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Abstract

With the development of new advances in hepatocellular carcinoma (HCC) manage-

ment and noninvasive radiological techniques, high‐risk patient groups such as those

with hepatitis virus are closely monitored. HCC is increasingly diagnosed early, and

treatment may be successful. In spite of this progress, most patients who undergo a

hepatectomy will eventually relapse, and the outcomes of HCC patients remain

unsatisfactory. In our study, we aimed to identify potential gene biomarkers based

on RNA sequencing data to predict and improve HCC patient survival. The gene

expression data and clinical information were acquired from The Cancer Genome

Atlas (TCGA) database. A total of 339 differentially expressed genes (DEGs) were

obtained between the HCC (n = 374) and normal tissues (n = 50). Four genes

(CENPA, SPP1, MAGEB6 and HOXD9) were screened by univariate, Lasso and mul-

tivariate Cox regression analyses to develop the prognostic model. Further analysis

revealed the independent prognostic capacity of the prognostic model in relation to

other clinical characteristics. The receiver operating characteristic (ROC) curve analy-

sis confirmed the good performance of the prognostic model. Then, the prognostic

model and the expression levels of the four genes were validated using the Gene

Expression Omnibus (GEO) dataset. A nomogram comprising the prognostic model

to predict the overall survival was established, and internal validation in the TCGA

cohort was performed. The predictive model and the nomogram will enable patients

with HCC to be more accurately managed in trials testing new drugs and in clinical

practice.
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1 | INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most frequently

diagnosed malignancies and the third leading cause of cancer‐

related mortality, and the incidence and mortality of this cancer

are increasing yearly.1 Importantly, the 5‐year survival rate of

patients with HCC is only 12%. Therefore, prognostic biomarkers

are needed to help predict the outcome for HCC patients and to

outline an individualized treatment plan. Age, clinical staging and

vascular tumour invasion are important contributors to clinicalJunyu Long, Lei Zhang and Xueshuai Wan are Equal contributors.
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outcomes and may also help improve survival forecasts.2 However,

traditional clinical information has a limited predictive power

because of the complex molecular mechanisms of tumour regula-

tion. Therefore, there is a strong need to explore new tools,

such as molecular markers, to predict patient prognosis more

accurately.

In this genomic era, a large number of genome‐sequencing tech-

nologies and data have emerged.3 These tools have made great con-

tributions to tumour diagnosis and prognosis prediction. RNA

sequencing is a recently developed deep‐sequencing method that

can recognize splice variants, unmapped genes and spliced unrecog-

nized noncoding RNAs. Using the lung adenocarcinoma (LUAD) data-

set of The Cancer Genome Atlas (TCGA), Anlin Feng et al4 found

that the overall survival (OS) of LUAD patients with high HMGB1

expression was poor, demonstrating that these novel next‐generation
sequencing approaches and data can identify clinical biomarkers of

cancer. Similarly, we predicted the prognosis of HCC patients using

high‐throughput sequencing of biomarkers.

In this study, we aimed to explore the difference in the mRNA

expression profiles of HCC and the adjacent liver to identify poten-

tial gene biomarkers using TCGA data. We established a four‐gene
prognostic model that included CENPA, SPP1, MAGEB6 and HOXD9

based on our RNA sequencing survival analysis. The risk‐coefficient
model was validated in the Gene Expression Omnibus (GEO). Func-

tional analysis of the predictive genes was performed. The expres-

sion profiles of the predictive genes were verified in GEO and by

immunohistochemical staining with HCC samples in the Human Pro-

tein Atlas. A predictive nomogram was built and internally validated

in the TCGA cohort. As a whole, this prognostic model and nomo-

gram might be helpful in guiding the prognostic status of patients

with HCC.

2 | MATERIALS AND METHODS

2.1 | Data source

The mRNA expression profiles and the corresponding clinical infor-

mation from the patients with HCC were obtained from the TCGA,

which was calculated on an Illumina HiSeq RNA‐seq platform, con-

taining 374 HCC tissues and 50 adjacent nontumourous liver tissues

as of January 1, 2018. The data from the TCGA are publicly available

and open‐access; therefore, the local ethics committees did not need

to approve the study because the current research follows the TCGA

data access policies and publication guidelines.

2.2 | Differentially expressed mRNA screening
between HCC and noncancer tissues

First, we obtained the raw counts of the HCC mRNA expression

profiles from the TCGA databases. The RNA sequencing data of

HCC included 57 000 mRNA expression profiles. Then, the differen-

tially expressed genes (DEGs) were calculated using the DESeq R

package. The DEGs of the dataset with an absolute log2 fold change

(FC) > 4 and an adjusted P value of <0.001 were considered for

subsequent analysis.

2.3 | Definition of the gene‐related prognostic
model

Univariate, Lasso and multivariate Cox regression analyses were

employed to investigate the correlation between patient OS and the

expression level of each gene. The gene was considered significant

when the P value was <0.001 in the univariate Cox regression analy-

sis. Next, we applied a Lasso‐penalized Cox regression to further

reduce genes for patients with HCC. For the Lasso‐penalized Cox

regression selection operator, we subsampled the dataset with

replacement 1000 times and selected the markers with repeat occur-

rence frequencies of more than 900. The tuning parameters were

determined according to the expected generalization error estimated

from 10‐fold cross‐validation and information‐based criteria Akaike

Information Criterion/Bayesian Information Criterion (AIC/BIC), and

we adopted the largest value of lambda such that the error was

within one standard error of the minimum, called “1‐se” lambda.

Finally, a multivariate Cox regression analysis was conducted to

assess the contribution of a gene as an independent prognostic fac-

tor for patient survival. A stepwise method was employed to further

select the best model. A four‐gene‐based prognosis risk score was

established based on a linear combination of the regression coeffi-

cient derived from the multivariate Cox regression model (β) multi-

plied with its expression level. The Prognosis Index (PI) = (β*

expression level of CENPA) + (β* expression level of SPP1) + (β*

expression level of MAGEB6) + (β* expression level of HOXD9). The

optimal cut‐off value was found using X‐tile software.5 Thresholds

for the scores that were outputted from the prognostic model that

were applied to classify patients into low‐ and high‐risk groups were

defined as the scores that yielded the largest χ² value in the Mantel‐
Cox test. The 365 HCC patients with survival data were separated

into low‐ and high‐risk groups based on the optimal cut‐off value.

The Kaplan‐Meier (K‐M) survival curves for the cases with a low or

high risk were produced. Time‐dependent receiver operating charac-

teristic (ROC) curve analyses were conducted to evaluate the predic-

tive power of the prediction model. Then, the prognostic model was

validated in the GEO dataset (GSE54236).

2.4 | Independence of the prognostic model from
other clinical characteristics

To determine whether the predictive power of the prognostic model

could be independent of other clinical variables (including age, AFP,

sex, weight, inflammation, histologic grade, family history, pathologic

stage, tumour grade and vascular tumour invasion) for patients with

HCC, univariate and multivariate Cox regression analyses were con-

ducted, with the other traditional clinical characteristics as indepen-

dent variables and the OS as the dependent variable. All reported

P values were two‐sided. The hazard ratio (HR) and 95% confidence

intervals were calculated.
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2.5 | Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses of the 4 protein‐
coding genes were performed using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) Bioinformatics Tool,

version 6.8.

2.6 | External validation of the expression patterns
of the four genes

We also attempted to validate the expression patterns of the four

genes in the TCGA; thus, the expression levels of these four

mRNAs from GEO (GSE54236) were extracted for further analysis.

The differentially expressed patterns of the four genes between

the HCC and nontumourous tissues were analysed in Prism 6.0

(GraphPad, San Diego, CA, USA) using the Wilcoxon signed‐rank
test. The P values are two‐sided, and P < 0.05 indicates statistical

significance.

2.7 | Building and validating a predictive nomogram

Nomograms are widely applied to predict cancer patients’ prognoses,
mainly because they can reduce the statistical prediction models into

a single numerical assessment of the probability of OS that is tai-

lored to the profile of an individual patient.6 In this study, the com-

bined model based on all independent prognostic factors selected by

the multivariable Cox regression analysis was used to construct a

nomogram to assess the probability of 1‐, 3‐, and 5‐year OS for

patients with HCC. Subsequently, validations, including discrimina-

tion and calibration, were performed. The discrimination of the

nomogram was calculated using the concordance index (C‐index) by
a bootstrap method with 1000 resamples. The value of the C‐index
ranged from 0.5 to 1.0, of which 1.0 indicates a perfect capacity to

correctly distinguish the outcome with the model and 0.5 indicates a

random chance. The calibration curve of the nomogram was evalu-

ated graphically by plotting the nomogram prediction probabilities

against the observed rates. Overlapping with the reference line

demonstrated that the model was in perfect agreement. At the same

time, we also constructed nomograms built with a single significant

prognostic factor and compared the predictive accuracy between

them and the combined model using the C‐index, ROC analysis and

the decision curve analysis (DCA). DCA was initially used as a novel

analytical technique that incorporated the clinical consequences of a

decision to quantify the clinical utility of a prediction nomogram.

Therefore, the DCA can decide whether the predictive nomogram is

clinically useful or not. The best model is one with a high net benefit

as calculated within the favourable probability.

3 | RESULTS

3.1 | Differentially expressed mRNAs between HCC
and normal tissue

To describe our study more clearly, a flow chart of the analysis pro-

cedure was developed (Figure 1). A total of 339 differentially

expressed mRNAs (logFC > 4 or logFC < −4, adjusted P < 0.001)

adjusted for false discovery rate were identified in the mRNA

expression profiles of HCC tissues (n = 374) compared with normal

tissues (n = 50; Figure 1). Among them, 16 mRNAs were overex-

pressed, and 323 mRNAs were downregulated (Figure S1), which

were further investigated with regard to their prognostic value.

F IGURE 1 Overall workflow describing the process used to develop and validate the prognostic model to predict prognostic outcomes
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3.2 | The risk stratification and ROC curve indicate
a good performance for the prognostic model in
predicting the OS of HCC patients

We conducted a univariate Cox regression to investigate the correla-

tion of the differentially expressed genes with the OS of HCC

patients and identified 25 genes significantly related to OS in HCC

patients when the P value was <0.001. Then, after primary filtration,

a Lasso‐penalized Cox analysis with penalty parameter tuning per-

formed via 10‐fold cross‐validation was established to further narrow

the mRNAs in which we required selected mRNAs to appear over

900 times of a total of 1000 repetitions (Figure S2). As a result, 7

mRNAs were identified. Finally, a stepwise multivariate Cox regres-

sion analysis was conducted, and four genes were finally selected to

build a predictive model. The predictive model was characterized by

the linear combination of the expression levels of the four genes

weighted by their relative coefficient in the multivariate Cox regres-

sion as follows: risk score = (0.2013 * expression level of CENPA) +

(0.0967* expression level of SPP1) + (0.1310 * expression level of

MAGEB6) + (0.0937 * expression level of HOXD9). All of the genes,

including centromere protein A (CENPA), secreted phosphoprotein 1

(SPP1), MAGE family member B6 (MAGEB6) and homeobox D9

(HOXD9), showed positive coefficients in the Cox regression analy-

sis, implying high‐risk signatures for these four genes, because their

high expression signified a shorter OS of the patients. For the 365

patients with survival time in this study, we calculated the four‐gene
expression risk score and used X‐tile diagrams to produce the opti-

mal cut‐off value for the risk score (Figure S3 A). A total of 149

patients were classified as high risk because their risk score was

greater than the cut‐off value, while the other 216 patients were

assigned to the low‐risk group, with risk scores below the cut‐off
point (Figure S4 A). The K‐M OS curves of the two groups, based on

the four genes, were significantly different (median OS, 3.42 years

vs 6.15 years, P < 0.0001; Figure 2A). The prognostic capacity of

the four‐gene signature was assessed by calculating the AUC of a

time‐dependent ROC curve (Figure 2A). The higher the AUC, the

better the model performance. The AUCs of the four‐gene biomarker

prognostic model were 0.7561, 0. 7674, 0.7366, 0.7040 and 0.6919

for the 0.5, 1, 2, 3 and 5‐year survival times, respectively, indicating

that the forecast model had a high sensitivity and specificity

(Figure 2A).

3.3 | The prognostic model is independent of
conventional clinical factors

Univariate and multivariate Cox regression analyses were used to

evaluate the independent predictive value of the four‐gene prognos-

tic model in 173 HCC patients with complete clinical information

from the TCGA HCC cohort. The prognostic model and clinical

covariates of pathologic stage and vascular tumour invasion had

some prognostic value with the univariate Cox regression analysis.

However, age, AFP, sex, weight, inflammation, histologic grade and

family history did not correlate with OS (Figure 3; Table S1).

Considering that age almost reached statistical significance, we

incorporated age, pathologic stage, vascular tumour invasion and the

prognostic model into the multivariate Cox regression analysis. After

the multivariate Cox regression analysis, the age, the pathologic

stage and the prognostic model were independent prognostic factors

associated with OS (Figure 3; Table S1).

3.4 | Prediction condition of the prognostic model
in the GEO dataset

To evaluate the predictive value of the prognostic model in predict-

ing the OS for the patients with HCC in other datasets, the prognos-

tic model was assessed in the GEO microarray data (GSE54236).7 A

total of 78 patients in the GSE54236 data were classified into a

low‐risk group (n = 59) and a high‐risk group (n = 19) using the opti-

mal risk cut‐off value of the GEO data and the same risk score

model of the TCGA data (Figures S3B and S4B). Consistent with the

result in the TCGA, the OS of the HCC patients in the GSE54236

data in the high‐risk group was significantly lower than that in the

low‐risk group (median survival: 0.99 years vs 2.26 years;

P < 0.0001; Figure 2B). The 3‐year survival rates were 25% in low‐
risk patients and 0% in high‐risk patients. In addition, the time‐
dependent ROC analyses for the survival prediction of the prognos-

tic model obtained AUCs of 0.8470 at 0.5 years, 0.7799 at 1 year,

0.6862 at 2 years and 0.5873 at 3 years, demonstrating that this

prognostic model was capable of predicting OS in HCC patients

(Figure 3B). The AUC at 5 years was not shown in Figure 2B

because no patients in the GEO validation set survived for more

than 5 years.

3.5 | Functional enrichment analysis

To elucidate the functional characteristics of the identified protein‐
coding genes, we performed enrichment analyses of the GO and

KEGG pathways, which showed that a total of 1 GO term and 4

KEGG pathways were enriched by the four‐gene signature (P < 0.05;

Figure S5). The results showed that the genes were enriched in

skeletal system development function and ECM‐receptor interaction,
the Toll‐like receptor signalling pathway, focal adhesion and the

PI3K‐Akt signalling pathway.

3.6 | Validation of the expression of the four
mRNAs

In the TCGA HCC cohort, all four genes were highly expressed in

HCC compared with their expression in the adjacent nontumourous

liver tissues (Figure 4A). To further confirm the expression patterns

of the four genes in the GEO database, they were selected from

GSE54236. The transcriptome profiling data in the GSE54236 data-

set contained 78 patients, including 78 adjacent nontumour samples

and 78 HCC samples. Consistent with our results, the mean expres-

sion levels of CENPA, SPP1 and HOXD9 were significantly higher

than those of noncancerous liver tissues in the GEO database
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(Figure 4B). However, due to the small size of the patients, no signif-

icant differences were found in MAGEB6 expression (Figure 4B). To

determine the clinical relevance of the expression of the four genes,

we analysed the expression of the proteins encoded by the four

genes using clinical specimens from the Human Protein Profiles

(www.proteinatlas.org).8 SPP1 was strongly positive in HCC and

CENPA, and MAGEB6 was weakly positive in HCC, relative to their

expression levels in normal liver tissue (Figure 4C). However,

HOXD9 was not found on the website.

3.7 | Building and validating a predictive nomogram

To establish a clinically applicable method for predicting the survival

probability of patients with HCC, we developed a nomogram to pre-

dict the probability of the 1‐, 3‐ and 5‐year OS in the TCGA cohort.

The predictors of the nomogram included three independent prog-

nostic factors (age, pathologic stage and prognostic model;

Figure 5A). The C‐index for the model for evaluation of OS was

0.69, with 1000 cycles of bootstrapping (95% confidence interval:

F IGURE 2 K‐M and time‐dependent ROC curves for the prognostic model in the TCGA HCC cohort (A) and in the GEO HCC cohort. The
K‐M survival curves show the overall survival based on the relative high‐ and low‐risk patients divided by the optimal cut‐off point. Time‐
dependent ROC curve analysis of survival prediction by the prognostic model
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0.61, 0.77). Calibration plots were used to visualize the perfor-

mances of the nomograms. The 45° line represented the best predic-

tion. Calibration plots showed that the nomogram performed well

(Figure 5B). At the same time, we compared the accuracy of the pre-

diction between this nomogram and the age, pathologic stage and

prognostic model. Compared with the age, pathologic stage and

prognostic model, the performance of nomogram discrimination was

significantly higher than that of the age, pathologic stage and prog-

nostic model (Table 1). The AUC of the nomogram was also the lar-

gest (Figure 6A). The clinical usefulness was assessed using DCA.

The nomogram showed the best net benefit (Figure 6B). These find-

ings demonstrate that compared with nomograms built with a single

prognostic factor, the nomogram built with the combined model is

the best nomogram for predicting survival for patients with HCC,

whether in the short or long term, which might facilitate patient

counselling, decision‐making and follow‐up scheduling.

4 | DISCUSSION

HCC remains one of the deadliest malignant tumours worldwide

because of its complicated molecular and cellular heterogeneity,

and its incidence increases every year.9 Therefore, understanding

HCC biology may offer clinicians new tools that can be used to

treat the disease. Comprehensive genomic studies showing the

effects of RNA have received considerable attention. Many

potential and valuable mRNAs must be identified to improve the

clinical outcome for HCC patients. However, the number of specific

biomarkers that can be used to show therapeutic effects is still

small, and prognostic factors are important for the treatment of

HCC patients. Therefore, to reduce mortality and improve HCC

prognosis, there is an urgent need for the molecular screening of

biomarkers of HCC.

In our study, we investigated the differences in gene expres-

sion between HCC and adjacent nontumour liver tissues to identify

potential gene biomarkers using the TCGA database. The differen-

tially expressed genes were screened, and univariate, Lasso and

multivariate Cox analyses were conducted to build a risk model to

predict HCC prognosis. We identified four genes: CENPA, SPP1,

MAGEB6 and HOXD9. High expression levels of CENPA, SPP1,

MAGEB6 and HOXD9 were relevant to a poor prognosis in HCC

patients. The AUCs of the ROC curve for the prognostic model for

predicting the 0.5, 1, 2, 3 and 5‐year survival were 0.7561, 0.

7674, 0.7366, 0.7040 and 0.6919, respectively, indicating that the

four‐gene signature had a good performance for survival prediction.

With the mRNA‐based risk scoring prognostic model, the patients

with HCC were divided into a high‐risk group and a low‐risk
group. The clinician can change the patient's treatment plan based

on the predicted outcome of the model to achieve individualized

treatment of liver cancer patients. Strategies should be established

to prevent or detect HCC recurrence early in high‐risk populations.

Therefore, high‐risk groups should be followed more frequently,

F IGURE 3 Univariate and multivariate association of the prognostic model and clinicopathological characteristics with overall survival. Red
represents no statistical significance, and blue represents statistical significance
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and chest and abdomen CT scans should be performed regularly

to diagnose the recurrence of HCC early. The prognostic model

may also be a useful guide to determine the organ allocation for

secondary liver transplantation of HCC patients initially treated

with partial hepatectomy. Patients with poor prognosis predicted

by the prognostic model may not be suitable for cadaveric liver

transplantation.

We also demonstrated that the prognostic model was indepen-

dent of other clinical factors in HCC. The prognostic model was used

to predict the GEO dataset (GSE54236) to test its predictive power,

and the expression levels of the four genes were also validated.

Using the enrichment and functional analysis and the DAVID and

KEGG bioinformatics tools, we found that the GO functions of the

four genes were enriched in skeletal system development (P value

<0.05), and the KEGG pathways were enriched in ECM‐receptor
interaction, the Toll‐like receptor signalling pathway, focal adhesion

and the PI3K‐Akt signalling pathway.

A nomogram is a statistical tool that provides the individual

patient with the overall probability of a particular outcome. In this

study, we constructed a nomogram built with a combined model to

accurately predict the likelihood of OS in patients with HCC. The

calibration plots indicated that actual survival corresponded closely

with predicted survival, suggesting that the predictive performance

of the nomogram was good. Meanwhile, we demonstrated that the

nomogram built with the combined model is the best by C‐index,
AUC and DCA compared with other nomograms built with a single

risk factor.

SPP1 (also known as osteopontin) is a multifunctional cytokine

expressed by cells from various tissues.10 SPP1 takes part in many

physiological and pathological processes, including drug resistance,

cell proliferation, invasion, survival, stem‐like behaviour and tumour

metastasis. SPP1 overexpression effectively increases HCC growth

and metastasis.11

The HOX gene family is a network of genes that encode

DNA‐binding proteins.12 This family is highly conserved throughout

the whole evolution process and is involved in many signal trans-

duction pathways, such as cell development, migration and differ-

entiation.12,13 HOXD9 is a member of the homeobox gene

family.14 HOXD9 showed high upregulation in invasive HCC cells.

The high expression of HOXD9 is related to the invasion,

F IGURE 4 The four prognostic genes are upregulated in human HCC specimens. A, The expression profiles of the four genes in the TCGA
liver cancer RNA‐seq (n = 371) dataset. B, GEO data showing the expression profiles of the four prognostic genes in normal liver (n = 78) vs
tumour tissue (n = 78); P < 0.01 (*), P < 0.001 (**) and P < 0.0001 (***). C, The expression profiles of the four genes in the normal liver tissue
and HCC specimens. Images were taken from the Human Protein Atlas (http://www.proteinatlas.org) online database
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migration and metastasis of HCC. HOXD9 leads to mesenchymal‐
epithelial transition (MET), and silencing HOXD9 promotes MET in

liver cancer cells. HOXD9 may be an effective therapeutic target

for HCC.

MAGEB6, a protein‐coding gene, is expressed in testis tissue

and a wide variety of different histological types of tumours.15

MAGEB6 belongs to the MAGEB gene family.15 For all members of

this gene family, the entire coding sequence is located in the last

exon, and the sequence identity of encoded proteins reaches 50%‐
68%.16,17 Cancer‐testis antigens (CTAs) are expressed in diverse

histological types of malignant tumours, yet they are seldom

expressed in normal somatic tissues except for immunoprivileged

gametogenic tissues, which indicates a similarity between the

gametogenesis and tumourigenesis processes.18 CTAs exhibit a

strong immunogenicity and a specific expression pattern, making

them a promising target.19 CTAs or peptides derived from CTAs

can be used for cancer vaccination due to their immunogenicity.19

Currently, there are over 100 identified CT genes from 44 different

families.20 Due to the special expression pattern and antigenicity of

CT genes, an increasing number of CTA‐related biomarkers and

therapeutic cancer vaccines have been reported for use in early

clinical diagnosis as well as prognostic prediction.21,22 Peptides

derived from CTAs are being extensively tested in clinical trials for

many types of cancers, such as lung cancer and head and neck

cancer.23,24 In HCC, a large number of CTA genes show validated

expression at the RNA level, including members of the MAGE‐A,
MAGE‐B, and MAGE‐C families.25 As of now, the best‐character-
ized CTAs in HCC are the MAGE antigens.26 In particular, up to

45%‐52% of all HCCs express the MAGEB1 antigen, and up to

60%‐62% of all HCCs express the MAGEB2 antigen.26 However,

the expression pattern of MAGEB6 in HCC has not previously

been elucidated. In this study, we show for the first time that

MAGEB6 is highly expressed in HCC based on RNA‐seq data in

the TCGA database, and its use in the prognostic model was found

to independently predict the prognosis of patients with HCC, simi-

lar to its predictive utility in head and neck squamous cell carci-

noma (HNSCC). MAGEB6 was found to be frequently expressed in

HNSCC, and there is a clear association between MAGE6B mRNA

positivity and recognized clinical characteristics of unfavourable

prognosis, which suggests that MAGE6B may be an interesting tar-

get for HNSCC immunotherapy treatment.27 Therefore, because

CTAs are capable of eliciting spontaneous antitumour immune

responses, the CTA member MAGEB6 is a promising candidate

F IGURE 5 Nomogram predicting 1‐, 3‐ and 5‐y OS for patients with HCC (A). The nomogram is applied by adding up the points identified
on the points scale for each variable. The total points projected on the bottom scales indicate the probability of 1‐, 3‐ and 5‐y OS. The
calibration curve for predicting 1‐, 3‐ and 5‐y OS for patients with HCC (B). The Y‐axis represents actual survival, as measured by K‐M analysis,
and the X‐axis represents the nomogram‐predicted survival

TABLE 1 Comparison of the nomogram with age, pathologic
stage and the combined model

Models C‐index (95%, CI) P‐value

Age model 0.58 (0.49‐0.67) ‐

Pathologic stage model 0.57 (0.50‐0.64) ‐

Prognostic model 0.65 (0.57‐0.72) ‐

Nomogram (Combined model) 0.69 (0.61‐0.77) ‐

Nomogram vs age model ‐ <0.05

Nomogram vs pathologic stage model ‐ <0.01

Nomogram vs prognostic model ‐ <0.05
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biomarker for future HCC immunotherapy and is of great impor-

tance in the development of cancer vaccines for clinical trials.

To our knowledge, the four‐gene biomarkers have not been pre-

viously studied and will provide some clinical indications for the

development of new prognostic factors for HCC. One of the advan-

tages of our predictive genes is that they do not require the identifi-

cation of somatic mutations in patients. In addition, our approach

greatly reduces the cost of sequencing, which makes the application

of targeted sequencing based on specific genes more cost‐effective
and routine. In future, we plan to use single cell transcriptome

sequencing in circulating tumour cells to detect the expression of

these four genes in patients who are poor candidates for surgery.

Accurate prognostic evaluation is crucial for selecting the suitable

treatment. In routine clinical practice, pathologic stage is a key prog-

nostic determinant in HCC for oncologists and patients.28 Neverthe-

less, clinical outcomes differ among patients with the same cancer

stages, indicating that current staging systems are insufficient for

prognosis. The current pathologic stage is entirely based on the

anatomical extent of the disease, and the staging system cannot fully

reflect the biological heterogeneity of HCC patients. These problems

may influence the prediction accuracy of traditional systems for

HCC patients. Our nomogram is the first model to combine genetic

information with HCC clinical data to predict patient outcomes.

Compared with the traditional pathologic stage, the predictive power

of the nomogram is increased by 12% (C‐index: 0.57 vs 0.69;

P < 0.01), and this nomogram may become routinely used in the

future.

However, several limitations of the current study should be

considered. First, the population ethnicities in the TCGA database

are mainly confined to White people and Black people, and extrap-

olating the findings to other ethnic groups needs to be substanti-

ated. Second, our nomogram did not perform external validation in

the GEO database because the GSE54236 lacks clinical data, and a

robust nomogram should be validated externally in different

cohorts; thus, the nomogram needs to be further validated in multi-

center clinical trials and prospective studies. In future, we will also

explore the possibility of containing more prognostic variables to

further improve performance. Other regression modelling methods

will be applied to determine whether predictive accuracy can be

further improved.

To sum up, our research results indicate that the four‐mRNA

prognostic model is a reliable tool for predicting the OS of HCC

patients, and a nomogram comprising a prognostic model can assist

clinicians in selecting personalized treatment for patients with HCC.

F IGURE 6 The time‐dependent ROC and DCA curves of the nomograms. Time‐dependent ROC curves analysis evaluates the accuracy of
the nomograms (A). The black, red, green or blue solid line represents the nomogram. The DCA curves can intuitively evaluate the clinical
benefit of the nomograms and the scope of application of the nomograms to obtain clinical benefits (B). The net benefits (Y‐axis) as calculated
are plotted against the threshold probabilities of patients having 1‐, 3‐ and 5‐y survival on the X‐axis. The orange dotted line represents the
assumption that all patients have 1‐, 3‐ and 5‐y survival. The grey solid line represents the assumption that no patients have 1‐, 3‐ or 5‐y
survival. The black, red, green or blue solid lines represent the nomograms
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