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Renal cell carcinoma (RCC) is among the most lethal urological malignancies once
metastatic. The introduction of immune checkpoint inhibitors has revolutionized the
therapeutic landscape of metastatic RCC, nevertheless, a significant proportion of
patients will experience disease progression. Novel treatment options are therefore still
needed and in vitro and in vivo model systems are crucial to ultimately improve disease
control. At the same time, RCC is characterized by a number of molecular and functional
peculiarities that have the potential to limit the utility of pre-clinical model systems. This
includes not only the well-known genomic intratumoral heterogeneity (ITH) of RCC but
also a remarkable functional ITH that can be shaped by influences of the tumor
microenvironment. Importantly, RCC is among the tumor entities, in which a high
number of intratumoral cytotoxic T cells is associated with a poor prognosis. In fact,
many of these T cells are exhausted, which represents a major challenge for modeling
tumor-immune cell interactions. Lastly, pre-clinical drug development commonly relies on
using phenotypic screening of 2D or 3D RCC cell culture models, however, the problem of
“reverse engineering” can prevent the identification of the precise mode of action of drug
candidates thus impeding their translation to the clinic. In conclusion, a holistic approach
to model the complex “ecosystem RCC”will likely require not only a combination of model
systems but also an integration of concepts and methods using artificial intelligence to
further improve pre-clinical drug discovery.

Keywords: renal cell carcinoma, intratumoral heterogeneity (ITH), drug development, patient-derived xenografts
(PDX), preclinical studies
INTRODUCTION

Metastatic renal cell carcinoma (RCC) is among the most lethal urological malignancies (1, 2). These
tumors are largely resistant to conventional chemo- or radiotherapy but vulnerable to immune
modulatory treatment and agents that target the VEGF/VEGFR axis (3). The notion that
spontaneous remissions can occur in RCC has spurred efforts to harness the patient’s antitumoral
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immune response (4, 5). Initially, this was attempted by using
immune stimulatory cytokines such as interleukin-2 alone or in
combination with interferon-alpha (6). This early form of
immunotherapy was found to lead to remarkably durable
responses, however, only in a relatively small subgroup of patients
(7). Nevertheless, this observation has stimulated more in-depth
research into the mechanisms of immune evasion that culminated
in the development of immune checkpoint inhibitors (ICIs) (8). The
period between the cytokine and the ICI eras was dominated by
VEGF/VEGFR targeting agents, most prominently tyrosine kinase
inhibitors (TKIs) such as sunitinib (9). This treatment approach was
based on a better understanding of the basic biology in particular of
clear cell RCC (ccRCC), which commonly harbors an inactivation
of the VHL gene and deregulation of the HIF/VEGF transcriptional
network (3). Currently, combination therapies of ICIs and TKIs
such as pembrolizumab and axitinib are the standard of care for
patients with metastatic ccRCC (10). Despite the recent innovations
in the therapeutic landscape, a significant proportion of patients will
experience disease progression within a year or two after the
initiation of systemic treatment (11). Hence, there is still an
urgent need for new approaches to treat patients with advanced
RCC. As highlighted in this Special Issue, suitable model systems are
pivotal for successful pre-clinical drug development. At the same
time, RCC is characterized by several peculiarities that need to be
taken into consideration when using and developing RCC
model systems.
RCC SUBTYPES: ONE SIZE DOES NOT
FIT ALL

While ccRCC represents the most common form of kidney cancer
(approximately 75%), several other subtypes with non-clear cell
RCC (nccRCC) histology such as papillary (approximately 10-
20%) or chromophobe (approximately 5-7%) RCC exist. In fact,
the 2016 WHO classification of tumors of the kidney lists more
than 50 entities including 15 entities of renal cell tumors besides
ccRCC (12). Among the newly included renal cell tumors in the
2016 WHO classification were some entities with specific
molecular alterations such as fumarate hydratase (FH)-deficient
RCC, succinate dehydrogenase (SDH)-deficient renal carcinoma
and others such as tubulocystic RCC, clear cell papillary RCC and
acquired cyctic disease-associated RCC (12, 13). There is a
remarkable and still emerging diversification in the classification
of papillary RCC that goes beyond the “classical” type 1 and type 2
subtypes (13). Emerging variants of papillary renal tumors are for
example, papillary renal neoplasm with reversed polarity, biphasic
squamoid/alveolar RCC, biphasic hyalinizing psammomatous
RCC or thyroid-like follicular RCC (14). There are also RCCs
that are defined by gene translocations such as the MiT family
translocation RCCs (harboring TFE3 or TFEB translocations) or
ALK-translocated RCCs, which frequently show aggressive growth
characteristics (14).

Since nccRCCs are relatively rare, only a limited number of
randomized, prospective clinical trials exist (15). Treatment
modalities that have been extrapolated from ccRCC such as
Frontiers in Oncology | www.frontiersin.org 2
VEGF- or mTOR-targeting agents have been explored in
metastatic nccRCC, however, with suboptimal results (16, 17).
A randomized phase II trial has shown a progression-free
survival benefit with the MET inhibitor cabozantinib over
sunitinib in patients with metastatic papillary RCC, in which
MET alterations are enriched (18). In line with this finding, the
MET inhibitor savolitinib was found to show efficacy in MET-
driven papillary RCC (19). Recent phase II trials that explore
immune checkpoint inhibitors alone or in combination with
cabozantinib in nccRCC show promising activity in patients with
papillary RCC but at the same time highlight the therapeutic
problem of chromophobe RCC (20, 21). Most nccRCC cell line
and patient-derived xenograft (PDX) models have been
established for the “classical” papillary RCC (22) and there is
an urgent need to further expand model systems to other, less
common nccRCC entities, including chromophobe RCC, for a
further optimization and individualization of pre-clinical
drug discovery.
GENOMIC AND FUNCTIONAL
INTRATUMORAL HETEROGENEITY (ITH)

In a seminal study published in 2012, metastatic ccRCC was
shown to be characterized by a high degree of genomic ITH with
indications for evolutionary processes with clonal (“truncal”)
and subclonal mutations (23). These findings were later
conceptualized in a new classification of ccRCC based on
evolutionary subtypes (24). The proposed seven subtypes of
ccRCC show distinct combinations of clonal and subclonal
alterations including a sequence of mutational events (24).
PDX models of RCC have been suggested to reflect, at least to
a certain degree, the ITH found in the tumor of origin (25, 26).
While it is conceivable that truncal driver aberrations in genes
such as VHL or PBRM1 are preserved, it remains unclear
whether PDX models can reflect the entire spectrum of
subclonal driver mutations due to an inevitable sampling bias.
Subclonal drivers can not only promote tumor expansion but
have also been implicated as a therapeutic target or in the
development of drug resistance (27). Moreover, subclonal as
well as certain clonal drivers have been reported to show a
regional variability (28). Hence, models of RCC that rely
on regional sampling of the patient tumor are likely to
underestimate the number and spectrum of driver events. This
shortcoming may lead to an overestimation of drug efficacy and
an underestimation of drug resistance. In this context, it is
noteworthy that some widely used ccRCC cell line models do
not harbor inactivated VHL (29) and may hence rather rely on
subclonal driver events.

One idea to overcome, at least in part, the problem of ITH is
the use of liquid biopsies (30). However, it is currently not
entirely clear whether and to what extent circulating tumor cells
or tumor-derived circulating DNA represent the whole subclonal
architecture of RCC. Despite some promising results, principal
issues such as low levels of circulating tumor DNA may preclude
a wider use of liquid biopsies to characterize ITH in RCC (31).
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A number of studies have analyzed the genomic composition
or matched primary and metastatic RCC samples (23, 32, 33).
There are very few, if any, patient-derived models of matched
primary and metastatic sites. However, given the observed
genetic discordance between primary tumor and metastases
(33), such models would be highly desirable, in particular in
patients with synchronous metastatic dissemination.

In addition to genomic ITH, functional ITH also needs to be
taken into consideration when modeling RCC (34). One
manifestation of functional ITH in ccRCC is the enhanced
proliferation and intracellular signaling activity at the tumor
invasion front (35). While no specific mutations could be
pinpointed to explain this finding, some observations suggest that
factors from the tumor microenvironment may be involved (36).
The tumor periphery may hence represent a spatial niche that
harbors tumor cells with an increased fitness or potentially higher
aggressiveness. A recent study used computational modeling to
suggest that such a “surface growth” pattern could be associated
with an enhanced subclonal diversification (37). While this
computational study did not include the microenvironment as a
factor that may influence tumor growth, it nevertheless underscores
that tumor evolution and growth patterns are very likely connected.
It will be important to show whether and to what extent pre-clinical
RCC models can reflect this interrelation.

Recently, synthetic DNA barcode tracking and single cell
transcriptomics have revealed the existence of spatially confined
clonal expansion in PDX models (38). Clonal dominance was
driven by differential gene expression, which may not only
influence the adaptation to the host microenvironment but
also PDX engraftment efficiency in general. Consequently,
tumor cell engraftment is subject to selection processes that
can ultimately affect the cellular composition of PDXs and
therefore drug vulnerabilities.
IMPACT OF THE TUMOR (IMMUNE)
MICROENVIRONMENT

Besides a remarkable inter- and intratumoral genomic and
functional heterogeneity (23, 35), ccRCC shows a number of
immunological features that distinguish it from other tumor
entities and that may impose challenges for modeling RCC in
vitro and in vivo. First, a high number of tumor-infiltrating
lymphocytes, in particular T cells, is associated with a poorer
prognosis in RCC and not with a more favorable outcome as in
most other malignancies (39–42). Conversely, immune excluded
tumors were generally found to be associated with a better
patient prognosis (43). Tumor-infiltrating T cells have been
found to be frequently exhausted and to express high levels of
inhibitory checkpoint proteins (44). The exhaustion of cytotoxic
T cells was found to increase with disease progression together
with a reduced clonotypic diversity indicating antigen exposure
(45). T cell exhaustion in more advanced ccRCCs appears to
involve interactions with immunosuppressive M2 macrophages
and not, like in other cancers, regulatory T cells (45). In fact, a
vicious cycle has been proposed in which terminally exhausted
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CD8-positive T cells drive M2 polarization, which, in turn,
further promotes T cell exhaustion (45). These findings
underscore that malignant tumors including ccRCCs initially
represent complex and dynamic ecosystems, in which certain
cellular interactions are fostered that later lead to an “ecological
collapse” with a breakdown of immune cell diversity and
function thus promoting tumor progression.

Besides T cells, recent findings highlight the important role of
B cells in antitumor immunity (46). B cells produce antibodies
and present antigens to T cells, which involves the formation of
tertiary lymphoid structures (TLSs). Tumors with enhanced
TLSs have in general a more favorable prognosis (47), which
may also be the case in RCC (48). The development of non-
clinical RCC models that reflect immune cell exhaustion, T cell-
macrophage interactions and TLS formation will remain a
daunting task.

While the tumor immune microenvironment conceivably
plays an important role in shaping tumor progression, non-
immune cells may likewise support clonal and subclonal
expansion. Growth factors and cytokines secreted by non-
immune cells of the tumor microenvironment with stimulatory
effects on tumor growth include FGF-2, among others (36, 49,
50). Efforts to co-culture RCC cells with non-malignant cells of
the microenvironment are therefore laudable, however, the
functional state of such cells may not adequately reflect the
situation in vivo, where cells of the tumor microenvironment
may become re-programmed by numerous cellular interactions
as well as extrinsic insults such as inflammation and necrosis
(51). Together, these findings highlight the complexity of
microenvironmental cell-cell interactions in RCC that remain a
challenge to RCC model development.
PRE-CLINICAL DRUG DEVELOPMENT
AND THE PROBLEM OF “REVERSE
ENGINEERING”

In vitro drug screening has long been an important approach to
characterize therapeutic vulnerabilities of cancer cells.
Conceivably, the success of a drug screen depends on
numerous factors including the source of tumor cells, the
presence or absence of cells representing the tumor (immune)
microenvironment, culture and growth conditions, drug
availability, and read-out techniques (52). The high drop-out
rate associated with cell-based pre-clinical drug discovery has
been attributed to confounding factors of the experimental set-
up that leads to an unsatisfying replicability and reproducibility
(53). Organoids have been established for a number of human
malignancies, however, reports on using organoids for drug
screening purposes in RCC are relatively scarce (54–56). In
particular patient-derived air-liquid interface organoid models
appear to be promising for pre-clinical drug discovery since they
maintain features of the original tumor including components of
the microenvironment (57, 58). Ultimately, a systemic collection
of model systems may help to overcome some problems in pre-
clinical drug discovery (58, 59).
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Nevertheless, one issue that appears to be quite common is
the problem of “reverse engineering” i.e., the inability to
characterize the mode of action of a drug that was identified as
a hit in a screen. This could be related to unknown drug activities
or reflect complex tumor cell-intrinsic molecular interactions
and adaptation processes. For example, our group identified the
MET inhibitor crizotinib in a compound screen using a primary
patient-derived ccRCC cell line with a MET missense mutation
(R988C) (60). This mutation has been suggested to function as a
driver mutation in lung cancer (61, 62). Perplexingly, further
experiments showed that MET was not a driver in the patient-
derived cell line and the mode of action of crizotinib very likely
involved its function to block the transmembrane transporter P-
glycoprotein (60). A broader implication of this finding is that
candidate driver events may not necessarily represent the prime
target for tumor cell eradication and that there could be a
disconnection between a genotype and the observed
phenotype. It is furthermore possible that driver mutations
vary with respect to their potency i.e., there could be strong
drivers and weak drivers depending on the cellular context and
positive or negative driver cooperativity.
ARTIFICIAL INTELLIGENCE (AI) AND PRE-
CLINICAL RCC MODELS

The high degree of inter- and intratumoral heterogeneity
represents a major obstacle for predicting therapeutic
responses in patients with advanced RCC (63, 64). This
problem also applies to multimodal treatment strategies e.g.,
Frontiers in Oncology | www.frontiersin.org 4
the inclusion of surgical interventions during a patient’s path
through the disease. Given the intrinsic difficulty to faithfully
mirror a tumor ecosystem in its entirety, AI may help to connect
pre-clinical RCC models with clinical data and vice versa as
envisioned in Figure 1. Tools to estimate genetic ITH have been
developed (65) and may be integrated into such AI algorithms.

There are currently two major AI concepts, one that has a
comprehensive view on patient data, e.g. the “digital twin” and a
second consisting of highly focused decision-support tasks that
frequently use deep learning applications and pattern
recognition algorithms (66). AI has the potential to support
virtually all aspects of pre-clinical drug discovery (52, 67). For
example, machine learning approaches have been developed to
aid target/driver gene identification (68). Structure- or ligand-
based virtual screening can significantly improve speed and
efficacy of lead compound development. Lastly, AI tools can
also help to predict pharmacokinetic properties of a new agent
(67). It is important to mention that drug-related adverse events
in a mostly palliative situation need special consideration. AI and
pre-clinical models, for example for cardiovascular toxicity, may
help not only to predict adverse events but also to develop
protective strategies (67, 69).

These findings underscore the role of AI in the pre-clinical
drug development process. Nevertheless, in precision oncology,
the global question of “drug sensitivity” of a patient with
advanced RCC may be too broad and may need to be
subdivided into “narrow-task” questions (66) such as response
to a given experimental drug, immune oncological agents, TKIs
or others. Ultimately, prospective clinical trials will be needed to
determine the impact of AI on patient outcome.
FIGURE 1 | AI holds the promise to link data from RCC model systems to complex and comprehensive clinical data to improve pre-clinical drug discovery.
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CONCLUSION AND OUTLOOK

Pre-clinical models are vital to further develop the therapeutic
landscape for metastatic ccRCC, yet there are a number of
biological peculiarities that may represent serious obstacles for
the identification of novel immunological and non-
immunological therapies. One approach to overcome these
hurdles could be to combine different modeling approaches
such as 2D and 3D cell culture models and PDXs (70) despite
the difficulty to adequately incorporate immune responses.
Moreover, AI has the potential to transform pre-clinical drug
development by combining data from non-clinical models with
comprehensive patient data including multi-omics analyses. Still,
the magnitude and complexity of cellular and molecular
interactions that characterizes the “ecosystem RCC” will
continue to challenge future generations of tumor biologists.
Frontiers in Oncology | www.frontiersin.org 5
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