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Abstract: Hutchinson–Gilford Progeria Syndrome and Werner syndrome, also known as 

childhood- and adulthood-progeria, respectively, represent two of the best characterized human 

progeroid diseases with clinical features mimicking physiological aging at an early age. The 

discovery of their genetic basis has led to the identification of several gene mutations leading to 

a spectrum of progeroid phenotypes ranging from moderate and mild–severe to very aggressive 

forms. In parallel, the creation of disease registers and databases provided available data for 

the design of relatively large-scale epidemiological studies, thereby allowing a better under-

standing of the nature and frequency of the premature aging-associated signs and symptoms. 

The aim of this article is to review the most recent findings concerning the epidemiology of 

premature aging disorders, their genetic basis, and the most recent reports on the frequency of 

associated diseases.
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Introduction
Hutchinson–Gilford Progeria Syndrome (HGPS) and Werner syndrome (WS) are two 

of the best characterized human progeroid diseases with clinical features mimicking 

physiological aging at an early age, the first being referred as to childhood progeria, 

and the latter as progeria of adulthood.1 An increasing number of intermediate prog-

eroid phenotypes, known as atypical progeroid syndromes, atypical HGPS, or atypical 

WS, have been described.1 The aim of this review article is to describe the most recent 

findings concerning the epidemiology of premature aging disorders, their genetic basis, 

and the most recent reports on the frequency of associated diseases.

Hutchinson–Gilford Progeria Syndrome
HGPS is an extremely rare genetic disorder affecting about one per four to eight million 

live births.2 More precisely, the reported prevalence rate of the disease is one in 

eight million births, but if unreported or misdiagnosed cases are taken into account, 

the estimated birth prevalence is one in four million.2

According to the Progeria Research Foundation database (http://www.

progeriaresearch.org/prf-by-the-numbersprf.html), there are an estimated 

200–250 children living with progeria worldwide at any one time, and 103 of them 

have been identified as of April 2013. Progeria affects both sexes and all races, and 

HGPS cases have been discovered in over 40 different countries. In particular, a map 
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of ascertained HGPS children is available at the Progeria 

Research Foundation portal (http://www.findtheother150.

org/), and there are records of 20 cases in Northern America, 

16 cases in Central and Southern America, 24 cases in Europe 

and the Mediterranean regions, four cases in Africa, and 

18 cases in Asia.

The disease was named after the reports by Jonathan 

Hutchinson and Hastings Gilford, the doctors who first 

described it in England, and it is classified as a segmental 

progeroid syndrome since multiple organs and tissues repli-

cate phenotypes associated with normal aging.3,4

Children with HGPS appear healthy at birth but develop 

distinctive clinical features during the first years of their 

life, including severe growth retardation, usually associated 

with skeletal alteration as well as loss of subcutaneous fat 

and skin appendages, and some developmental processes are 

delayed (dentition) or absent.4 Death occurs in those affected 

by their early teenage years, and usually results from heart 

attacks and strokes.1

The majority of classical HGPS is caused by a de novo 

point mutation in exon 11 of the LMNA gene (c.1824C.T, 

p.G608G).5 The LMNA gene encodes A-type lamins, which 

are intermediate filament proteins of the inner nuclear lamina. 

The c.1824C.T mutation results in the activation of a cryptic 

splice donor site that removes 150 nucleotides from exon 11. 

The resulting lamin A∆150 messenger ribonucleic acid gives 

rise to a lamin A isoform containing an internal deletion of 

50 amino acids, known as progerin (a protein that cannot 

undergo complete maturation).5 Lamins constitute the major 

component of the nuclear lamina; in addition to providing 

structure and shape to the nucleus, they are involved in 

organizing several processes including chromatin organiza-

tion, deoxyribonucleic acid (DNA) replication, transcrip-

tion, DNA methylation and epigenetic regulation, and DNA 

repair.6 Those mechanisms are impaired in HGPS and might 

contribute to the progeria phenotype. Indeed, cells obtained 

from HGPS patients show a markedly reduced lifespan when 

grown in culture, and accumulate defects in nuclear structure 

and architecture with cell passaging, including lobulation 

of the nuclear envelope, thickening of the nuclear lamina, 

loss of peripheral heterochromatin, and clustering of nuclear 

pores, which are accompanied by an increase in the amount 

of progerin within the cells.7

HGPS-associated symptoms
A visible vein across the nasal bridge is often the first observ-

able sign in HGPS infants. A profound failure to thrive occurs 

during the first year, usually from 6 months to 12 months. 

On average, HGPS children gain 0.4–0.5 kg/year and reach a 

final weight of about 14–15 kg and a final height of 110 cm. 

Progressive alopecia usually takes place within 6 months to 

2 years, and between the ages of 2 years and 3 years, most 

children become bald.8 Other symptoms become apparent 

during the first year to third year, including characteristic 

facies, loss of subcutaneous fat, stiffness of joints, bone 

changes, and abnormal tightness of the skin over the abdo-

men and upper thighs.1 With time, the skin becomes thin, 

dry, and atrophic, with reduced turgor and sometimes with 

hyperkeratosis. Small, light-brown spots frequently develop 

on the neck and upper thorax, and subsequently on the scalp 

and limbs. Typical facial abnormalities include a receding 

mandible, a small and beaked nose, prominent scalp veins, 

prominent eyes, and protruding ears that lack lobules. The 

facial characteristics gradually develop and both the face 

and body change with time: the subcutaneous fat in the face 

disappears completely and the facial muscles decrease in 

size. The body shows increasing loss of subcutaneous fat and 

muscle bulk and the joints protrude.1,8,9 At the bone level, 

patients show clavicular hypoplasia, generalized osteopenia, 

and acroosteolyses of distal phalanges. Motor and mental 

development is normal, cognitive functions are preserved, 

and the children follow a normal psychosocial development 

and show normal behaviors for their age.1,9 Dentition is 

delayed and crowded.9 HGPS individuals have a high-pitched 

voice, do not reproduce, and their appearance becomes like 

that of an older person with time.1,8

Additional findings that are present in some but not all 

affected individuals include excessive ocular tearing, pho-

tophobia, exposure keratitis, and Raynaud’s phenomenon.9 

Most children die in their early teens from heart attacks and 

strokes caused by progressive atherosclerotic disease, with 

myocardial infarction representing the most frequent cause 

of death at a mean age of around 13 years.8 A comprehensive 

description of most of the HGPS-associated manifestations 

is provided in the following sections.

Cardiovascular disease in HGPS
Cardiovascular disease (CVD) represents the principal factor 

affecting mortality in HGPS individuals, with death resulting 

from myocardial infarction, stroke, or congestive cardiac 

failure in 75% of cases.10 Cardiovascular problems are absent 

during the first 5 years of life, but children gradually develop 

shortness of breath with exertion and easy fatigability from 

the age of 6–8 years.10 Accelerated CVD leads to debilitating 

morbidity in HGPS and culminates in mortality from myocar-

dial infarction or stroke at an average age of 13 years.11

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://www.findtheother150.org/
http://www.findtheother150.org/


Clinical Interventions in Aging 2013:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1025

Premature aging and comorbidities

The rapid progression of CVD in HGPS presents an 

opportunity to explore the natural history of human CVD, 

and a study performed on 26 HGPS patients and 22 matched 

controls revealed that the carotid–femoral pulse wave veloc-

ity was dramatically elevated in patients.11 Carotid duplex 

ultrasound echobrightness, assessed as a measure of arterial 

wall density, was significantly greater than age- and sex-

matched controls in the intima–media, near adventitia, and 

deep adventitia, as was internal carotid artery mean flow 

velocity.11 Overall, those data demonstrated that, along with 

peripheral vascular occlusive disease, accelerated vascular 

stiffening is an early and pervasive mechanism of vascular 

disease in HGPS.11

Autopsy data have shown widespread atherosclerosis 

in HGPS patients. Particularly, advanced coronary athero-

sclerotic lesions have been reported, and the arteries were 

frequently stenosed or occluded by plaques or narrowing of 

intramural arteries. Occlusion of the right coronary artery, 

lesions of the left anterior descending artery, and severe 

atherosclerosis of the aorta, represent common findings in 

HGPS.10 Valvular changes and pulmonary arterial lesions 

have also been reported in HGPS individuals.10

Cerebrovascular disease in HGPS
Cerebrovascular arteriopathy and stroke have been recently 

assessed by means of a neurovascular imaging cohort study 

of HGPS, a study aimed to identify the neurovascular fea-

tures, infarct type, topography, and natural history of stroke.12 

A total of 25 children with confirmed diagnoses of HGPS 

were included in the study, which revealed a vasculopathy 

unique to HGPS, including distinctive intracranial stenooc-

clusive arterial lesions, basal cistern collateral vessels, 

and slow compensatory collateral flow over the cerebral 

convexities. Moreover, the authors identified early and 

clinically silent strokes as a prevalent disease characteristic 

in HGPS. Indeed, a radiographic evidence of infarction was 

found in 60% of patients, of which half were likely clini-

cally silent.12

Skeletal abnormalities in HGPS
A recent study performed with an inducible and tissue-specific 

mouse model, which expresses the most common HGPS 

mutation (c.1824C.T) in osteoblasts and odontoblasts, 

revealed that the expression of the HGPS mutation during 

osteoblast development results in a loss of osteocytes, irregu-

lar mineralization, and poor biomechanical properties.13

A comprehensive survey of the skeletal dysmorphisms 

observed in children with HGPS using conventional 

radiography was obtained from 39 children with the classic 

HGPS genotype, representing approximately 15%–20% 

of the world’s HGPS population.14 Small clavicles were 

observed in 100% of the patients; followed by coxa valga and 

acroosteolysis, which were observed in more than 90% of 

the patients; and resorption of the distal clavicles and narrow 

apices, both present in 82% of the subjects. Other frequent 

skeletal abnormalities were hip dysplasia (69%) and thin 

ribs (59%). In addition, 30% to 45% of the patients showed 

resorption of the anterior ribs, closed sagittal suture, general-

ized osteopenia, focal cortical defects, flexed fingers, ulnar 

minus variant, or enlarged heart. Less frequent (20%–30%) 

were dystrophic calcification, sagittal suture diastasis, 

enlarged femoral head, pseudoarthrosis, enlarged femoral 

greater trochanter, and avascular necrosis of the proximal 

femur. Kyphoscoliosis, enlarged humoral head, narrowed 

humoral diaphysis, prominent pulmonary vessels, and worm-

ian bones were reported in less than 15% of the patients, 

and other abnormalities, such as accentuated osteopenia of 

proximal humoral/femoral epiphysis, rib fracture, Madelung 

deformity, ivory epiphyses, bifid rib, and congenitally fused 

ribs were reported in 10% or less of the patients.14

Craniofacial abnormalities in HGPS
Using the Progeria Research Foundation medical and 

research database (http://www.progeriaresearch.org/

medical_database.html), data on 25 HGPS patients have been 

examined in order to provide an overview of the craniofacial 

abnormalities in progeria.15

Concerning scalp, calvarial, and skull base features, thin-

ning of the calvarium was seen in 95% of the individuals, 

often accompanied by a paucity of scalp fat (91%). A mottled 

appearance of the skull was seen in 59% of the patients. Two 

individuals (8%) had skull fractures, and prominent vascular 

markings of the bony calvaria were observed in 90% of the 

subjects. Craniofacial disproportion (a large cranium rela-

tive to the facial size), and a J-shaped sella were observed 

in almost 90% of the patients, and a delayed closure of the 

anterior fontanel was seen in 56% of them.15

Concerning oral maxillary, zygomatic arch, and parotid 

gland features, the authors observed a short mandibular ramus 

in 83% of the patients, with a gracile thin zygomatic arch in 

50% of them. A shallow glenoid fossa with a hypoplastic or 

absent articular eminence and flattening of the mandibular 

condyle were seen in 43% of the patients. Moreover, 45% 

of the children had a V-shaped palate, and 50% of them had 

disorganized dentition. A prominent parotid gland was seen 

in all the children analyzed.15
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With regard to orbital features, hypotelorism was noted 

in 86% of the children, and kinking of the optic nerves was 

seen in 89%.15

Other manifestations in HGPS
Fifteen patients with HGPS have been enrolled in a 

prospective study to evaluate otologic and audiologic 

manifestations.16 All patients had stiff auricular cartilages, 

small or absent lobules, and hypoplasia of the lateral soft-

tissue portion of the external ear canal leading to a short-

ened canal. A low-frequency conductive hearing loss in the 

250 Hz to 500 Hz range was observed in 86.4% of the ears, 

despite largely normal tympanometry.16 In addition, 71% of 

the patients had dry cerumen impaction, and 29% of them 

reported a history of recurrent otitis media.16

Insulin resistance occurs in about 50% of affected patients 

without progression to diabetes mellitus.9 A rare case of a 

10-year-old boy with genetically confirmed classical HGPS 

and hypoparathyroidism has been reported.17 Differently 

from other premature aging syndromes, such as WS or others 

caused by mutations of DNA repair genes, there is no reported 

increase of cancer incidence in HGPS patients.8,18 Cataracts 

are not frequent.8 We recently reviewed neurodegenerative 

signs or symptoms in premature aging disorders, and they 

are absent in HGPS individuals.1

From mild to severe progeria:  
the genetic basis of classical HGPS  
and atypical progeria syndromes
Although the majority (approximately 90%) of classical 

HGPS is caused by a de novo point mutation in exon 11 of 

the LMNA gene (c.1824C.T, p.G608G), it was clear from 

the beginning that other mutations in LMNA could cause a 

similar phenotype.5 Particularly, the genetic basis of HGPS 

was identified in 2003 by two independent research groups.5,19 

Eriksson et al5 observed the G608G mutation in 90% of 20 

HGPS individuals, and De Sandre-Giovannoli et al19 observed 

it in two affected children. A patient with a c.1822G.A 

mutation (p.G608S), with classical HGPS, was also recorded 

by Eriksson et al.5

The LMNA gene encodes the four different A-type lamins 

(lamin A, lamin A∆10, lamin C, and lamin C2), which are 

intermediate filament proteins of the inner nuclear lamina.1 

Lamin A (encoded by exons 1–12) and lamin C (encoded by 

exons 1–10) are the major proteins expressed in differenti-

ated cells. Lamin A∆10 is identical to lamin A except that it 

lacks exon 10 and has been detected in cells from colon and 

placenta, in leukocytes and fibroblasts, and in tumor cells. 

Lamin C2 has an alternative exon 1 compared with lamin 

C and is present in germ cells.1 Lamin A proteins contain 

CaaX boxes at their C-terminal ends; they are synthesized as 

prelamin A proteins, which undergo farnesylation and other 

posttranslational modifications to become mature proteins 

(Figure 1).

The p.G608G mutation results in the activation of a cryp-

tic splice donor site, leading to the production of a lamin A 

isoform containing an internal deletion of 50 amino acids, 

known as progerin – a protein that cannot undergo complete 

maturation.5 Particularly, the deletion eliminates the site for 

endoproteolitic cleavage by zinc metalloproteinase Ste24 

homolog (ZMPSTE24), a cleavage required for the produc-

tion of mature lamin A. The recurrent c.1824C.T mutation 

causing HGPS is a de novo dominant point mutation, mostly 

originating on the paternal allele and often linked with 

advanced paternal age.5

The zinc metalloprotease, ZMPSTE24, plays a critical 

role in nuclear lamin biology by cleaving the prenylated and 

carboxylmethylated 15-amino acid tail from the C-terminus 

of prelamin A to yield mature lamin A (Figure  1). Two 

patients with extraordinarily severe forms of progeria caused 

by unusual mutations in LMNA have been described.20 Both 

mutations (IVS11+1G.A and p.V607V) resulted in a strong 

activation of the aberrant splice site observed in typical 

HGPS, leading to increased progerin expression compared 

to typical HGPS cases.20 By contrast, two subjects bearing 

a missense (p.T623S) mutation leading to the deletion of 

35 amino acids in exon 11 of LMNA showed a less aggres-

sive progeroid phenotype (slowly progressing progeria) 

compared to classical HGPS.21,22 Overall, the amount of 

toxic progerin in cells appears to correlate with the severity 

of disease outcomes.20

Interestingly, recessive mutations in ZMPSTE24 also 

disrupt lamin A proteolytic processing and are associated 

with three distinct but related human diseases that share 

features of premature aging, with a gradation of severity.23 

Indeed, ZMPSTE24 mutations cause: (1) the mild prog-

eroid disorder mandibuloacral dysplasia, a rare autosomal 

recessive disorder characterized by postnatal growth retar-

dation, craniofacial anomalies, skeletal malformations, 

and mottled cutaneous pigmentation; (2) a severe form 

of progeria denoted as atypical HGPS; and (3) restrictive 

dermopathy (RD), a fatal neonatal disorder characterized 

by severe intrauterine growth delay that can be considered 

as an “extreme form” of premature aging.23 Twenty human 

ZMPSTE24 alleles have been identified that are associated 

with those diseases. They have been recently reviewed by 
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Barrowman et al,24 who demonstrated a correlation between 

decreasing ZMPSTE24 protease activity and increasing 

disease severity. Particularly, complete loss-of-function 

alleles are associated with RD, whereas retention of partial, 

measurable activity results in mandibuloacral dysplasia or 

severe progeria.23 Figure 1 illustrates most of the known 

LMNA and ZMPSTE24 mutations linked to progeroid 

diseases.

Although the mechanism whereby persistently farnesy-

lated lamin A, either resulting from LMNA or ZMPSTE24 

mutations, causes premature aging phenotypes is unknown, 

changes in chromatin architecture and in histone methylation 

and gene expression, defective DNA repair and accumulation 

of DNA damage, impaired structural and mechanical prop-

erties of the nuclear lamina, and perturbations in transcrip-

tion factors and nuclear proteins, are among the suggested 

pathologic mechanisms.1,8

The diagnosis of HGPS is based on the recognition of 

common clinical features and the detection of either the 

c.1824C.T (p.G608G) heterozygous LMNA mutation in the 

classic form of HGPS, or one of three of the heterozygous 

LMNA mutations in atypical HGPS: c.1822G.A (p.G608S), 

c.1821G.A (p.V607V), or c.1968+1G.A (IVS11+1G.A) 

(Figure  1).9 Noteworthy, several patients with atypical 

progeroid syndromes, which have been referred to as 

atypical progeroid syndromes (also called atypical HGPS, 

nonclassical progeria, or atypical WS), do not carry LMNA 

splicing mutations, but other heterozygous, homozygous, or 

compound heterozygous mutations in the LMNA gene.24 The 

clinical features of those patients include growth retardation 

and involve the same body systems (bones, body fat, skin, 

and hair) as in classical HGPS, but the course and severity 

of the symptoms vary. The patients have differing ages of 

onset and symptom severity, with some nearly as severe as 

s
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Severe progeria:

Atypical progeroid syndromes:

p.G608G, p.G608S

IVS11+1G>A and p.V607V

p.P4R, p.T10l, pA57P, p.L59R,
p.E111K, p.R133L, p.D136H,
p.E138K, p.L140R, p.S143F, p.E145K,
p.E159K, p.V169fsX176, p.D300N,
p.D300G, p.R435C, p.R471C,
p.R527C, p.T528M and p.M540T (ch),

p.K17S and Y195F (ch), p.l19Y,

p.N265S and p.L326F (ch), p.V402S

p.P248L and p.W450X (ch),
p.N265S and p.Y70S (ch),
p.W340R and p.L362F (ch), p.L462R

p.E239X, p.L326F, p.Q417X and

p.L94P, p.P248L and p.Q41X (ch),

p.T159_L209del, p.l198Y, p.E231X,

p.L91_L209del and L326F (ch),
p.P99L and L326F (ch),

L326F (ch)

p.S573L, p.E578V, p.C588R, p.R644C

ZMPSTE24
cleavage site

ZMPSTE24 protein mutations:

Restrictive dermopathy:
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Mandibuloacral dysplasia:

Figure 1 Representation of prelamin A processing and summary of LMNA and ZMPSTE24 mutations leading to classical and atypical progeria.
Notes: Prelamin A requires maturation to become mature lamin A. First, the C-terminal end of prelamin A contains a CaaX motif, which is modified by farnesylation of the 
cysteine residue (1), mediated by a FTASE protein, and is followed by the cleavage of the (2) –aaX terminal residues that can be performed either by RCE1 or by ZMPSTE24. 
(3) After the cleavage, the cysteine residue is carboxymethylated by ICMT. The last step removes the C-terminal 15 residues through cleavage by (4) ZMPSTE24, yielding 
mature lamin A. In HGPS cells bearing the common LMNA p.G608G mutation, the activation of the cryptic splice site results in the deletion of a 50aa region from prelamin 
A (indicated in dark blue in the figure), which contains the ZMPSTE24 cleavage site (indicated in the figure). As a result, the p.G608G mutation leads to the production and 
the accumulation of a smaller prelamin A protein, which cannot undergo complete maturation, termed progerin. A diagnostic test is available for the common p.G608G 
mutation, as well as for the less common LMNA splicing mutations, namely p.G608S, p.V607V, or IVS11+1G.A, all resulting in the activation of the cryptic splice site. 
Several other LMNA mutations have been reported in a small number of patients and these lead to a spectrum of progeroid phenotypes ranging from mild–moderate to 
very aggressive forms, and are referred to as atypical progeroid syndromes. Those mutations can be either dominant (in red ink) or recessive (in green ink) and can alter 
residues throughout the protein structure with no clear clustering in a single region of lamin A. The term (ch) indicates a compound heterozygous mutation (in orange ink). 
Underlined LMNA mutations are those observed in atypical WS cases. Recessive ZMPSTE24 mutations also disrupt prelamin A processing and are associated with three 
distinct, but related, human diseases that share features of premature aging, with a gradation of severity: mandibuloacral dysplasia, atypical HGPS, and restrictive dermopathy. 
Concerning ZMPSTE24 mutations, the term (ch) indicates a compound heterozygous mutation (in orange ink), otherwise the mutation was found in homozygosis in the 
patient (in green ink).
Abbreviations: HGPS, Hutchinson–Gilford Progeria Syndrome; ZMPSTE24, zinc metalloprotease related to Ste24p; FTASE, farnesyltransferase; RCE1, Ras-converting 
enzyme 1; ICMT, isoprenylcysteine carboxyl methyltransferase; WS, Werner syndrome.
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HGPS, others (such as p.R435C) leading to atypically mild 

RD, but most are far less severe.24 For example, patients 

affected by atypical WS have early onset of aging phenotypes 

and an accelerated rate of disease progression than typi-

cal WS individuals; they also commonly show absence of 

bilateral cataracts and diabetes, which are common features 

in typical WS.25 Over 20 LMNA mutations causing atypical 

progeroid syndromes have been discovered and have been 

recently reviewed by Doubaj et al;23 these are summarized 

in Figure 1.

In this regard, a dominantly inherited premature aging 

syndrome that includes prominent cardiovascular and 

cutaneous manifestations, called LMNA-associated car-

diocutaneous progeria syndrome, was recently described.26 

The disease showed a later onset than classical HGPS, with 

skin manifestations of aging appearing in the third decade 

of life. Affected individuals also developed CVD leading to 

death in their fourth decade. One affected individual in this 

family also showed primary malignancies not previously 

reported in LMNA-linked progeria disorders. This atypical 

progeroid syndrome was caused by a novel LMNA muta-

tion (c.899A.G, p.D300G) leading to abnormalities of the 

nuclear membrane architecture.26

There is also indication from studies in nonagenarians 

suggesting that common LMNA polymorphisms and haplo-

types may play a role in the human lifespan.27 In this regard, 

Rodríguez and Eriksson28 have recently observed that an 

LMNA single nucleotide polymorphism (rs4641) results in 

low and high expressing alleles of the LMNA gene, and might 

account for the variability in phenotype seen among HGPS 

individuals.28 Noteworthy, not all LMNA mutations cause 

progeria. More than 450 mutations of the gene have been 

described causing several different autosomal dominant or 

recessive diseases collectively called primary laminopathies, 

and these include muscular dystrophies, lipodystrophies, 

neuropathies, cardiomyopathies, and the above-discussed 

segmental progeroid syndromes.26,29

Werner syndrome
WS is a rare autosomal recessive disorder also called adult 

progeria, and represents the most studied disease model of 

premature aging in adulthood.30 In the Japanese population, 

a founder effect has been described, and the frequency of WS 

has been roughly estimated to be 1:100,000.30 Another cluster 

of WS has been identified in Sardinia, with 18 described cases 

due to a founder effect.31 The prevalence of heterozygous 

carriers in Japan is approximately 1/167, and it is estimated 

to be approximately 1/120 in Sardinia.31 Outside of Japan 

the disease prevalence is estimated to be approximately 

1:1,000,000–1:10,000,000.30

The syndrome was first described in the doctoral thesis of 

Werner32 in 1904. According to a recent report, 1,487 WS cases 

have been recorded from 1904 to the end of 2008 – 1,128 in 

Japan and 359 outside Japan.33 The patients develop features 

reminiscent of premature aging beginning in the second decade 

of life, including grey hair, alopecia, prematurely aged face 

with beaked nose, skin atrophy with scleroderma-like lesions, 

ischemic heart disease, osteoporosis, bilateral cataracts, type 2 

diabetes mellitus, lipodystrophy, and hypogonadism. They also 

experience an increased risk of cancers, and in most cases, they 

die because of malignant tumors or arteriosclerosis during the 

fourth and fifth decades of life.30

The disease is caused by mutations of the WRN gene, 

which encodes the WRN protein, a member of the RecQ DNA 

helicase family.34 WRN is a multifunctional nuclear protein 

that maintains genome stability by means of DNA-dependent 

adenosine triphosphatase (ATPase), 3′→5′ helicase, 3′→5′ 
exonuclease, and DNA strand annealing activities.35 Most 

of the WRN mutations result in the production of truncated 

proteins lacking the nuclear localization signal, with the 

subsequent absence of functional WRN protein in nuclei.36 

WRN has several functional domains and is considered to be 

a “caretaker of the genome” since it participates in distinct 

DNA metabolic pathways, including DNA replication, DNA 

recombination, telomere maintenance, apoptosis, and DNA 

repair.36 Cells isolated from WS individuals display increased 

chromosomal aberrations and premature senescence in cul-

ture, as well as accelerated telomere shortening and several 

defects in DNA replication.37

In 20% of cases, WS is not caused by WRN gene muta-

tions, but often by mutations in the LMNA gene.25 As 

discussed in the previous section of this paper, WS caused 

by LMNA mutations is referred to as atypical Werner’s 

syndrome.25

WS-associated symptoms
The lack of a pubertal growth spurt during the teen years is 

the first clinical sign in WS individuals, leading to a charac-

teristic short stature and low bodyweight. A recent analysis 

of 196 WS Japanese cases reported that mean height and 

bodyweight were 158.3 cm and 45.3 kg for male patients, and 

148.5 cm and 37.7 kg for female patients, respectively.38 In 

their 20s and 30s, WS individuals begin to manifest alopecia, 

greying hair, and scleroderma-like skin changes, followed by 

bilateral cataracts, type 2 diabetes mellitus, hypogonadism, 

skin ulcers, and osteoporosis.1
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A recent epidemiological study of 196 cases revealed 

that greying or loss of hair, bird-like faces, cataracts, and 

skin atrophy were present in 93% to 99%.38 Other common 

features were clavus or callus, skin ulcers, flat foot, abnor-

mality of the voice, and calcification in the Achilles tendon, 

observed in 80%–90% of the subjects.38 Similarly, a trend 

analysis in Japanese WS individuals revealed that bird-like 

faces and a stocky trunk with extremely thin extremities are 

still a hallmark of the disease, but the body size, which is 

also still small, has been expanding in recent years, in con-

cert with the growing constitution of the general Japanese 

population, and some patients exceeded 177 cm in height 

and weighed over 70 kg.33

Abnormal glucose and lipid metabolism, hypogonad-

ism, and bone deformity appear by the fourth decade of life 

in WS subjects.38 Impaired glucose tolerance is reported in 

15%–20% of WS subjects, diabetes mellitus in 55%–70%, 

and dyslipidemia in 60%–85%.38 Fertility in WS patients 

appears to decline soon after sexual maturity, and hypogonad-

ism has been reported in 40% of both sexes.38 Osteoporosis 

was observed in more than 60% of WS cases, while osteoar-

thritis has not been frequently reported in WS.33,38

For several years, the clinical diagnosis of WS was 

based on the presence of four cardinal signs (cataracts, skin 

changes, short stature, and greying or loss of hair), which 

are observable in more than 95% of the cases, as well as on 

additional signs (osteoporosis, voice change, atheroscle-

rosis, type 2 diabetes mellitus, and so on). For a definite 

diagnosis, all the cardinal signs (onset over 10 years old) 

and two additional signs should have been present. In addi-

tion, sequencing of the WRN gene could be performed, and 

the absence of normal WRN protein would be confirmed by 

Western blot analysis.4,35

Following more recent observations, revised diagnostic 

criteria have been proposed,38 including the following cardi-

nal signs and symptoms (onset over 10 years until 40 years 

of age): (1) progeroid changes of the hair (gray hair, bald-

ness, and so on); (2) cataracts (bilateral); (3) changes of the 

skin (atrophic skin, tight skin, clavus, callus); (4) soft-tissue 

calcification (Achilles tendon, and so on); (5) bird-like face; 

and (6) abnormal voice (high-pitched, squeaky, hoarse). 

Additional signs include abnormal glucose and/or lipid 

metabolism, deformation and abnormality of the bone (osteo-

porosis, and so on), malignant tumors, parental consanguin-

ity, premature atherosclerosis, hypogonadism, short stature, 

and low bodyweight. The diagnosis is confirmed if all the 

cardinal signs are present, or if there is a gene mutation in 

addition to at least three cardinal signs, and suspected if two 

or more cardinal signs are present, or if 1–2 cardinal signs 

in addition to other signs, are present.38

An unusual spectrum of cancers has been observed in 

WS subjects who usually die at a mean age of 53–54 years 

from cancer or arteriosclerosis.30 Controversy exists regard-

ing the degree of brain involvement in WS.1 A discussion of 

recent reports of cancer, atherosclerosis, and nervous system 

disorders in WS will be provided in the following sections.

Atherosclerosis and cancer in WS
Complications caused by atherosclerosis and cancer represent 

the major cause of death in WS subjects. Arteriosclerosis 

obliterans has been observed in more than 20% of WS 

subjects, and coronary heart disease in 11%–16% of them.38 

Less frequent are cerebral hemorrhage and cerebral infarc-

tion, observed in 2%–5% of cases.38 According to recent 

trend analyses, atherosclerosis in WS subjects might result 

from either abnormal lipid metabolism, or from inflamma-

tory mechanisms.33

Concerning the cancer incidence in WS individuals, 

339 (23%) out of the 1,487 WS cases described up to the 

end of 2008 were diagnosed with cancer,33 and a nationwide 

epidemiological study carried out in Japan from 2009 to 

2011 revealed that cancer occurred in more than 40% of the 

196 analyzed WS cases.38 Cancer in WS individuals often 

manifests with early age of onset, a high frequency of specific 

tumor types, including uncommon tumor types and unusual 

tumor sites, and with the presence of multiple tumors in 

individual patients.39

Lauper et  al39 have recently provided a detailed and 

quantitatively rigorous view of cancer type and associated 

type-specific risk in WS. Frequent neoplasms included: 

thyroid neoplasms (16.1%), malignant melanoma (13.3%), 

meningioma (10.9%), soft tissue sarcomas (10.1%), hemato-

logic/lymphoid cancers (9.3%), and osteosarcomas (7.7%). 

Other cancers, including nonmelanoma skin cancer, gastro-

intestinal cancer, ovarian cancer, genitourinary tract cancers, 

hepatobiliary cancer, head and neck carcinomas, and breast 

cancer, were observed in 3%–5% of the cases. Less frequent 

cancers (1%–2%) were those of the lung and central nervous 

system, as well as adrenocortical carcinomas.39 A trend 

analysis in Japan revealed that the average age of onset of 

malignancy in WS increased from 37 years old in 1966 to 

49 years old in 2008.33

Nervous system disorders in WS
We recently reviewed neurological abnormalities in pre-

mature aging disorders, and they are not constant findings 
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in WS.1 Brain atrophy has been observed in 40% of WS 

patients, but only a few cases of dementia or peripheral 

neuropathy have been reported. A few cases of dementia 

have been recorded, but the analysis of amyloid beta pep-

tide and hyperphosphorylated tau protein (the hallmarks of 

Alzheimer’s dementia) revealed that WS individuals do not 

usually appear to be susceptible to Alzheimer’s disease.1 

Myelopathy, demyelinization, and associated central and/

or peripheral neuropathy have been described in at least six 

patients.40–44 Schizophrenia of the paranoia type was also 

recorded in about 10% of patients.33

Genetics of WS
Typical WS is an autosomal recessive genetic disease. 

Therefore, the parents of a proband are obligate heterozy-

gotes for a disease-causing mutation, and at conception each 

sibling of an affected individual has a 25% chance of being 

affected and a 50% chance of being an asymptomatic carrier. 

Classical WS is caused by mutations of the WRN gene on 

chromosome 8. The locus spans approximately 250 kb and 

consists of 35 exons.34

More than 70 WRN gene mutations have been found in WS 

patients; these are mainly nonsense mutations, insertions, and/

or deletions, as well as splice mutations resulting in the pro-

duction of truncated proteins lacking the nuclear localization 

signal, with subsequent absence of functional WRN protein in 

nuclei.36,45 The WRN protein has several functional domains 

(Figure 2), and mutations leading to WS have been observed 

in all of them. There are founder mutations reported among 

Japanese patients (c.3139-1G.C, which results in skipping 

of exon 26) and in Sardinian patients (c.2089-3024A.G, 

which creates a new exon between exons 18 and 19).30,31 

Potential founder mutations have been reported for Dutch 

(c.3590delA, p.N1197fs), Turkish (c.3460-2A.G, exon 30 

deletion), and Moroccan (c.2179dupT, p.C727fs) patients.36 

The most common mutation in Caucasians is a stop codon 

mutation in exon 9 (c.1105C.T, p.R369X), accounting for 

approximately 20% of the mutations.45 Genetic screening 

combined with Western blot analysis are performed as routine 

diagnostic tests, and Figure 2 shows the most frequent muta-

tions observed by ethnic group.

Conclusion
Advancements in our understanding of the genetic and 

molecular basis of premature aging disorders have led to 

a better understanding of the onset and progression of the 

clinical manifestations. They include, for example, the recent 

discovery of high- and low-expressing LMNA alleles that 

might account for the different phenotypes observed in HGPS 

patients, a better characterization of the mutations leading to 

impaired or completely absent ZMPSTE24 protein activity, 

or those in the LMNA gene leading to atypical HGPS, overall 

accounting for a spectrum of disorders ranging from neonatal 

progeria to atypical WS.20–28

In parallel, the advancements in diagnostic examination 

techniques, and the creation of disease registers or databases 

allowing large case–control epidemiological studies in both 

HGPS and WS patients, have led to a better understanding of 

the epidemiology of disease-associated signs and symptoms. 

This has led, for example, to a proposed revision of the clini-

cal diagnostic criteria for WS, to the discovery that cerebral 

infarctions in HGPS are more frequent than expected, and 

N
Exonuclease

WRN protein

Helicase
RQC

HRDC

NLS
C

Common WRN gene mutations

Japanese population (founder effect): c.3139-1G>C → skipping of exon 26
Sardinian population (founder effect): c.2089-3024A>G → new exon between exons 18 and 19

Turkish population (suspected founder effect): c.3460-2A>G → deletion of exon 30

Caucasians (common mutation): c.1105C>T → p.R369X: stop codon mutation in exon 9
Moroccan population (suspected founder effect): c.2179dupT → p.C727fs

Dutch population (suspected founder effect): c.3590delA → p.N1197fs

Figure 2 Representation of the WRN protein and summary of the most common WRN mutations leading to Werner syndrome.
Notes: The diagram illustrates the functional domains of the WRN protein: exonuclease, helicase, RQC, HRDC, and the NLS. Over 70  insertion/deletion mutations, 
missense and nonsense mutations, as well as splice mutations have been found in the different domains of the WRN protein. Genetic screening is performed as routine 
diagnostic tests, and the figure shows the most frequent mutations observed according to ethnic group.
Abbreviations: RQC, RecQ C-terminal domain; HRDC, helicase and RNase D C-terminal domain; NLS, nuclear localization signal; N, amino terminal; C, carboxyl terminal.
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to a better understanding of cancer incidence in WS, among 

others.12,38,39

Treatments for HGPS and WS are only available for the 

symptoms rather than for the disease itself. For example, 

aggressive treatment of skin ulcers, cholesterol-lowering 

drugs if the lipid profile is abnormal, control of type 2 

diabetes mellitus, surgical treatment of cataracts, and treat-

ment of malignancies in a standard fashion are among the 

available medicaments in WS, which are often accompanied 

by dietary/physical regimens to reduce atherosclerosis risk.1

Similarly, drugs, dietary changes, and exercise are 

recommended for HGPS individuals to counteract athero-

sclerosis risk, body fat reduction, and atrophy of muscles.1 

Interestingly, the results of the first clinical trial in HGPS 

revealed that lonafarnib, a farnesyltransferase inhibitor, 

resulted in better hearing, improved bone structure, and led 

to gaining additional weight and/or to increased flexibility 

of the blood vessels.46 In this regard, recent trend analyses 

in Japanese WS patients are extremely important,33 as they 

showed a delayed onset of typical progeroid phenotypes in 

WS, which may be explained by the environmental changes 

including lifestyle and medical improvements, thereby offer-

ing a potential for interventional trials.

It is clear from that survey that, in recent years, there 

has been a trend toward an increase in body size in WS 

patients, as well as a delayed average age at onset of malig-

nancies that follow the rapid improvement and changes in 

the average lifespan and lifestyle in the general popula-

tion all over the world.33 The future will be to combine 

genetic, diagnostic, and epidemiological data in order to 

clarify several of these gene–environment interactions and 

their relevance to the onset of disease-related symptoms. 

In addition, as recently shown by some authors studying 

HGPS patients,28 a deeper characterization of the genetics 

of prematurely aged individuals might help to explain and 

predict the onset and progression of some of the symptoms, 

since several of these symptoms might result from the 

combined presence of different mutations in the same or 

different genes, thereby opening a window for personal-

ized interventions.
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