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Effect of free‑base and protonated 
nicotine on nicotine yield 
from electronic cigarettes 
with varying power and liquid 
vehicle
Soha Talih1,3, Rola Salman1,3, Rachel El‑Hage2,3, Nareg Karaoghlanian1,3, Ahmad El‑Hellani2,3, 
Najat Saliba2,3 & Alan Shihadeh1,3*

Nicotine in electronic cigarette (ECIG) liquids can exist in a free-base or protonated (or “salt”) 
form. Protonated nicotine is less aversive upon inhalation than free-base nicotine, and many ECIG 
manufacturers have begun marketing protonated nicotine products, often with high nicotine 
concentrations. Regulations intended to control ECIG nicotine delivery limit nicotine concentration 
but do not consider nicotine form. In this study, we systematically examined the effect of nicotine 
form on nicotine yield for varying powers and liquid vehicles. A Kanger Subox Mini-C tank ECIG (0.5 Ω) 
was used to generate aerosols at varying powers (5–45 W) from liquid solutions that contained either 
free-base or protonated nicotine at 15 mg/g concentration, with a liquid vehicle consisting of either 
propylene glycol (PG) or vegetable glycerin (VG), resulting in four different solutions (free-base/
PG, free-base/VG, protonated/PG, and protonated/VG). Nicotine yield was quantified using gas 
chromatography-mass spectrometry. Nicotine yields were not influenced by nicotine form under 
any condition investigated. At each power level, PG-based liquids resulted in approximately double 
the nicotine yield of VG-based liquids. Nicotine concentrations in the aerosols matched those of the 
parent liquids for both the PG and VG conditions. Increasing power led to greater nicotine yield across 
all conditions. The amount of nicotine emitted by an ECIG is independent of whether the nicotine is 
free-base or protonated, however the liquid vehicle has a strong effect on yield. Regulations intended 
to limit nicotine emissions must consider not only nicotine concentration, but also liquid vehicle and 
device power.

Nicotine in tobacco products can be found in a free-base or protonated (“salt”) form, depending on the pH of 
the product. In internal tobacco industry documents, nicotine form has been long recognized as central to the 
sensory experience of tobacco use, particularly in what is known as “impact”1. In the 1960s, Philip Morris began 
manipulating the ratio of free-base to protonated nicotine in cigarette smoke, a factor that is described as key 
to the ascension of the Marlboro brand to the status of the world’s top-selling cigarette1. In 2014, PAX Labs, the 
original maker of the JUUL electronic cigarette (ECIG), obtained a patent for mixing free-base nicotine with an 
acid to convert it to the salt form2. This formulation reduces the aversiveness associated with inhaling the high 
free-base nicotine liquids3,4. Using nicotine salts, JUUL was able to employ nicotine concentrations as high as 
50 mg/mL at a time when ECIG products available on the market averaged a nicotine concentration of 12 mg/
mL, predominantly in the free-base form5,6. The transition to a high salt-based nicotine concentration liquid 
allowed the JUUL manufacturers to design a device that emits a high nicotine yield in a small puff volume.
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Today, the use of nicotine salts is rapidly growing, and many ECIG manufacturers offer nicotine salt-contain-
ing ECIGs and refillable solutions7. These devices and liquids vary by liquid composition, i.e., propylene glycol 
to vegetable glycerin (PG/VG) ratio, the two most common ECIG liquid vehicles5, electrical features, and device 
design. While ECIG nicotine yield has been shown to increase with PG/VG ratio and power8,9, the influence 
of nicotine form on yield previously has not been examined directly; the data available to date indicate that for 
a given pH, nicotine yield is independent of the acid used in the liquid10, and that the protonated to free-base 
ratio found in the ECIG aerosol matches that of the liquid11,12. This knowledge gap is salient because to date EU 
and proposed US regulations aiming to limit nicotine delivery focus exclusively on nicotine concentration13, 
neglecting form, PG/VG ratio, and electrical power, among other factors.

In this study, we examined the effects of free-base vs. protonated nicotine forms on nicotine yield and the 
amount of liquid aerosolized while varying electrical power and liquid vehicle.

Results
Figure 1 shows the effect of nicotine form on nicotine yield at varying powers and PG/VG ratios. Nicotine yield 
was not significantly associated with nicotine form (p = 0.67), whereas yield was strongly associated with power 
and PG/VG ratio (p < 0.01). The regression model was found to explain 93% of the variance in nicotine yield 
(p < 0.01). We also found that nicotine yield can be predicted accurately from the product of the TPM and the 
liquid nicotine concentration (R2 = 0.92). A summary of the results is presented in Table 1.

Discussion
This study investigated the effects of protonated vs. free-base nicotine on nicotine yield, at varying powers and 
PG/VG ratios. We found that nicotine yield was not associated with nicotine form, but that yield increased with 
power and when the liquid vehicle was PG.

The null effect of nicotine form on yield has been reported previously for combustible cigarettes14, and is 
consistent with the notion that when heated, protonated nicotine undergoes dissociation of the acid/base pair 
during vaporization and then recombines upon condensation of the aerosol3,10. We have previously shown that 

Figure 1.   Average (± SD) nicotine yield (mg/15puffs) across conditions that differ by nicotine form, PG/VG 
ratio, and powers. Filled symbols indicate a significant difference from the 10 W condition, asterisks (*) indicate 
significant differences from the 0/100 PG/VG condition for each tested power.

Table 1.   Mean (SD) of nicotine and TPM yields (N = 3) obtained using free-base and protonated nicotine 
at varying powers and PG/VG ratios. a While the lowest power used for the PG liquid was equal to 5 W, this 
power level was insufficient to generate a quantifiable amount of aerosol using the VG liquid. Thus for the VG 
condition 10 W was the minimum power used.

PG/VG Power (W)

Nicotine (mg/15puffs) TPM (mg/15puffs)

Free-base Protonated Free-base Protonated

100/0 5a 0.31 (0.10) 0.31 (0.07) 17.58 (9.35) 17.48 (3.49)

100/0 10 1.97 (0.16) 2.18 (0.34) 154.1 (10.81) 168.4 (44.48)

100/0 15 4.07 (0.23) 4.48 (0.61) 309.7 (12.3) 346.4 (48.56)

100/0 30 10.6 (0.87) 10.2 (0.47) 721.5 (42.75) 748.75 (62.82)

100/0 45 13.2 (0.06) 13.9 (0.48) 941.5 (16.04) 956.25 (36.4)

0/100 10 0.27 (0.03) 0.31 (0.06) 7.15 (1.78) 3.15 (1.3)

0/100 15 1.09 (0.08) 1.23 (0.47) 59.65 (14.64) 55.25 (44.51)

0/100 30 5.57 (0.1) 5.27 (0.27) 547.25 (25.7) 501 (56.51)

0/100 45 6.88 (0.29) 7.38 (1.04) 799.5 (8.11) 793.5 (33.85)



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16263  | https://doi.org/10.1038/s41598-020-73385-6

www.nature.com/scientificreports/

the nicotine form in the ECIG aerosol corresponds to that of the liquid11. While form does not impact yield, it 
likely affects user sensory experience, such as the “throat hit” of the inhaled aerosol3.

The strong effect of liquid vehicle and power is consistent with previously presented theory of ECIG 
operation8, and with previous empirical studies9,15. In brief, the nicotine vaporization rate depends on the rate 
at which the liquid vehicle vaporizes from the ECIG heating coil8. The ECIG liquid vaporizes either by evapora-
tion, when the temperature of the liquid is below its boiling temperature, or boiling, when the temperature of 
the liquid is equal to its boiling temperature. In the evaporation regime, the vaporization rate is governed by the 
volatility of the liquid. Because PG is more volatile (i.e., has a lower boiling point) than VG, the PG condition 
will produce a higher vaporization rate at a given temperature and power. In the boiling regime, the amount of 
liquid vaporized depends on how much of the thermal energy produced by the coil reaches the liquid versus 
being lost to the surroundings. The rate of thermal energy loss to the surroundings is, in turn, proportional to the 
temperature difference between the heating coil and the ambient surroundings. Because VG has a higher boiling 
temperature than PG, the temperature that the system reaches with VG is greater than with PG, and results in 
greater energy losses to surroundings, and less energy delivery to the liquid. Therefore, in both evaporation and 
boiling regimes (equivalent to low and high power for a given device), PG vaporizes at a greater rate than VG, 
carrying more nicotine per unit time8.

However, while PG-based liquids result in higher nicotine yield than VG liquids, the latter are commonly used 
in ECIG products, particularly in sub-Ohm devices and pod-systems, such as JUUL (30/70 PG/VG ratio16). Apart 
from nicotine, other factors that contribute to the ECIG desirability include the making possible the ability to 
exhale “big clouds” of aerosol17. This feature of ECIG operation is associated with the PG/VG ratio15. Compared 
to PG, VG produces larger particles that are capable of scattering more light, resulting in a more visible aerosol15. 
This factor, combined with greater throat irritation, likely contributes to the lower overall satisfaction associated 
with PG-based liquids and higher preference for VG-based liquids18.

In summary, we found that for a fixed puffing protocol, nicotine form is unlikely to influence yield for any 
current practical scenario (i.e., actual user power levels). However, while form does not affect yield, it may affect 
nicotine delivery to the blood. To date, research available on the effect of nicotine form on nicotine delivery shows 
contradictory outcomes19,20, potentially from the different methods used21. In addition, to the extent that nicotine 
form modifies sensory experience, it may also influence puffing and inhalation behavior and therefore exposure. 
For example, previous studies have shown that users modified their puffing behavior (i.e., lower puff duration 
and volume) when using PG instead of VG-based liquids, likely due to sensory experience18. We speculate that 
nicotine form may play a similar role; for example, users may decrease puffing intensity when using free-base 
nicotine, and thereby obtain less nicotine. Controlled clinical studies on the impact of form on puffing behavior 
and exposure could address these questions.

Methods
Aerosol generation.  Aerosol was generated using the American University of Beirut Aerosol Lab Vaping 
Instrument (ALVIN), a custom-built digital puffing machine that can replicate in high resolution individual 
human puffing behavior. A Kanger Subox Mini-C tank ECIG was connected to ALVIN to generate the aerosol 
samples. The Subox tank was fitted with a coil head from the same manufacturer (SSOC nichrome 0.5 Ω) and 
powered using a DC power supply. Five power levels were used in the range 5–45 W. The powers were selected to 
cover a wide range within the device’s operating power output (1–50 W). For each sampling session, the aerosol 
exiting the mouth end of the ECIG was drawn through a Gelman type A/E 47 mm glass fiber filter pad where 
the particle phase of the aerosol was trapped. Total particulate matter (TPM) was determined by weighing the 
filter assembly before and after each session. Puff topography conditions were kept constant across all conditions 
at 4 s puff duration, 10 s interpuff interval, and 8LPM flow rate, approximating the average flow rate obtained in 
a clinical setting using the same device as reported by Hiler et al.22. Three new ECIG heater coils were used for 
each of the four liquid formulations (i.e., 12 coils in total were used for this study). Each coil was used to sample 
aerosol at all powers. A detailed list of conditions is provided in Table 1.

ECIG liquid preparation.  Analytical grade PG (≥ 99.5%, CAS 57-55-6), VG (99.0–101.0%, CAS 56-81-5), 
nicotine (≥ 99%, CAS number 54-11-5) and benzoic acid (≥ 99.5%, CAS 65-85-0) were procured from Sigma-
Aldrich Corporation and used to prepare four different solutions with entirely free-base or protonated nicotine 
at 15 mg/g concentration, each using a 100/0 and 0/100 PG/VG ratios (Table 1). These ratios were selected to test 
the maximum range of potential liquid vehicle interaction with the effect of nicotine form on nicotine yield. The 
protonated nicotine solutions were prepared by adding standard solutions of benzoic acid to free-base nicotine 
as 1:1 mol ratio.

Nicotine quantification.  Nicotine in the aerosol and liquid was determined by GC–MS analysis of sam-
ples extracted in an ethyl-acetate solvent as previously described in Talih, et al.23. An extracted calibration curve 
with concentrations ranging from 1 to 20 ppm and spiked with the internal standard hexadecane was used to 
interpret the resulting chromatograms. Spiked filter assays of nicotine in PG and VG solutions showed recover-
ies of > 90%.

Statistical analysis.  A multiple linear regression analysis was used to estimate the association between 
nicotine yield with nicotine form, power, and PG/VG ratio. Statistical analyses were performed using SPSS ver-
sion 25.0 (IBM, Armonk, NY, USA). Statistical significance was p < 0.05.
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