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Abstract: We discuss interesting effects that occur when strongly focusing light with mth-order
cylindrical–circular polarization. This type of hybrid polarization combines properties of the mth-
order cylindrical polarization and circular polarization. Reluing on the Richards-Wolf formalism,
we deduce analytical expressions that describe E- and H-vector components, intensity patterns,
and projections of the Poynting vector and spin angular momentum (SAM) vector at the strong
focus. The intensity of light in the strong focus is theoretically and numerically shown to have an
even number of local maxima located along a closed contour centered at an on-axis point of zero
intensity. We show that light generates 4m vortices of a transverse energy flow, with their centers
located between the local intensity maxima. The transverse energy flow is also shown to change its
handedness an even number of times proportional to the order of the optical vortex via a full circle
around the optical axis. It is interesting that the longitudinal SAM projection changes its sign at the
focus 4m times. The longitudinal SAM component is found to be positive, and the polarization vector
is shown to rotate anticlockwise in the focal spot regions where the transverse energy flow rotates
anticlockwise, and vice versa—the longitudinal SAM component is negative and the polarization
vector rotates clockwise in the focal spot regions where the transverse energy flow rotates clockwise.
This spatial separation at the focus of left and right circularly polarized light is a manifestation of
the optical spin Hall effect. The results obtained in terms of controlling the intensity maxima allow
the transverse mode analysis of laser beams in sensorial applications. For a demonstration of the
proposed application, the metalens is calculated, which can be a prototype for an optical microsensor
based on sharp focusing for measuring roughness.

Keywords: tight focusing; Richards–Wolf theory; spin Hall effect; hybrid polarization; metalens

1. Introduction

The rigorous description of a linearly polarized electromagnetic field at the strong
focus was proposed in a classical work by Richards and Wolf [1]. Numerous follow-up
publications relied on the Richards–Wolf formalism to look into the behavior of more
general electromagnetic fields with various polarization states. Topics studied included
the characteristics of a radially polarized electromagnetic field at the strong focus [2–5],
and spin-orbital conversion at the strong focus of a circularly polarized wave [6–9]. Tightly
focusing an elliptically polarized optical vortex has been studied [10–13], and a con-
cept of cylindrical vector beams has been proposed [14], including both radially and
azimuthally polarized beams. Studies of the focusing of promising beams with hybrid
polarization have also been conducted [15–19]. For this type of polarization, the trans-
posed Jones vector takes the form E = (exp(iδ), exp(−iδ)), where δ = αr + β, r is a
radial variable, α, β are constant, and E is the initial light field. This type of hybrid
polarization is linear along some radii and circular on the others, while being indepen-
dent of the polar angle ϕ. A more general type of hybrid polarization was discussed
in [20], where the tight focusing was analyzed for an incident field described by the polar-
angle-dependent Jones vector, E = (cosϕcosγ − icos(2ψ − ϕ)sinγ, sinϕcosγ − isin(2ψ −
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ϕ)sinγ), where ϕ is the polar angle and γ, ψ are constant. This field was found to be
either linearly or circularly polarized, depending on the specific value of the polar an-
gle. However, no analytical relations to describe the hybrid field and projections of the
Poynting vector were proposed in [20]. A field with hybrid polarization described by
E = (exp(iδ) sin ϕ, cos ϕ), where ϕ is the polar angle and δ is constant, has also been
studied [21]. It should be noted that, in this work, we discuss a more general case of
polarization, of which the above-mentioned polarization is a particular case (at m = 1).
We also note that in [21], projections of the Poynting vector were not defined analytically.
Beams with arbitrary polarization represented on a Poincare unit sphere were analyzed
in [22–25]. For such beams, the pre-focusing polarization vector can be represented as
E = (exp(−ilϕ + iα)cosβ + exp(ilϕ + iα)sinβ, iexp(−ilϕ + iα)cosβ + iexp(ilϕ + iα)sinβ), where l
is the topological charge, ϕ is the polar angle, and (α, β) are (constant) angles on the
Poincare unit sphere. It is worth noting that [22–25] studied these beams experimentally,
offering no theoretical substantiation or expressions for the field intensity and projec-
tions of the Poynting vector at the tight focus. Tightly focusing higher order cylindri-
cally polarized light was studied in [26–30], with the incident field being represented
as E = (cos(pϕ + α), sin(pϕ + α)), where p is the order of cylindrical polarization and
α is constant. Vortex beams with arbitrary topological charge m and nth-order cylindri-
cal polarization were theoretically studied in [31]. The incident field was described by
E = exp(imϕ)(cos(nϕ), sin(nϕ)).

A distinctive feature of this work is that we are the first to analyze a new type of
hybrid polarization of light that has never been studied before, in which the polarization
of the incident field under analysis is represented by E = (−i sin(mϕ), cos(mϕ)). In this
case, with the changing polar angle of the initial field, polarization changes from circular,
to elliptical, to linear, alternating in this manner m times per full circle of the polar angle.
We also propose analytical relationships for the projections of the E- and H-fields at the
strong focus, for the intensity distributions and the projections of the Poynting vector and
spin angular momentum (SAM) vector. We experimentally demonstrate the possibility of
generating a second-order hybrid beam with a vortex half-wave plate. The correspondence
between the experimentally obtained beam and those studied theoretically is verified using
the Jones formalism.

In this paper, we continue to study the behavior of vector and vortex light fields at
the sharp focus, since this problem has not yet been exhausted, with more new optical
phenomena being discovered at the sharp focus of these beams. This is due to the fact that,
at the sharp focus, all six projections of the electromagnetic field make approximately the
same contribution, and none can be neglected. In our previous work [32], we introduced
a hybrid polarization of light that combines the properties of beams with circular and
cylindrical polarization.

In contrast to our previous study, we propose an optical scheme in the form of a
Mach–Zehnder interferometer that generates a beam with hybrid polarization and an
arbitrary mth order. Using the rigorous solution of Maxwell’s equations, we also calculate
a subwavelength relief of a metalens that, under illumination by linearly polarized light,
generates a light field with hybrid polarization, simultaneously focusing it at a wavelength
distance (532 nm). One such metalens can replace the entire optical scheme for generating
and focusing a light field with hybrid polarization. At the focus of the metalens, 4m
transverse energy flows will occur in an area with a diameter of ~1 µm. The direction of
energy rotation in these energy flows will alternate (clockwise and counterclockwise). In
addition, such a super-thin microlens synthesized in an amorphous silicon film with a
thickness of ~154 nm and a diameter of 7 µm may serve as a prototype of a compact focus
sensor for optical topography measurement of rough surfaces.
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2. Materials and Methods
2.1. Intensity of Light with Hybrid Polarization at the Focus

Let the amplitudes of the original magnetic and electric field vectors for mth-order
hybrid polarization be given by:

E = A(θ)

(
−i sin mϕ

cos mϕ

)
, H = A(θ)

(
− cos mϕ
−i sin mϕ

)
, (1)

where E and H are the electric and magnetic field vectors, m is a positive integer defining the
order of cylindrical polarization, and A(θ) is the amplitude of the original light field, which
depends on the angle between the incident beam and the optical axis. The polarization
of the field in Equation (1) is called hybrid because it combines the properties of mth-
order cylindrical polarization and circular polarization. At different polar angles ϕ, the
polarization of field (1) will be either circular (at ϕ = πn/(4m), n = 1, 3, 5 . . ., elliptical,
or linear (at ϕ = πn/(2m), n = 0, 1, 2 . . .). From (1), it also follows that at m = 0, the field
will be uniformly linearly polarized. Our analysis relies on the Richards–Wolf integral [1],
which is given by:

U(ρ, ψ, z) = − i f
λ

θ0∫
0

2π∫
0

A(θ)T(θ)P(θ, ϕ)×

× exp{ik[ρ sin θ cos(ϕ− ψ) + z cos θ]} sin θ dθ dϕ,
(2)

where U(ρ, ψ, z) is the electrical or magnetic field at the focal spot, A(θ) is the incident
electrical or magnetic field (where θ is the polar angle and ϕ is the azimuthal angle), T(θ) is
the apodization function (the apodization function is equal to T(θ) = cos1/2θ for an aplanatic
lens and to T(θ) = cos−3/2θ for a flat diffractive lens), k = 2π/λ is the wavenumber, f is the
focal length, λ is the incident wavelength, α0 is the maximal polar angle determined by the
lens numerical aperture (NA = sinθ0), and P(θ, ϕ) is the polarization matrix for the electric
and magnetic fields, respectively, given by:

P(θ, ϕ) =

 1 + cos2 ϕ(cos θ − 1)
sin ϕ cos ϕ(cos θ − 1)
− sin θ cos ϕ

a(θ, ϕ) +

 sin ϕ cos ϕ(cos θ − 1)
1 + sin2 ϕ(cos θ − 1)
− sin θ sin ϕ

b(θ, ϕ), (3)

where a(θ,ϕ) and b(θ,ϕ) are the polarization functions (1) for the x- and y-components of
the incident beam, respectively. The original amplitude function A(θ) (here assumed to be
real) can be either constant (for a plane incident wave) or given by a Gaussian beam:

A(θ) = exp

(
−γ2 sin2 θ

sin2 θ0

)
(4)

where γ is constant.
Relying on the Richards–Wolf formalism [1], we can derive projections of the electric

field vector at the strong focus of an aplanatic optical system from the original field (see [32]
for details):

Ex = −im
2

[
I0,m sin(mϕ) + (1+i)

2 I2,m+2 sin((m + 2)ϕ)+

+ (1−i)
2 I2,m−2 sin((m− 2)ϕ)

]
,

Ey = −im
2

[
iI0,m cos(mϕ)− (1+i)

2 I2,m+2 cos((m + 2)ϕ)+

+ (1−i)
2 I2,m−2 cos((m− 2)ϕ)

]
,

Ez =
im
2 [(1 + i)I1,m+1 sin((m + 1)ϕ)+
+(1− i)I1,m−1 sin((m− 1)ϕ)]

(5)
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and for the magnetic field vector:

Hx = im
2

[
iI0,m cos(mϕ) + (1+i)

2 I2,m+2 cos((m + 2)ϕ)−

− (1−i)
2 I2,m−2 cos((m− 2)ϕ)

]
,

Hy = im
2

[
−I0,m sin(mϕ) + (1+i)

2 I2,m+2 sin((m + 2)ϕ)+

+ (1−i)
2 I2,m−2 sin((m− 2)ϕ)

]
,

Hz =
im
2 [(1− i)I1,m+1 cos((m + 1)ϕ)−
−(1 + i)I1,m−1 cos((m− 1)ϕ)],

(6)

where:

Iν,µ =
(

π f
λ

) θ0∫
0

sinν+1( θ
2 ) cos3−ν( θ

2 ) cos1/2(θ)×

A(θ)eikz cos θ Jµ(x)dθ,
(7)

where x = krsinθ, Jµ(x) is the Bessel function of the first kind.
From Equation (5), the intensity distribution of the electric field in the focal plane

(z = 0) is found as:

Im = 1
4

[
I2
0,m + I2

2,m+2 + I2
2,m−2 − I0,m(I2,m+2 + I2,m−2)

]
+

+ 1
2

(
I2
1,m+1 + I0,m I2,m+2

)
sin2((m + 1)ϕ)+

+ 1
2

(
I2
1,m−1 + I0,m I2,m−2

)
sin2((m− 1)ϕ).

(8)

At m = 1, Equation (8) suggests that at the focus of the first-order hybrid field (1), the
intensity is given by:

I1 = 1
4

(
I2
0,1 + I2

1,2 + I2
2,1 + I2

2,3 + I0,1 I2,1

)
−

1
4

(
I2
1,2 + I0,1 I2,3

)
cos(4ϕ).

(9)

From Equation (9), at the focus for the first-order hybrid field (1)—i.e., for azimuthal–
circular polarization—the intensity distribution features four local maxima (at ϕ = ±π/4,
±3π/4). In the general case of an arbitrary m, the intensity distribution in Equation (8)
has 2(m + 1) peaks lying on the rays formed by the polar angles ϕ = (π + 2πn)/2(m + 1),
n = 0, 1, 2, . . . 2m + 1. This follows from the fact that Equation (8) contains squared sine
functions, which have 2(m + 1) maxima as the angle ϕ changes from 0 to 2π. The numerical
simulation confirms the theoretical conclusions.

2.2. Energy Flow at the Focus of the Light with Hybrid Polarization

We note that in the original field (1), only the longitudinal projection of the energy
flow is present, because the longitudinal components of the electric and magnetic field
vectors are zero, as is the transverse projection of the Poynting vector. On the other hand,
the longitudinal component of the SAM vector is non-zero. Hence, due to the effect of
spin-orbital conversion, a transverse energy flow may be expected to be generated at the
strong focus. Below, we prove this to be the case. Let us derive projections of the Poynting
vector (the energy flow):

P = Re(E ∗ ×H) (10)

where Re is the real part of the number, × denotes the vector product of two vectors, and
E* denotes complex conjugation in the focal plane (z = 0) for the original field with hybrid
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polarization (Equation (1)). Substituting the projections of the electric field in Equation (5)
and the magnetic field in Equation (6) into Equation (10) yields:

Px = 1
4 [I0,m(I1,m+1 + I1,m−1) cos ϕ+
+ I1,m+1 I2,m−2 cos((m + 1)ϕ) cos((m− 2)ϕ)+
+ I1,m−1 I2,m+2 cos((m− 1)ϕ) cos((m + 2)ϕ)+
+ I1,m+1 I2,m+2 sin((m + 1)ϕ) sin((m + 2)ϕ)+
I1,m−1 I2,m−2 sin((m− 1)ϕ) sin((m− 2)ϕ)],

Py = 1
4 [I0,m I1,m+1 sin((2m + 1)ϕ)+
+I0,m I1,m−1 sin((2m− 1)ϕ)+
+I1,m+1 I2,m−2 cos((m + 1)ϕ) sin((m− 2)ϕ)−
−I1,m−1 I2,m+2 cos((m− 1)ϕ) sin((m + 2)ϕ)+
+I1,m+1 I2,m+2 sin((m + 1)ϕ) cos((m + 2)ϕ)−
−I1,m−1 I2,m−2 sin((m− 1)ϕ) cos((m− 2)ϕ)],

Pz =
1
4

(
I2
0,m −

1
2 I2

2,m+2 −
1
2 I2

2,m−2

)
.

(11)

Although the expressions for the projections of the Poynting vector in Equation (11)
are quite cumbersome, they allow us to make some significant general conclusions. From
Equation (11), the longitudinal energy flow is seen to be radially symmetrical at any m,
being ϕ-independent. The on-axis energy flow will be positive and non-zero only at m = 0
(linear polarization): Pz(r = z = 0) = I2

0,0/4. Moreover, the on-axis projection of the
Poynting vector at the focus in Equation (11) will be non-zero and negative only at m = −2
or m = 2: Pz(r = z = 0) = −I2

2,0/4. Thus, we can infer that, similar to conventional 2nd-
order azimuthal polarization of the incident light [33,34], for hybrid incident polarization,
a reverse energy flow also occurs at m = ±2. From Equation (11) at ϕ = 0, we can derive:

Px(ϕ = 0) = 1
4 [I0,m(I1,m+1 + I1,m−1) + I1,m+1 I2,m−2 +

I1,m−1 I2,m+2] > 0
(12)

From Equation (11), we also find that Py(y = 0) = 0, Px(ϕ = 0) = −Px(ϕ = π) > 0.
Hence, at any m, on the horizontal axis x, the transverse energy flow is always directed
along the x-axis in both directions from the center. It also follows from Equation (11)
that on the vertical axis y, the transverse energy flow is directed along the y-axis because
Px(ϕ = π/2) = Px(ϕ = 3π/2) = 0. Equation (11) also suggests that when passing through
the zero point on the y-axis, the energy flow will change its sign: Py(ϕ = π/2) = −Py(ϕ =
3π/2) 6= 0. The direction of the transverse flow will alternate while moving along the
y-axis. For instance, if at m = 1 the energy flow on the y-axis is directed towards the center,
then at m = 2, it will be directed from the center. Summing up, at m = 1, the transverse
energy flow will be directed from the center on the x-axis and towards the center on the
y-axis. This can occur if the transverse energy flow rotates anticlockwise in quadrants
I and III, rotating clockwise in quadrants II and IV. Next, at m = 2 on the vertical axis,
the transverse energy flow will change sign, becoming directed from the center, while
remaining being directed from the center on the horizontal x-axis. This can occur if in
the four quadrants there are four lines (at an angle of 45◦) along which the energy flow is
directed to the center. Thus, at m = 2, eight transverse energy vortices will be generated
(two in each quadrant), featuring alternating (clockwise and anticlockwise) handedness.
Using a similar reasoning, it can further be shown that at an arbitrary m, there will be 4m
vortices of energy flow at the focus. The vortex handedness will change to the opposite in
passing from one vortex to the other.

For simplicity, below, we analyze particular cases of Equation (11). From Equation (11),
it also follows that at m = 0 (linear polarization), the transverse energy flow components
equal zero at the focus: Px = Py = 0. This can be checked by directly substituting m = 0 into
Equation (11) and considering the properties of the integrals in Equation (4): Ip,−q=(−1)qIp,q.
At m > 0, there is a non-zero transverse energy flow of Equation (11). Let us recall that for
the mth-order cylindrical polarization, the transverse energy flow at the focus is always
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zero [33]. At m = 1 (circular azimuthal polarization), we can derive from Equation (11) the
following expressions for the projections of the energy flow:

Px = 1
4 [I0,1(I1,2 + I1,0) cos ϕ + I1,2 I2,3 sin 2ϕ sin 3ϕ+
+I1,0 I2,3 cos 3ϕ− I1,2 I2,1 cos 2ϕ cos ϕ],

Py = 1
4 [I0,1(I1,2 sin 3ϕ− I1,0 sin ϕ)+
+I1,2 I2,3 cos 2ϕ cos 3ϕ− I1,0 I2,3 sin 3ϕ+
+I1,2 I2,1 cos 2ϕ sin ϕ],

Pz =
1
4

(
I2
0,1 −

1
2 I2

2,3 −
1
2 I2

2,1

)
.

(13)

From Equation (13), the longitudinal energy flow component is seen to be ring-shaped,
with the on-axis intensity null. The transverse energy flow components are non-zero and
devoid of radial symmetry. From Equation (13), the transverse components of the Poynting
vector at the focus are seen to have the following structure:

ϕ = 0 : Px = A + B > 0, Py = 0,
ϕ = π/2 : Px = 0, Py = −A + B < 0,
ϕ = π : Px = −(A + B) < 0, Py = 0,
ϕ = 3π/2 : Px = 0, Py = A− B > 0,
A = I0,1(I1,2 + I1,0)/4, B = I1,0 I2,3 − I1,2 I2,1.

(14)

From Equation (14), the energy flow in the focal plane on the horizontal x-axis is seen
to be directed along the x-axis from the center, being directed towards the center on the
vertical y-axis. This effect occurs if the transverse energy flow rotates anticlockwise in
quadrants I and III, rotating clockwise in quadrants II and IV.

One more general conclusion can be made from Equation (11) without the need to
carry out numerical simulation. In the relationship for the projection of the Poynting
vector in Equation (11), the sine function Py with the maximal spatial frequency is given by
sin(2m + 1)ϕ. Hence, at a given r, the integrals from Equation (4) that enter Equation (11)
will take constant values, with the entire expression for Py being dependent only on the
angle ϕ, such that after one full circle of radius r in the focal plane, the value of Py will
change sign 2(2m + 1) times.

2.3. SAM in the Strong Focus of a Field with Hybrid Polarization

First, we recall that the longitudinal projection of the spin density vector or SAM
vector equals zero for any mth-order cylindrical polarization of the initial field [33]. In
this section, we will demonstrate that given the hybrid polarization of Equation (1), the
longitudinal projection of the SAM vector in the focus will be non-zero. Hence, let us define
the SAM vector in the form [35]:

S = Im(E ∗ ×E) (15)

where Im is the imaginary part of the number. Substituting the E-field projections from
Equation (2) into Equation (15) yields the longitudinal component of SAM:

Sz =
1
4 [I0,m(I2,m+2 − I2,m−2) sin 2ϕ+(

I2
0,m − I2,m−2 I2,m+2

)
sin(2mϕ)

]
.

(16)

Equation (16) suggests that at m = 0 (linear polarization), Sz = 0. At m = 1, Equation (16)
is rearranged to:

Sz =
1
4
[I0,1(I2,3 + I2,1)+

(
I2
0,1 + I2,1 I2,3

)]
sin 2ϕ. (17)

From Equation (16), the on-axis projection of the SAM vector in the focal plane changes
its sign 4m times, because Equation (16) contains the function sin(2mϕ). Hence, there will
be 4m local vortices of the transverse flow and 4m local regions with the positive or



Sensors 2021, 21, 6424 7 of 16

negative longitudinal projections of the SAM vector. Notably, in the focal plane regions of
anticlockwise handedness of the transverse energy flow, the polarization vector also rotates
anticlockwise, meaning that the projection of the SAM vector is positive (Sz > 0), and vice
versa—in the focal plane’s local regions of the clockwise handedness of the transverse
energy flow, the polarization vector also rotates clockwise, meaning that the longitudinal
projection of the SAM vector is negative (Sz < 0). If placed in the focal plane, dielectric
microparticles that are slightly lesser in size than the local region under analysis will start
rotating around their axis. It is interesting that particles in the adjacent regions will rotate
in the opposite directions.

3. Results and Discussion
3.1. Results of the Numerical Simulation of Focusing Light with Hybrid Polarization

The numerical simulation based on the Richards–Wolf formulae [1] was conducted
for focusing a 532 nm plane wave with hybrid polarization (Equation (1)) by means of
an aplanatic objective lens with NA = 0.95. Figures 1 and 2 depict intensity patterns and
the Poynting vector components Px, Py, and Pz in the focal plane when focusing a plane
wave with the hybrid polarization of Equation (1) at m = 1. From Figure 1, the intensity is
seen to have 2(m + 1) = 2(1 + 1) = 4 local maxima located at the corners of a square-shaped
contour. At the focal spot center, there occurs an intensity null. Shown in Figure 2a,b
are distributions of the transverse energy flow and the transverse projections (a) Px, (b)
Py of the Poynting vector. From Figure 2a,b, the energy flow is seen to change its sign
2(2m + 1) = 6 times per one full circle around the center. Figure 2c shows the longitudinal
projection Pz of the Poynting vector, which is ring-shaped and has a zero value at the
center. The patterns in Figures 1 and 2 confirm the conclusions made on the basis of the
theoretically derived relationships for the intensity in Equation (9) and the energy flow in
Equation (11).
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Figures 3 and 4 depict patterns of intensity and the projections Px, Py, and Pz of the
Poynting vector in the focal plane when focusing a plane wave with the hybrid polarization
of Equation (1) at m = 2. The numerically simulated patterns in Figures 3 and 4 corroborate
theoretical predictions that follow from Equations (9) and (11). In fact, the intensity
distribution in Figure 3a is seen to have 2(m + 1) = 6 local maxima lying on a closed curve
around the center. Figure 4a,b depict distributions of the transverse projections Px (a)
and Py (b) of the Poynting vector, from which the energy flow is seen to change its sign
2(2m + 1) = 10 times per full circle around the center. Figure 4c depicts the longitudinal
projection Pz of the Poynting vector in the form of a ring. The central energy flow is
negative and equal to Pz(r = z = 0) = −I2

2,0/4, as seen from Equation (11).
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Figure 4. Patterns of the Poynting vector components (a) Px, (b) Py, and (c) Pz in the focal plane
when focusing a plane wave with the hybrid polarization of Equation (1) at m = 2.

Figure 5 depicts distributions of the SAM components (a, b, c) Sx, Sy, and Sz when
focusing a plane wave with the hybrid polarization of Equation (1) at m = 1. From Figure 5c,
the longitudinal component of the SAM vector changes its sign 4m = 4 times, as seen from
Equation (17).

Sensors 2021, 21, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 4. Patterns of the Poynting vector components (a) Px, (b) Py, and (c) Pz in the focal plane when 
focusing a plane wave with the hybrid polarization of Equation (1) at m = 2. 

Figure 5 depicts distributions of the SAM components (a, b, c) Sx, Sy, and Sz when 
focusing a plane wave with the hybrid polarization of Equation (1) at m = 1. From Figure 
5c, the longitudinal component of the SAM vector changes its sign 4m = 4 times, as seen 
from Equation (17). 

 
Figure 5. Distribution of SAM vector components Sx (a), Sy (b), and Sz (c) when focusing a plane 
wave with the hybrid polarization of Equation (1) at m = 1. 

Figure 6 shows distributions of the SAM vector components (a, b, c) Sx, Sy, and Sz 
when focusing a plane wave with the hybrid polarization of Equation (1) at m = 2. From 
Figure 6c, the longitudinal projection of the SAM vector can be seen to be equal to 4m = 8, 
which follows from Equation (17). 

 
Figure 6. Distribution of the SAM components (a–c) Sx, Sy, and Sz when focusing a plane wave with 
the hybrid polarization in Equation (1) at m = 2. 

Figure 7 depicts intensity distributions when focusing a plane wave with hybrid po-
larization in Equation (1) at (a) m = 1, (b) m = 2, and (c) m = 3, with arrows marking the 

Figure 5. Distribution of SAM vector components Sx (a), Sy (b), and Sz (c) when focusing a plane wave with the hybrid
polarization of Equation (1) at m = 1.

Figure 6 shows distributions of the SAM vector components (a, b, c) Sx, Sy, and Sz
when focusing a plane wave with the hybrid polarization of Equation (1) at m = 2. From
Figure 6c, the longitudinal projection of the SAM vector can be seen to be equal to 4m = 8,
which follows from Equation (17).
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Figure 7 depicts intensity distributions when focusing a plane wave with hybrid
polarization in Equation (1) at (a) m = 1, (b) m = 2, and (c) m = 3, with arrows marking the
direction of the transverse Poynting vector component in the focal plane. From Figure 7,
the number of the transverse flow vortices equals (a) 4m = 4, (b) 4m = 8, and (c) 4m = 12,
as can be inferred from Equation (11) for the transverse Poynting vector components.
From Figure 7, the centers of the transverse energy flows at the focus can also be seen to
be non-coincident with the local intensity maxima. The vortices are centered at points
where the transverse energy flow is zero. From the comparison of Figures 6c and 7b, the
number of regions with the positive- and negative-valued longitudinal SAM projections
(4m = 8) is the same as that of the transverse energy vortices (4m = 8). A comparison of
Figures 6c and 7b also suggests that the longitudinal SAM component is positive (Sz > 0) in
the regions of anticlockwise handedness of the transverse energy flow, and vice versa—the
longitudinal SAM component is negative (Sz < 0) in the regions of clockwise handedness
of the transverse energy vortex. Thus, the polarization vector in the focal plane rotates
anticlockwise in the regions where the transverse energy flow also has anticlockwise
handedness, and vice versa—the polarization vector rotates clockwise where the transverse
energy flow has clockwise handedness. This is in good agreement with the spin-orbital
conversion effect. This spatial separation at the focus of left and right circular polarization
is a manifestation of the optical spin Hall effect [36].
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the focal plane when focusing a plane wave with the hybrid polarization of Equation (1) for (a) m = 1,
(b) m = 2, and (c) m = 3.

3.2. Experiment

Figure 8a shows an optical setup for generating the beam (Equation (1)) with m = 2.
Figure 8b–d show images of the resulting beam. Light from a Cobolt 06-MLD laser
(λ = 633 nm, 200 mW) propagates through a neutral-density filter (ND) and a Glan–Taylor
polarizer (GT). The resulting linearly polarized light propagates through a vortex half-wave
plate (Thorlabs, WPV10-633), which transforms linearly polarized light into a second-order
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cylindrical vector beam. Finally, the beam propagates through a quarter-wave plate. The
resulting beam was registered by a CCD camera (UCMOS 10000KPA).
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ND is a neutral density filter, GT is a Glan–Taylor polarizer, CVB2 is a vortex half-wave
plate (Thorlabs, WPV10-633), λ/4 is a quarter-wave plate, and CCD is a UCMOS 10000KPA
camera). In the images of the beam (b)–(d), a linear polarizer–analyzer P was placed before
the CCD camera, and was rotated by an angle θ equal to 0◦ (b), 90◦ (c), or 45◦ (d).

To be sure that the experimentally obtained beam has the desired hybrid polarization,
we simulated an insertion of a linear polarizer into the beam using the Jones calculus
formalism. After passing through the linear polarizer–analyzer, the polarization of the
beam changes as follows:(
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(
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)
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where Ex,in and Ey,in are the electric field components before the polarizer (calculated by
the Richards–Wolf formulae), Ex,out and Ey,out are the electric field components after the
polarizer–analyzer, and θ is the angle between the x-axis and the polarizer axis.

Figure 9 shows an intensity distribution of the hybrid polarized beam in Equation (1)
at m = 2, propagated through a linear polarizer–analyzer, which is rotated by an angle of 0◦

(Figure 9a), π/2 (Figure 9b), or π/4 (Figure 9c). From Equation (1), it follows that at the
angle ϕ = π

4 + πn
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From a comparison of Figures 8 and 9, the numerically simulated and experimentally
generated beams can be seen to have the same polarization. We can also see that in
the experiment presented in Figure 8b,c, the intensity distribution is consistent with the
calculated intensity distribution of the transverse components of the electric field at the
sharp focus of the hybrid beam (1) at m = 2, as shown in Figure 3b,c, respectively. Thus,
the transverse intensity distribution of the hybrid field (Figure 9a,b) retains its shape at the
sharp focus (Figure 3b,c).

Figure 10 shows the calculated intensity distributions at the focus of an ideal spherical
lens for the initial field (Equation (1)) at m = 2 for different numerical apertures: 0.8 (a) and
0.6 (b). It can be seen from Figure 10 that, as the numerical aperture decreases, the contrast
of the local maxima decreases, and the focal spot becomes more and more like a ring.
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Figure 10. Changes in the focal spot intensity for the light field (Equation (1)) at m = 2, with decreasing
numerical aperture of the lens to (a) NA = 0.8 and (b) NA = 0.6. The focal spot generated with a lens
with NA = 0.95 is shown in Figure 3a.

3.3. Optical Setup and Metalens

In the general case, a laser beam with hybrid polarization (Equation (1)) of an arbitrary
order m can be formed using the optical scheme shown in Figure 11.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 18 
 

 

experiment presented in Figure 8b,c, the intensity distribution is consistent with the cal-
culated intensity distribution of the transverse components of the electric field at the sharp 
focus of the hybrid beam (1) at m = 2, as shown in Figure 3b,c, respectively. Thus, the 
transverse intensity distribution of the hybrid field (Figure 9a,b) retains its shape at the 
sharp focus (Figure 3b,c). 

Figure 10 shows the calculated intensity distributions at the focus of an ideal spheri-
cal lens for the initial field (Equation (1)) at m = 2 for different numerical apertures: 0.8 (a) 
and 0.6 (b). It can be seen from Figure 10 that, as the numerical aperture decreases, the 
contrast of the local maxima decreases, and the focal spot becomes more and more like a 
ring. 

 
Figure 10. Changes in the focal spot intensity for the light field (Equation (1)) at m = 2, with de-
creasing numerical aperture of the lens to (a) NA = 0.8 and (b) NA = 0.6. The focal spot generated 
with a lens with NA = 0.95 is shown in Figure 3a. 

3.3. Optical Setup and Metalens 
In the general case, a laser beam with hybrid polarization (Equation (1)) of an arbi-

trary order m can be formed using the optical scheme shown in Figure 11. 

 
Figure 11. An optical scheme for generating a laser beam with hybrid polarization (Equation (1)) of 
an arbitrary order m. HWP is a half-wave plate; BS is a beam splitter; M1 and M2 are mirrors; SPP 
is a spiral phase plate. 

A linearly polarized light from a laser (Figure 11) is divided by a beam splitter (BS) 
into two identical beams that propagate in different arms of a Mach–Zehnder interferom-
eter. Two beams with mutually orthogonal polarization are generated after passing 
through half-wave plates (HWPs) tilted at different angles. Both of these beams pass 
through the spiral phase plates (SPPs) with transmission functions exp(imφ) and exp(-
imφ). These beams are combined into one beam with hybrid polarization (Equation (1)) at 
the interferometer output. 

The justification for the choice of the optical scheme in Figure 11 follows from the 
chain in the Jones vector (Equation (1)) transformations: 

Figure 11. An optical scheme for generating a laser beam with hybrid polarization (Equation (1)) of an arbitrary order m.
HWP is a half-wave plate; BS is a beam splitter; M1 and M2 are mirrors; SPP is a spiral phase plate.

A linearly polarized light from a laser (Figure 11) is divided by a beam splitter (BS) into
two identical beams that propagate in different arms of a Mach–Zehnder interferometer.
Two beams with mutually orthogonal polarization are generated after passing through half-
wave plates (HWPs) tilted at different angles. Both of these beams pass through the spiral
phase plates (SPPs) with transmission functions exp(imϕ) and exp(−imϕ). These beams
are combined into one beam with hybrid polarization (Equation (1)) at the interferometer
output.

The justification for the choice of the optical scheme in Figure 11 follows from the
chain in the Jones vector (Equation (1)) transformations:
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The experiments in Figure 8 at m = 2, along with the optical scheme in Figure 11,
make it possible to form laser beams with hybrid polarization (Equation (1)) in practice.
However, they are not related to the sharp focusing of such beams. The sharp focusing
of such fields can be realized in practice using a micro-objective with a high numerical
aperture (for example, a 100 × objective lens (100X Mitutoyo Plan Apo Infinity Corrected
Long WD Objective)). The intensity distribution and the energy flux at the focus can be
measured with subwavelength resolution using a near-field scanning optical microscope
with a resolution of ~35 nm (for example, SNOM_C, NT-MDT). The authors plan to conduct
such an experiment in the near future.

Additionally, we calculated the subwavelength profile of the metalens in Figure 12a,
which can generate a field with hybrid polarization (Equation (1)) of order m = 2 imme-
diately behind this lens (Figure 12b) when illuminated by a Gaussian beam with linear
polarization. The focus is generated behind the metalens at a wavelength distance of
532 nm. Figure 12c shows the intensity distribution in the focal plane calculated by a finite-
difference time-domain method (FDTD method). It can be seen that the intensity distribu-
tion (Figure 12c) is consistent with the intensity calculated according to the Richards–Wolf
theory (Figure 3a). The metalens size (Figure 12a) is 6.7 × 6.7 µm. This size is convenient
for modeling, but can be increased to any other size. It is assumed that the metalens
is made from an amorphous silicon film with a refractive index of 4.352 + i0.486 for a
wavelength of 532 nm; it combines the functionalities of three different optical elements: a
polarizer, a phase corrector, and a microlens (Fresnel zone plate). The polarizer rotates the
incident linear polarization vector by a preset angle and performs the linear-to-elliptical
polarization conversion. The polarizer is realized by subwavelength diffraction gratings
with different line slopes and different heights; the period of all local gratings is 184 nm.
The polarizer consists of eight sectors, in each of which the slope of the lines is constant. A
phase corrector is a substrate with a smoothly varying relief height to provide the required
phase at various points of the metalens. The Fresnel zone plate provides sharp focusing
of laser light at a near-wavelength distance. All three of these components form the final
profile of the metalens heights; its maximum height difference is 154 nm. The polarizer
and the phase corrector under illumination by a plane wave with linear polarization Ey
create a polarization distribution at the output, as shown in Figure 12b, and the entire
metalens converts the Ey wave into a focal spot at a 500 nm distance, with its intensity
distribution depicted in Figure 12c. It can be seen that the intensity distribution at the
focus of the metalens (Figure 12c) is in good agreement with the calculated intensities in
Figures 3a and 7b. Both focal spots (in Figures 3a and 12c) have 2(m + 1) = 6 local maxima.

The metalens transmission function (Figure 12a) without the Fresnel zone plate is
described by the Jones matrix, which is the product of the rotation matrix of the linear
polarization vector, the angle 2ϕ, and the matrix of a quarter-wave plate, which converts
the linear polarization to elliptical or circular polarization.

R(φ) =
(

i cos 2φ −i sin 2φ
sin 2φ cos 2φ

)
= eiπ/4

(
eiπ/4 0

0 e−iπ/4

)(
cos 2φ − sin 2φ
sin 2φ cos 2φ

)
. (20)

The calculated ultrathin metalens (Figure 12a) with a high numerical aperture and
a small diameter, which alone replaces the entire optical scheme in Figure 8a (and also
replaces a focusing lens with a numerical aperture close to 1), may serve as a prototype of
a compact focusing sensor for optical topography measurement of rough surfaces [37].
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4. Conclusions

In this work, the tight focusing of laser beams with mth-order circular–azimuthal
polarization was analyzed. This is a new type of inhomogeneous polarization which
combines properties of the mth-order cylindrical and circular polarizations. Using the
Richards–Wolf formalism, we deduced analytical expressions to describe the projections of
the E- and H-vectors, the intensity distribution, and the projections of the Poynting vector
and SAM vector in the tight focus of light. We showed theoretically and numerically that
the intensity pattern in the focal spot has 2(m + 1) local maxima located along a closed
contour centered at the on-axis zero-intensity point. We also showed that at the focus
there are 4m vortices of the transverse energy flows with their centers located between the
local intensity maxima, while the transverse energy flow vortex changes its handedness
2(2m + 1) times per full circle around the optical axis. Interestingly, the longitudinal SAM
component at the focus changes its sign 4m times. The longitudinal SAM component was
shown to be positive in the regions of anticlockwise handedness of the transverse energy
vortex, with the polarization vector rotating anticlockwise around the optical axis, and
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vice versa—the polarization vector rotates clockwise and the longitudinal SAM component
is negative in the regions where the energy flow rotates clockwise. The possibility of
generating a second-order hybrid beam with a vortex half-wave plate was experimentally
demonstrated. The coincidence between the experimentally generated beam and those
studied theoretically was verified using the Jones formalism. The results obtained in terms
of controlling the intensity maxima allow for the transverse mode analysis of laser beams in
waveguide-based sensors [38,39]. This kind of CVB can be used in phase-sensitive surface
plasmon resonance biosensors with high resolution [40], or in graphene biosensors for
real-time subcellular imaging [41]. Other applications include Raman spectroscopy [42]
and vector magnetic field sensing [43].
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