enhanced in hpaC deletion mutant strains. Strains 85* (wt)
and 85*DhpaC (DhpaC) both synthesizing HrpB2-c-Myc were incubated in secretion medium. Total cell extracts (TE) and culture supernatants (SN)
were analyzed by immunoblotting, using antibodies specific for the c-Myc epitope and HrpF, respectively. The blot was overexposed to visualize
HrpB2-c-Myc in the culture supernatant of strain 85*. As expected, secretion of HrpF was reduced in the hpaC deletion mutant [31]. (B) The native
HrpB2 protein is strongly secreted by strain 85*DhpaC. In vitro secretion assay with X. campestris pv. vesicatoria strains 85* (wt), 85*DhpaC (DhpaC)
and 85*DhpaC expressing hpaC-c-myc from plasmid pDMhpaC as indicated. TE and SN were analyzed by immunoblotting, using HrpB2- and c-Myc-
specific antibodies. (C) Secretion of HrpB2 is dependent on the T3S system. Strains 85* (wt), 85*DhrpB2 (DhrpB2), 85*DhpaC (DhpaC) and
85*DhpaCDhrpE (DhpaCDhrpE) were incubated in secretion medium. TE and SN were analyzed by SDS-PAGE and immunoblotting, using HrpB2- and
HrpF-specific antibodies. (D) The T3S signal of HrpB2 is located between amino acids 10 and 25. Strains 85* (wt) and 85*DhpaC (D) carrying
expression constructs encoding HrpB2-c-Myc and HrpB2D10–25-c-Myc as indicated were incubated in secretion medium. TE and SN were analyzed by
SDS-PAGE and immunoblotting, using c-Myc epitope- and HrpF-specific antibodies, respectively.
doi:10.1371/journal.ppat.1000094.g002
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HpaC interacts with the C-terminal domain of HrcU but
not with the full-length protein

HrcU homologs from animal pathogenic bacteria are involved in

the T3S substrate specificity switch [37,39]. We therefore tested a

possible interaction between HrcU and HpaC, which presumably

acts as a T3S4 protein (see also below). When GST-HrcU was

immobilized on glutathione sepharose and incubated with HpaC-c-

Myc, we did not detect HpaC-c-Myc in the eluate (Fig. 5C). By

contrast, HpaC-c-Myc coeluted with GST-HrcU255–357, suggesting

that it interacts with the C-terminal domain of HrcU but not with the

full-length protein (Fig. 5D). Since GST-HrcU is proteolytically

cleaved (see Fig. 4B), we assume that the protein is correctly folded.

Our data therefore suggest that the interaction between HpaC and

HrcU depends on a certain conformation of the HrcU C terminus

that is altered in the context of the full-length protein.

The C-terminal domain of HrcU does not interact with
HrpE, XopA and XopF1

Next, we investigated whether the C-terminal domain of HrcU

also interacts with other secreted proteins, e.g., the putative

translocon protein XopA, the pilus protein HrpE and the effector

protein XopF1. For this, GST, GST-HpaC, GST-XopA and GST-

HrpE were immobilized on glutathione sepharose and incubated

with HrcU-c-Myc. Fig. 6A shows that the C-terminal cleavage

product of HrcU (see above) was detected in the eluate of GST-

HpaC but not of GST-XopA or GST-HrpE. This suggests that the

C-terminal domain of HrcU interacts with HpaC but not with HrpE

and XopA. We did not detect full-length HrcU-c-Myc in the eluate

of GST-HpaC (Fig. 6A), which confirms our previous observation

that HpaC specifically interacts with the C-terminal domain of

HrcU but not with the full-length protein (see Fig. 5C and D).
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To investigate a possible interaction between HrcU and the

effector protein XopF1, we expressed XopF1 as a C-terminally c-

Myc epitope-tagged derivative because a GST-XopF1 fusion protein

was unstable in E. coli. XopF1-c-Myc was incubated with GST-

HrcU, GST-HrcU255–357 and GST-HpaB, which was used as a

positive control for the interaction assay. GST-HpaB was previously

shown to interact with XopF1 [31]. As expected, XopF1-c-Myc was

detected in the eluate of GST-HpaB but did not coelute with GST-

HrcU and GST-HrcU255–357 (Fig. 6B). Taken together, our results

suggest that the C-terminal domain of HrcU does not interact with

the T3S substrates XopA, HrpE and XopF1. This is in contrast to

the C-terminal region of the flagellar HrcU homolog FlhB, which

interacts with several secreted proteins and is therefore presumably

involved in substrate recognition [38].

HpaC contains a putative T3S4 domain that is crucial for
the interaction with the C-terminal domain of HrcU

The finding that HpaC is involved in control of T3S substrate

specificity and interacts with the C-terminal domain of HrcU

suggests that it acts similarly to T3S4 proteins that were identified

in translocation-associated and flagellar T3S systems from animal

pathogenic bacteria. Despite limited sequence conservation,

known T3S4 proteins harbour a structurally conserved T3S4

domain in the C terminus, which is responsible for the substrate

specificity switch [15,45]. PSI-BLAST searches and hydrophobic

cluster analysis showed that the T3S4 domain is not only present

in proteins from animal pathogenic bacteria but also shares weak

sequence similarity with the C terminus of HpaP from Ralstonia

solanacearum [15]. HpaP is 27% sequence-identical to HpaC. A

pairwise sequence alignment of HpaP and HpaC revealed that

most conserved amino acids in the predicted T3S4 domain of

HpaP are also present in HpaC or are substituted by amino acids

with similar chemical properties (Fig. S1).

To investigate whether the predicted T3S4 domain of HpaC

participates in the interaction with the C terminus of HrcU, we

performed GST pull-down assays with C-terminal HpaC deletion

derivatives, which are shown in Fig. 7A. HpaC1–182-c-Myc, which is

deleted in the C-terminal 30 amino acids and thus lacks part of the

predicted T3S4 domain, coeluted with GST-HrcU255–357, but not

with GST alone (Fig. 7B). However, when compared to the full-

length HpaC protein, which has a strong affinity for HrcU255–357,

the interaction between HpaC1–182-c-Myc and GST-HrcU255–357

was significantly reduced (Fig. 7B). By contrast, binding of HpaC1–

182-c-Myc to other known HpaC interaction partners such as HpaB,

XopF1, XopA, HrcV and also the HpaC self-interaction was not

affected (Fig. 7B and C) [31]. Next, we analyzed a HpaC deletion

derivative, HpaC1–118-c-Myc, which lacks the C-terminal 94 amino

acids and thus the complete T3S4 domain. The fact that HpaC1–118-

c-Myc was not detectable in the eluate of GST-HrcU255–357 suggests

that the predicted T3S4 domain of HpaC is important for the

interaction with the C terminus of HrcU (Fig. 7D).

The predicted T3S4 domain of HpaC is crucial for protein
function

To address whether the predicted T3S4 domain of HpaC is also

important for protein function, we expressed HpaC and deletion
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derivatives in the hpaC deletion mutant. Fig. 8A shows that both

HpaC1–118-c-Myc and HpaC1–182-c-Myc failed to complement the

hpaC mutant phenotype with respect to (i) disease symptom

formation and the HR induction in the plant, and (ii) oversecretion

of HrpB2 in vitro (Fig. 8A and B). Furthermore, HpaC1–118-c-Myc

and HpaC1–182-c-Myc did not restore the deficiency in HrpF

secretion in strain 85*DhpaC (Fig. 8B). We therefore speculate that

the T3S4 domain of HpaC and thus the interaction with the C-

terminal domain of HrcU is essential for the HpaC-dependent

substrate specificity switch.

Discussion

In this study, we analyzed the pathogenicity factors HrpB2 and

HpaC from X. campestris pv. vesicatoria. We discovered that HrpB2 is

not only crucial for secretion of effectors but also of extracellular

components of the secretion apparatus, i.e., the putative translocon

proteins XopA and HrpF and the pilus protein HrpE. Since HrpB2

is itself secreted by the T3S system, it is presumably one of the first

substrates that travels the secretion apparatus [25]. The analysis of

N-terminal HrpB2 deletion derivatives revealed that the secretion

signal of HrpB2 is located between amino acids 10 to 25 and is

crucial for protein function. It is therefore possible that HrpB2 is an

extracellular component of the secretion apparatus that promotes

pilus assembly. However, HrpB2 is probably not a major pilus

subunit since only low amounts of HrpB2 are secreted by the T3S

system. Notably, the pilus protein HrpE is required for HrpB2

secretion and vice versa, suggesting that HrpB2 is not part of an

extracellular needle-like structure below the pilus. An analogous

finding was recently reported for the symbiotic bacterium Rhizobium

strain NGR234. Pilus assembly and T3S in strain NGR234 depends

on the secreted protein NopB that presumably associates with NopA,

which is the major pilus subunit [46,47].

The second important finding is that secretion of HrpB2 from X.

campestris pv. vesicatoria is suppressed by the export control protein

HpaC, which promotes secretion of translocon and effector proteins

[31]. Proteins that differentially regulate secretion of different T3S

substrates were described for flagellar or translocation-associated

T3S systems and include, e.g., the flagellar chaperone FliS and T3S4

proteins from animal pathogenic bacteria [12–14,48,49]. We
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speculate that HpaC acts similarly to T3S4 proteins and alters the

specificity of the secretion apparatus from early (HrpB2) to later

(translocon and effector proteins) T3S substrates. We believe that this

substrate specificity switch takes place at the protein level because

HpaC interacts with HrpB2 and with the C-terminal domain of

HrcU, which belongs to the FlhB/YscU family of inner membrane

proteins [3,12,13]. This is in agreement with our previous finding

that HpaC binds to different T3S substrates including translocon

and effector proteins and also interacts with conserved inner

membrane components of the T3S system such as HrcV [31]. It

was therefore proposed that HpaC acts as a linker between secreted

proteins and the secretion apparatus [31]. However, HpaC is

dispensable for secretion of HrpB2. Targeting of HrpB2 to the

secretion apparatus is presumably mediated by the C-terminal

domain of HrcU, which interacts with both HrpB2 and HpaC. The

latter interaction presumably depends on a certain conformation of

the HrcU C terminus since we did not detect binding of HpaC to

full-length HrcU.

The analysis of HpaC deletion derivatives revealed that the

HrcU-binding site is located in the C terminus of HpaC, which

contains the putative T3S4 domain [15] and is required for

protein function. This observation suggests that the interaction

between HpaC and the C-terminal domain of HrcU is required

for HpaC-mediated suppression of HrpB2 secretion. Our data are

reminiscent of the finding that the T3S4 protein FliK from

Salmonella spp. interacts with the C-terminal domain of the HrcU

homolog FlhB [37,38]. It was proposed that binding of FliK

induces a conformational change in the C–terminal cytoplasmic

domain of FlhB and thus alters the substrate specificity of the

flagellar T3S system from secretion of hook components to

filament proteins [12,50]. Since the C-terminal domain of FlhB

interacts with several secreted proteins, it presumably serves as a

docking point for T3S substrates [37,38]. This clearly differs from

the FlhB homolog HrcU from X. campestris pv. vesicatoria since the

C-terminal domain of HrcU does not interact with translocon and

effector proteins that were tested in this study. It is conceivable

that T3S substrate binding in X. campestris pv. vesicatoria is mediated

by other conserved inner membrane components of the T3S

system such as HrcV or the putative ATPase HrcN [3].

The precise mechanism underlying the HpaC/HrcU-mediated

substrate specificity switch in X. campestris pv. vesicatoria remains to

be determined. We speculate that after activation of the T3S

system, binding of HpaC to the C-terminal domain of HrcU

inhibits the interaction between this domain and HrpB2 and thus
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blocks secretion of HrpB2. Preliminary GST pull-down assays

revealed that HrpB2-c-Myc coelutes with GST-HrcU255–357

irrespective of the presence of HpaC, suggesting that all three

proteins can form a complex. It still remains to be investigated

whether both proteins simultaneously bind to the C-terminal

domain of HrcU or whether they are both present in the eluate

because they interact with each other.

Taken together, our data suggest that plant and animal

pathogenic bacteria share similar mechanisms to switch the

substrate specificity of the T3S system but that they differ in the

components that recognize T3S substrates. Another important

difference between plant and animal pathogenic bacteria concerns

the length control of extracellular structures associated with the

membrane-spanning secretion apparatus. In translocation-associ-

ated and flagellar T3S systems from animal pathogenic bacteria,

the substrate specificity switch is coupled to length control of

needle and hook structures. In the flagellar T3S system from

Salmonella spp., for instance, FliK activates secretion of filament

proteins after hook formation. Deletion of fliK leads to elongated

hook structures, suggesting that FliK is required for hook length

control [51–53]. Similarly to FliK, the T3S4 protein YscP from

Yersinia spp. determines needle length in the translocation-

associated T3S system [12]. Since YscP is itself secreted it was

proposed that the N terminus of YscP anchors to the tip of the

growing needle while the C terminus of the protein remains

attached to the secretion apparatus and activates the substrate

specificity switch [54]. According to this model, T3S4 proteins act

as molecular rulers that are coupled to a substrate specificity switch

[12,15]. The molecular ruler model was challenged by the finding

that the T3S4 protein InvJ from Salmonella typhimurium is required

for formation of the inner rod of the T3S apparatus. It was

suggested that formation of the inner rod triggers a conformational

change in the secretion apparatus that leads to the substrate

specificity switch [55]. This model is supported by the recent

finding that the T3S4 protein YscP from Yersinia controls secretion

of the predicted inner rod protein YscI [56]. Wood et al. identified

YscI point mutants that allow effector secretion in the absence of a

detectable needle structure, suggesting that the needle is not

required for the substrate specificity switch.

The future challenge is to investigate the molecular mechanisms

underlying the HpaC-mediated T3S substrate specificity switch in

X. campestris pv. vesicatoria. Since HpaC is not secreted by the T3S

system, it presumably does not act as a molecular ruler protein

[31]. Electron microscopy studies have suggested that pilus length

is not controlled by HpaC [26]. Furthermore, it should be

emphasized that secretion of the Hrp pilus subunit HrpE is not

affected in hpaC mutants [31]. In contrast to the relatively short

(approximately 50 nm) T3S needle from animal pathogenic

bacteria, the Hrp pilus from plant pathogens can reach a length

of up to 2 mm that cannot be bridged by a single proteinaceous

molecular ruler. We therefore speculate that HpaC acts as a T3S4

protein that is not involved in length control of extracellular

structures of the T3S system. This hypothesis is supported by the

fact that secretion-deficient derivatives of the T3S4 proteins YscP

and FliK are still active, indicating that length control and

substrate specificity switch functions can be uncoupled [54,57].

Materials and Methods

Bacterial strains and growth conditions
Bacterial strains and plasmids used in this study are listed in

Table 1. E. coli cells were cultivated at 37uC in lysogeny broth (LB).

X. campestris pv. vesicatoria strains were grown at 30uC in NYG

medium [58] or in minimal medium A [59] supplemented with

sucrose (10 mM) and casamino acids (0.3%). Plasmids were

introduced into E. coli by electroporation and into X. campestris pv.

vesicatoria by conjugation, using pRK2013 as a helper plasmid in

triparental matings [60]. For the generation of strain

85*DhpaCDhrpE, pOK-hrpED9-93, which is a derivative of the

suicide plasmid pOK1 (see Table 1), was introduced into the

genome of X. campestris pv. vesicatoria strain 85*DhpaC by

conjugation. Double cross-overs resulted in deletion mutants that

were selected as described [28].

Antibiotics were added to the media at the following final

concentrations: ampicillin, 100 mg/ml; kanamycin, 25 mg/ml;

rifampicin, 100 mg/ml; spectinomycin, 100 mg/ml; tetracycline,

10 mg/ml.

Plant material and plant inoculations
The near-isogenic pepper cultivars Early Cal Wonder (ECW),

ECW-10R and ECW-30R [61] were grown and inoculated with X.

campestris pv. vesicatoria as described previously [22]. Bacteria were

hand-infiltrated into the intercellular spaces of leaves at concentra-

tions of 26108 cfu/ml in 1 mM MgCl2 if not stated otherwise. The

appearance of disease symptoms and the HR were scored over a

period of three to five days after inoculation. For better visualization

of the HR, leaves were bleached in 70% ethanol.

RNA analyses
For RT-PCR analysis, bacteria were grown in secretion

medium. RNA extraction and cDNA synthesis were performed

as described [62] and hrpB2 transcripts were amplified by PCR. To

exclude that RNA preparations contained genomic DNA, total

RNA was used as a template in a control PCR using hrpB2-specific

primers. The lack of detectable hrpB2 amounts suggested that the

RNA preparations were DNA-free (data not shown). Sequences of

primers used in this study are available upon request.

Generation of hrpB2 expression constructs
For the generation of hrpB2 expression constructs, hrpB2 and N-

terminal deletion derivatives were amplified by PCR from X.

campestris pv. vesicatoria strain 85-10 and cloned into the EcoRI and

HindIII sites of pDSK602. To create c-Myc epitope-tagged

derivatives of HrpB2, hrpB2 and truncated gene fragments were

subcloned into the EcoRI/SacI sites of pC3003, in frame with a

triple-c-myc epitope-encoding sequence, and the resulting inserts

were introduced into the EcoRI/HindIII sites of pDSK602. For the

generation of expression constructs encoding HrpB2D10–25 and

HrpB2D10–25-c-Myc, full-length hrpB2 cloned into pUC119 or

pC3003 was used as template for a PCR. PCR products were

religated and the respective inserts were cloned into pDSK602.

Generation of hrcU expression constructs
For the generation of GST fusion proteins, full-length hrcU and a

fragment encoding amino acids 255 to 357, respectively, were

amplified by PCR and cloned into the EcoRI/XhoI sites of pGEX-

2TKM, respectively, downstream and in frame with the GST-

encoding sequence. To construct a C-terminally c-Myc epitope-

tagged HrcU derivative, hrcU was amplified by PCR, inserted into

pENTR/D-TOPO and recombined into pDGW4M using Gateway

technology (Invitrogen, Carlsbad, Calif.). pDGW4M is a Gateway-

compatible derivative of pDSK602 containing attR sites, chloram-

phenicol resistance and ccdB genes and the 46 c-Myc-encoding

sequence of vector pGWB16 inserted into the EcoRI/HindIII sites.

To generate a GST-HrcU-c-Myc expression construct, hrcU was

amplified by PCR, subcloned by SacI and partial EcoRI digest in

pC3003, which contains a triple c-myc-encoding sequence and
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introduced into the EcoRI/SacI sites of pGEX-6P-1, in frame with

a gst-encoding sequence.

Secretion experiments and protein analysis
In vitro secretion assays were performed as described [27]. Total

cell extracts and culture supernatants were analyzed by SDS-

PAGE and immunoblotting. We used polyclonal antibodies

specific for HrpF [27], XopA [29], AvrBs3 [63] and HrpB2

[25], respectively, and monoclonal anti-c-Myc and anti-GST

antibodies (Amersham Pharmacia Biotech, Freiburg, Germany).

Horseradish peroxidase-labelled anti-rabbit, anti-mouse and anti-

goat antibodies (Amersham Pharmacia Biotech) were used as

secondary antibodies. Antibody reactions were visualized by

enhanced chemiluminescence (Amersham Pharmacia Biotech).

To ensure that no bacterial lysis had occurred, blots were routinely

reacted with an antibody specific for the intracellular protein

HrcN (data not shown) [25].

GST pull-down assays
GST pull-down assays were performed as described previously

[31]. Briefly, GST and GST fusion proteins were expressed in E.

coli and bacterial cells from 50 ml cultures were broken with a

French press. GST and GST fusions were immobilized on

glutathione sepharose and incubated with a c-Myc epitope-tagged

derivative of the putative interaction partner. Bound proteins were

eluted with 10 mM reduced glutathione. 5 ml total protein lysates

Table 1. Bacterial strains and plasmids used in this study.

Relevant characteristicsa Reference or source

X. campestris pv. vesicatoria

85-10 pepper-race 2; wild type; Rifr [64]

85* 85-10 derivative containing the hrpG* mutation, which renders hrp gene
expression constitutive

[34]

85*DhrpB2 nonpolar hrpB2 deletion mutant of strain 85* [25]

85*DhpaC nonpolar hpaC deletion mutant of strain 85* [31]

85-10DhpaC nonpolar hpaC deletion mutant of strain 85-10 [31]

85*DhpaB nonpolar hpaB deletion mutant of strain 85* [30]

85*DhpaBDhpaC hpaB/hpaC double mutant of strain 85* [31]

85*DhpaCDhrpF hpaC/hrpF double mutant of strain 85* this study

85*DhpaCDhrpE hpaC/hrpE double mutant of strain 85* this study

85E*DhrcU hrcU deletion mutant of strain 85E* [26]

E. coli

DH5a F2 recA hsdR17(rk
2,mk

+) W80dlacZ DM15 Bethesda Research Laboratories, Bethesda, Md.

DH5a lpir F2 recA hsdR17(rk
2,mk

+) W80dlacZ DM15 [lpir] [65]

Plasmids

pBlueskript(II) KS phagemid, pUC derivative; Apr Stratagene

pUC119 ColE1 replicon; Apr [66]

pC3003 pUC19 containing a triple c-myc tag; Apr J. Kämper

pENTR/D TOPO Gateway system donor vector; Kmr Invitrogen

pDSK602 broad-host-range vector; contains triple lacUV5 promoter; Spr [67]

pGWB16 binary expression vector, contains attR1-CmR-ccdB-attR2 upstream
of 46c-myc epitope-encoding sequence

[68]

pGEX-2TKM GST expression vector; ptac GST lacIq pBR322 Stratagene

ori; Apr, derivative of pGEX-2TK with polylinker of pDSK604 [69]

pGEX-6P-1 GST expression vector Stratagene

pOK1 suicide vector; sacB sacQ mobRK2 oriR6K; Smr [28]

pOK-hrpED9-93 pOK1 derivative containing hrpE with a stop codon insertion after codon 8 [26]

pRK2013 ColE1 replicon, TraRK+ Mob+; Kmr [60]

pL6HrpE50AvrBs3D2 pLAFR6 derivative encoding HrpE1–50-AvrBS3D2 under control of the hrpE
promoter

[36]

pDMhpaB pDSK604 derivative encoding HpaB-c-Myc [30]

pDMhpaC pDSK604 derivative encoding HpaC-c-Myc [31]

pGhpaB pGEX-2TKM expressing GST-HpaB [31]

pGhpaC pGEX-2TKM expressing GST-HpaC [31]

pGxopA pGEX-2TKM expressin GST-XopA [30]

pGxopF1 pGEX-2TKM expressin GST-XopF1 [31]

aAp, ampicillin; Km, kanamycin; Rif, rifampicin; Sp, spectinomycin; r, resistant.
doi:10.1371/journal.ppat.1000094.t001
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and 20 ml eluted proteins were analyzed by SDS-PAGE and

immunoblotting. For the generation of GST-HrpE, hrpE was

amplified by PCR and cloned into the EcoRI/XhoI sites of pGEX-

2TKM. The same blot was always incubated with an anti-c-Myc

and an anti-GST antibody, respectively.

Supporting Information

Figure S1 The C terminus of HpaC contains a predicted T3S4

domain. Sequence alignment of HpaC from X. campestris pv.

vesicatoria strain 85-10 (accession number CAJ22055) and HpaP

from R. solanacearum (accession number CAB58249). Amino acid

sequences were aligned using CLUSTAL W (http://www.ebi.ac.

uk/clustalw/). Conserved amino acids are shaded black, similar

amino acids are shaded grey. The black bar indicates the predicted

T3S4 domain in HpaP, stars refer to amino acids that are

conserved among HpaP and T3S4 domain-containing proteins

[15].

Found at: doi:10.1371/journal.ppat.1000094.s001 (0.56 MB EPS)
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20. Büttner D, Bonas U (2002) Getting across-bacterial type III effector proteins on
their way to the plant cell. EMBO J 21: 5313–5322.

21. Weber E, Berger C, Bonas U, Koebnik R (2007) Refinement of the Xanthomonas

campestris pv. vesicatoria hrpD and hrpE operon structure. Mol Plant Microbe
Interact 20: 559–567.

22. Bonas U, Schulte R, Fenselau S, Minsavage GV, Staskawicz BJ, et al. (1991)

Isolation of a gene-cluster from Xanthomonas campestris pv. vesicatoria that
determines pathogenicity and the hypersensitive response on pepper and

tomato. Mol Plant-Microbe Interact 4: 81–88.
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31. Büttner D, Lorenz C, Weber E, Bonas U (2006) Targeting of two effector

protein classes to the type III secretion system by a HpaC- and HpaB-dependent

protein complex from Xanthomonas campestris pv. vesicatoria. Mol Microbiol 59:

513–527.

32. Fenselau S, Bonas U (1995) Sequence and expression analysis of the hrpB

pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight

proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion

systems. Mol Plant-Microbe Interact 8: 845–854.

33. Rossier O, Wengelnik K, Hahn K, Bonas U (1999) The Xanthomonas Hrp type III

system secretes proteins from plant and mammalian pathogens. Proc Natl Acad

Sci USA 96: 9368–9373.

34. Wengelnik K, Rossier O, Bonas U (1999) Mutations in the regulatory gene hrpG

of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp

genes. J Bacteriol 181: 6828–6831.

35. Szurek B, Rossier O, Hause G, Bonas U (2002) Type III-dependent

translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol

Microbiol 46: 13–23.

36. Weber E, Koebnik R (2005) Domain structure of HrpE, the Hrp pilus subunit of

Xanthomonas campestris pv. vesicatoria. J Bacteriol 187: 6175–6186.

37. Minamino T, Macnab RM (2000) Domain structure of Salmonella FlhB, a

flagellar export component responsible for substrate specificity switching.

J Bacteriol 182: 4906–4914.

38. Minamino T, MacNab RM (2000) Interactions among components of the

Salmonella flagellar export apparatus and its substrates. Mol Microbiol 35:

1052–1064.

39. Sorg I, Wagner S, Amstutz M, Muller SA, Broz P, et al. (2007) YscU recognizes

translocators as export substrates of the Yersinia injectisome. EMBO J 26:

3015–3024.

40. Allaoui A, Woestyn S, Sluiters C, Cornelis GR (1994) YscU, a Yersinia enterocolitica

inner membrane protein involved in Yop secretion. J Bacteriol 176: 4534–4542.

41. Minamino T, Iino T, Kutsukake K (1994) Molecular characterization of the

Salmonella typhimurium flhB operon and its protein products. J Bacteriol 176:

7630–7637.

42. Lavander M, Sundberg L, Edqvist PJ, Lloyd SA, Wolf-Watz H, et al. (2002)

Proteolytic cleavage of the FlhB homologue YscU of Yersinia pseudotuberculosis is

essential for bacterial survival but not for type III secretion. J Bacteriol 184:

4500–4509.

43. Ferris HU, Furukawa Y, Minamino T, Kroetz MB, Kihara M, et al. (2005) FlhB

regulates ordered export of flagellar components via autocleavage mechanism.

J Biol Chem 280: 41236–41242.

44. Alegria MC, Docena C, Khater L, Ramos CH, da Silva AC, et al. (2004) New

protein-protein interactions identified for the regulatory and structural

components and substrates of the type III secretion system of the phytopathogen

Xanthomonas axonopodis pathovar citri. J Bacteriol 186: 6186–6197.

45. Minamino T, Ferris HU, Moriya N, Kihara M, Namba K (2006) Two parts of

the T3S4 domain of the hook-length control protein FliK are essential for the

substrate specificity switching of the flagellar type III export apparatus. J Mol

Biol 362: 1148–1158.

Control of HrpB2 Secretion

PLoS Pathogens | www.plospathogens.org 12 June 2008 | Volume 4 | Issue 6 | e1000094



46. Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, et al. (2005) NopB,

a type III secreted protein of Rhizobium sp. strain NGR234, is associated with

pilus-like surface appendages. J Bacteriol 187: 1173–1181.

47. Saad MM, Staehelin C, Broughton WJ, Deakin WJ (2008) Protein-protein

interactions within type III secretion system-dependent pili of Rhizobium sp. strain

NGR234. J Bacteriol 190: 750–754.

48. Yokoseki T, Iino T, Kutsukake K (1996) Negative regulation by fliD, fliS, and

fliT of the export of the flagellum-specific anti-sigma factor, FlgM, in Salmonella

typhimurium. J Bacteriol 178: 899–901.

49. Auvray F, Thomas J, Fraser GM, Hughes C (2001) Flagellin polymerisation

control by a cytosolic export chaperone. J Mol Biol 308: 221–229.

50. Minamino T, Pugsley AP (2005) Measure for measure in the control of type III

secretion hook and needle length. Mol Microbiol 56: 303–308.

51. Williams AW, Yamaguchi S, Togashi F, Aizawa SI, Kawagishi I, et al. (1996)

Mutations in fliK and flhB affecting flagellar hook and filament assembly in

Salmonella typhimurium. J Bacteriol 178: 2960–2970.

52. Hirano T, Yamaguchi S, Oosawa K, Aizawa S (1994) Roles of FliK and FlhB in

determination of flagellar hook length in Salmonella typhimurium. J Bacteriol 176:

5439–5449.

53. Eggenhofer E, Rachel R, Haslbeck M, Scharf B (2006) MotD of Sinorhizobium

meliloti and related alpha-proteobacteria is the flagellar-hook-length regulator

and therefore reassigned as FliK. J Bacteriol 188: 2144–2153.

54. Agrain C, Sorg I, Paroz C, Cornelis GR (2005) Secretion of YscP from Yersinia

enterocolitica is essential to control the length of the injectisome needle but not to

change the type III secretion substrate specificity. Mol Microbiol 57: 1415–1427.

55. Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, et al. (2006)

Assembly of the inner rod determines needle length in the type III secretion

injectisome. Nature 441: 637–640.

56. Wood S, Jin J, Lloyd SA (2008) YscP and YscU switch the substrate specificity of

the Yersinia type III secretion system by regulating export of the inner rod protein

YscI. J Bacteriol; in press.

57. Hirano T, Shibata S, Ohnishi K, Tani T, Aizawa S (2005) N-terminal signal

region of FliK is dispensable for length control of the flagellar hook. Mol

Microbiol 56: 346–360.

58. Daniels MJ, Barber CE, Turner PC, Sawczyc MK, Byrde RJW, et al. (1984)

Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris

using the broad host range cosmid pLAFR1. EMBO J 3: 3323–3328.

59. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al. (1996)

Current protocols in molecular biology. New York: John Wiley & Sons, Inc.
60. Figurski D, Helinski DR (1979) Replication of an origin-containing derivative of

plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad
Sci USA 76: 1648–1652.

61. Minsavage GV, Dahlbeck D, Whalen MC, Kearny B, Bonas U, et al. (1990)

Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris

pv. vesicatoria - pepper interactions. Mol Plant-Microbe Interact 3: 41–47.

62. Noël L, Thieme F, Nennstiel D, Bonas U (2001) cDNA-AFLP analysis unravels
a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv.

vesicatoria. Mol Microbiol 41: 1271–1281.
63. Knoop V, Staskawicz B, Bonas U (1991) Expression of the avirulence gene

avrBs3 from Xanthomonas campestris pv. vesicatoria is not under the control of hrp

genes and is independent of plant factors. J Bacteriol 173: 7142–7150.
64. Canteros BI (1990) Diversity of plasmids and plasmid-encoded phenotypic traits

in Xanthomonas campestris pv. vesicatoria. Ph.D. thesis. University of Florida,
Gainesville, FL, USA.

65. Ménard R, Sansonetti PJ, Parsot C (1993) Nonpolar mutagenesis of the ipa genes

defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial
cells. J Bacteriol 175: 5899–5906.

66. Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods
Enzymol 153: 3–11.

67. Murillo J, Shen H, Gerhold D, Sharma A, Cooksey DA, et al. (1994)
Characterization of pPT23B, the plasmid involved in syringolide production by

Pseudomonas syringae pv. tomato PT23. Plasmid 31: 275–287.

68. Nakagawa T, Takayuki K, Hino T, Tanaka K, Kawamukai M, et al. (2007)
Development of series of Gateway binary vectors, pGWBs, for realizing efficient

construction of fusion genes for plant transformation. J Biosci Bioeng 104:
34–41.

69. Escolar L, Van den Ackerveken G, Pieplow S, Rossier O, Bonas U (2001) Type

III secretion and in planta recognition of the Xanthomonas avirulence proteins
AvrBs1 and AvrBsT. Mol Plant Pathol 2: 287–296.

Control of HrpB2 Secretion

PLoS Pathogens | www.plospathogens.org 13 June 2008 | Volume 4 | Issue 6 | e1000094


