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Corneal reflections and skin contrast yield 
better memory of human and virtual faces
Julija Vaitonytė*, Maryam Alimardani and Max M. Louwerse 

Abstract 

Virtual faces have been found to be rated less human-like and remembered worse than photographic images of 
humans. What it is in virtual faces that yields reduced memory has so far remained unclear. The current study inves-
tigated face memory in the context of virtual agent faces and human faces, real and manipulated, considering two 
factors of predicted influence, i.e., corneal reflections and skin contrast. Corneal reflections referred to the bright 
points in each eye that occur when the ambient light reflects from the surface of the cornea. Skin contrast referred to 
the degree to which skin surface is rough versus smooth. We conducted two memory experiments, one with high-
quality virtual agent faces (Experiment 1) and the other with the photographs of human faces that were manipulated 
(Experiment 2). Experiment 1 showed better memory for virtual faces with increased corneal reflections and skin 
contrast (rougher rather than smoother skin). Experiment 2 replicated these findings, showing that removing the cor-
neal reflections and smoothening the skin reduced memory recognition of manipulated faces, with a stronger effect 
exerted by the eyes than the skin. This study highlights specific features of the eyes and skin that can help explain 
memory discrepancies between real and virtual faces and in turn elucidates the factors that play a role in the cogni-
tive processing of faces.
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Introduction
Humans are highly visually oriented species (Van Essen, 
2004), with one type of visual stimulus especially captur-
ing our attention—the face (Hershler & Hochstein, 2005). 
This is not surprising as face processing plays an impor-
tant role in human communicative interactions (Hernán-
dez-Gutiérrez et al., 2021). Superior face processing skills 
in humans can be linked to highly specialized neural cir-
cuitry (Duchaine & Yovel, 2015), as well as the high vari-
ability in facial morphology, particularly in comparison 
to other species (Sheehan & Nachman, 2014).

Given the specialized neuro-cognitive mechanisms for 
human face processing, it becomes increasingly relevant 
to understand the extent to which human face processing 
extends to the faces of entities emulating the appearance 

of humans, for instance, Intelligent Virtual Agents 
(IVAs). IVAs are embodied virtual characters that can 
interact with humans using verbal, para-verbal, and non-
verbal behaviors (Lugrin, 2021). With advances in com-
puter graphics (Alexander et al., 2009), the faces of IVAs 
have become photorealistic (Seymour et  al., 2017). The 
growing prevalence of using IVAs as stimuli in research 
(Kätsyri et al., 2020) and the interest to use them in dif-
ferent use cases, such as e-commerce (Etemad-Sajadi, 
2016), healthcare (Robinson et al., 2014), and education 
(Belpaeme et al., 2018) highlight the importance of inves-
tigating the similarities between processing IVA faces, 
henceforth, virtual faces and natural human faces.

Despite the progress in computer-generated imagery, 
the processing of virtual faces is different than the pro-
cessing of natural human faces. Previous perception 
research revealed that computer-generated faces are gen-
erally distinguishable from natural faces (Farid & Bravo, 
2012; Vaitonytė et al., 2021), and that information across 
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the whole face, the eyes, and the skin, is employed to 
make this distinction (Balas & Tonsager, 2014). Relatedly, 
the fidelity of specific features in the eyes and the skin (as 
discussed in detail below) has been recently found to be 
responsible for identifying virtual agent faces as virtual 
rather than human-like (Vaitonytė et al., 2021).

Memory studies, too, point to a processing discrepancy 
between computer-generated and human faces (Balas & 
Pacella, 2015; Crookes et  al., 2015; Kätsyri, 2018). Balas 
and Pacella (2015) used real photographs and identity-
matched computer-generated counterparts, created 
using FaceGen software, which allows importing a fron-
tal and two lateral photographs of the face to generate 
an individualized avatar. Balas and Pacella (2015) found 
that real faces were significantly better remembered 
than computer-generated faces. Crookes et  al. (2015) 
who used real photographs of Caucasian and Asian faces 
and computer-generated counterparts, as well as com-
puter-generated Caucasian and Asian faces generated at 
random using FaceGen, reached the same conclusion, 
i.e., higher memory recognition accuracy was found for 
natural than computer-generated faces. Crookes et  al. 
(2015) also showed that the Other Race effect (ORE; bet-
ter face memory for one’s own race than other races) was 
reduced for computer-generated faces compared to real 
facial photographs.

Similarly, Kätsyri (2018) employed real photographs 
and virtual faces that were generated in FaceGen and that 
were also matched on low-level features (global luminos-
ity and spatial frequency contents). Virtual faces matched 
on low-level visual characteristics were still recognizable 
as virtual. Regarding participant memory, while Kätsyri 
(2018) found that the sensitivity index d’ was not higher 
for real faces than virtual faces, the response bias index c 
was higher for virtual faces, indicating participants found 
that virtual faces were more similar to one another than 
real human faces were. It was previously suggested that 
computer-generated faces lack discriminating informa-
tion in the form of fine-grained surface texture (Crookes 
et al., 2015). This prediction is compatible with face rec-
ognition literature, showing that when spatial frequency 
information is reduced (where spatial frequencies refer 
to luminance variations, with high spatial frequencies 
encoding fast luminance variations and hence more 
detail), face recognition accuracy also drops (Sandford 
et  al., 2018). However, while the heterogeneity of facial 
details may be important for remembering virtual faces 
as it is with natural faces, this prediction has not been 
directly tested.

Vaitonytė et  al. (2021) showed both experimentally 
and computationally that the intricacy of facial details 
is important for the perceived human-likeness, allowing 
perceivers to distinguish between natural human faces 

and virtual faces. The specific features that were indica-
tive of the face being virtual were skin contrast, i.e., the 
degree to which skin texture is rough versus smooth, 
and corneal reflections, i.e., the white foci in each eye 
that occur when the ambient light reflects from the sur-
face of the cornea. Reductions in skin contrast and cor-
neal reflections caused one to perceive the face low in 
human-likeness.

The reasons behind the predicted influence of the skin 
contrast and corneal reflections are based on the previ-
ous literature that reported the features affecting face 
recognizability, i.e., spatial frequency information (Sand-
ford et al., 2018) and contrast polarity (Gilad et al., 2009). 
Reducing spatial frequency information negatively affects 
face recognition accuracy because the face loses detail 
(Sandford et al., 2018), whereas the potential role of cor-
neal reflections might be associated with the broader role 
that contrast polarity relationships play in face recogni-
tion (Gilad et  al., 2009). Contrast polarity relationships 
refer to the eyes being darker than the forehead and the 
cheeks, known to be a remarkably stable feature; if these 
relationships are reversed, for instance, by applying con-
trast negation, the face recognition becomes impaired. 
According to Gilad et  al. (2009), contrast polarity rela-
tionships may be important for typical face processing, in 
that they represent regularities in the data that get incor-
porated by the visual system when it learns about visual 
objects. It is unclear how regular the presence of corneal 
reflections is. Corneal reflections might be less regular 
than contrast polarity relations across the face because 
depending on the lighting conditions, corneal reflections 
may be pronounced or reduced. However, one may argue 
that corneal reflections are a feature that gets incorpo-
rated into face representations by the visual system.

In the current study, we examined the extent to which 
the previously identified features of skin contrast and 
corneal reflections impacted the memory of different 
faces. We tapped into more general cognitive processes 
by asking participants to remember stimuli. In day-to-day 
life, people commonly encounter situations that require 
remembering different faces while assessing human-like-
ness is arguably infrequent. We examined the role of skin 
contrast and corneal reflections in memory by conduct-
ing two experiments. Experiment 1 had high-quality vir-
tual faces collected “in the wild,” while Experiment 2 used 
human faces obtained from a picture database that were 
further manipulated to reduce skin contrast and corneal 
reflections. Although both experiments were conducted 
with the same group of participants, they can be best 
understood as independent experiments due to the dif-
ferent nature of stimuli. Dawel et  al. (2021) argued that 
an approach that seeks convergent evidence using a set 
of controlled images and a set of images collected “in 
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the wild” is valuable when studying face processing. Our 
approach is, however, not amenable to directly compar-
ing the memory recognition performance in virtual faces 
versus human faces, rather we sought to more generally 
understand whether the predicted features were of influ-
ence on memory.

Experiment 1
Experiment 1 used high-quality virtual faces available 
from different companies that employ cutting-edge tech-
niques (i.e., 3D scanning) to test how facial details pre-
sent in virtual faces were associated with participant face 
memory performance. Following Vaitonytė et al. (2021), 
we predicted that the virtual faces with higher skin con-
trast and a higher number of corneal reflections would 
be remembered better compared to the virtual faces with 
lower skin contrast (i.e., smoother skin) and fewer cor-
neal reflections.

Method
Participants
Sixty-three students at Tilburg University (34 females, 
28 males, and one person who preferred not to indicate 
gender, Age: Mean = 22.65, SD = 4.19) took part in the 
experiment in exchange for either partial course cred-
its or a candy bar. The majority of participants identi-
fied with Caucasian ethnicity (n = 42), followed by Asian 
(n = 9), Black (n = 2), Hispanic (n = 2), and Middle East-
ern (n = 2) ethnicities, while 6 participants indicated 
“Other.” Participants were recruited via the university 
participant pool and advertisements put on campus. 
The experiment was approved by the Research Ethics 
and Data Management Committee of the Tilburg School 
of Humanities and Digital Sciences (identification code: 
REC#2019/03). All participants provided consent prior to 
their participation in the experiment.

Stimuli
Experimental stimuli consisted of photorealistic virtual 
agent faces (n = 24, 12 female), collected from the Inter-
net using the following criteria: (1) the photographs 
of the virtual face had to be of high quality, (2) the face 
had to be presented in frontal view, and (3) the face was 
not covered with hair that obscured facial features. No 
changes were made to the facial images of virtual faces. 
We used searches “digital human” and “digital humans” 
with the aim to collect virtual faces created by compa-
nies that work in the realm of “digital human” technology. 
These companies use techniques such as 3D scanning 
and/or deep neural networks, which permit creating 
photorealistic faces. To prepare stimuli, virtual faces were 
cropped to an oval removing all non-facial information 
(e.g., hair), with a slightly varying width due to inherent 

variation in the facial width (from 550 to 650 pixels) and 
a constant height (800 pixels). By collecting virtual agent 
faces, we aimed to obtain a sample of photorealistic vir-
tual faces, and also have a more spontaneous set of faces. 
Such stimulus set can be considered similar to the face 
photographs collected “in the wild” that are sometimes 
used in studies on face recognition, whereby e.g., lighting 
conditions or face age may differ among images.

Procedure
Participants received instructions both in writing and 
verbally. First, participants were presented with written 
instructions, after which they signed an informed con-
sent digitally and filled in a demographic questionnaire. 
The written instructions, the informed consent, and 
the questionnaire were presented in Qualtrics (Qual-
trics, 2021). Following this, the experimenter explained 
the task in Experiment 1 and Experiment 2 verbally. We 
combined the presentation of instructions for Experi-
ment 1 with those for Experiment 2 since one experi-
ment followed another, with a short break in-between. 
The decision against combining the virtual faces and the 
human faces from Experiment 2 into a single experiment 
was based on the two classes of images forming clearly 
distinct groups.

Participants were told that they would see a series of 
virtual agent faces that needed to be memorized (hence-
forth “study” phase). Next, they would get statements 
whose veracity needed to be judged (distractor task), and 
they would then again see a set of virtual agent faces and 
would decide whether they had previously seen each face 
or not (henceforth “test” phase). There was no time limit 
in “test” phase, but participants were asked to use their 
immediate judgment to make decisions. Participants 
were asked to use their index fingers to press the M key 
if the face was “old” (presented previously) or a Z key 
if the face was “new” (presented for the first time). The 
distractor task between “study” and “test” included gen-
eral knowledge statements (e.g., “Monaco is the smallest 
country in the world”), for which participants selected 
whether they thought the statement was true or false. 
The duration of completing the distractor task slightly 
varied across participants, because it depended on each 
participant’s speed, but on average it lasted approxi-
mately 2–3 min. Neither answers nor response times in 
the distractor task were relevant or used for the analysis.

Stimuli were presented using the PsychoPy software 
(Peirce, 2007) on a laptop (Dell E5480) with a screen 
resolution of 1920 × 1080. Participants sat approxi-
mately 40  cm from the screen. Four face stimuli, one 
virtual face, and three human faces, none of which were 
part of the experimental stimuli, were given to partici-
pants as practice. Having finished the practice trials, 
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participants started Experiment 1, in which they saw 
16 virtual faces (half female) (Fig. 1A) presented for two 
seconds following Schyns et  al. (2002). Following the 
“study” phase, participants read eight statements and 
indicated their veracity. In the “test” phase, participants 
saw 16 virtual faces of which 8 images were previously 

not shown. Virtual faces to be shown to participants as 
“old” or “new” were selected randomly. However, due 
to the limited sample size of the available virtual agent 
faces, they were not counterbalanced. Therefore, all 
participants saw the same set of images as “new” and 
the same set of images as “old.” Participants’ accuracy 

Fig. 1  Schematic overview of the experimental procedure in A Experiment 1 and B Experiment 2. In the “study” phase, participants saw each face 
presented on the screen for 2000 ms followed by a blank screen that was presented for 500 ms. In the subsequent distractor phase, participants 
read statements and indicated their veracity. Finally, memory was tested in the “test” phase by presenting half of the earlier presented images in 
addition to new facial images
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and response times (RTs) were collected as dependent 
variables.

Computational measures
While we did not manipulate virtual faces, we used two 
computational measures, as previously described in 
Vaitonytė et al. (2021), to assess skin smoothness versus 
roughness and the presence of the corneal reflections. 
For the assessment of skin smoothness, we measured 
contrast variations in facial images, which we converted 
to grayscale before carrying out the calculations. The 
developed measure for skin, termed “skin contrast,” iden-
tified for each pixel in a facial image the biggest differ-
ence with its adjacent pixels (each pixel had 8 neighbors). 
A matrix of those differences in contrast quantifications 
had been used to derive the median for each facial image. 
Therefore, the output of the algorithm was the median 
value of skin contrast per image. In this computation, we 
used the whole face as input because: (1) taking the whole 
face versus isolated parts did not yield differing results, 
and (2) taking whole faces confers better generalizability. 
For the computational assessment of corneal reflections, 
we counted the white foci in each eye, selecting the iris 
and pupil. Each image was first converted to grayscale 
and then bright and dark pixels were identified. Finally, 
all bright pixels that were connected to each other were 
identified as corneal reflections, yielding the number of 
corneal reflections as measure.

Analysis
Data were preprocessed and analyzed in R (version 
4.0.3; R Core Team, 2021). We transformed participant 
responses into sensitivity index d′ and the response bias 
index c in the framework of the Signal Detection Theory 
(SDT, Stanislaw & Todorov, 1999). In addition, we fit-
ted Generalized Linear Mixed Models (GLMM) to raw 
accuracy scores and response times via the lme4 pack-
age (Bates et al., 2015). Response times longer than three 
standard deviations from the mean were removed, affect-
ing 2.15% of the data from Experiment 1. We included 
the SDT measures in addition to raw accuracy scores to 
account for the bias introduced by participants, in that 
in SDT, sensitivity to the task (d′) is measured indepen-
dently of response bias (c).

Responses could be assigned to one of the four catego-
ries: (1) Hits when the face was correctly identified as old, 
(2) Misses when participants failed to categorize old faces 
as such, (3) False alarms when unseen faces were mis-
takenly identified as old, and (4) Correct rejections when 
unseen faces were identified as new. When calculating d′, 
transformations were applied to values of hits and false 
alarms of 0 using the log-linear rule (Hautus, 1995) to 
avoid obtaining values of positive and negative infinity. 

Higher d′ values suggested higher sensitivity, indicative 
of having many hits and few false alarms. The response 
bias index c determined the preferred response favored 
by participants, i.e., conservative or liberal. Conservative 
responding is represented by positive values of c and can 
be understood as the preference to respond “old,” while 
negative values of c are indicative of liberal responding, 
i.e., “new.” In Experiment 1, we were interested in the val-
ues of d′ across the virtual faces. The sensitivity index d′ 
was calculated for each virtual face (n = 16), i.e., averaged 
across participants, and for each participant (n = 63), i.e., 
averaged across virtual face images.

In the mixed-effects model analyses, we looked at 
whether the computational measures, i.e., the number of 
corneal reflections and the skin contrast score, obtained 
for each virtual face as described above (both treated as 
continuous predictors in the models), were predictive of 
the accuracy and the RT responses. Mixed-effects logistic 
regression analysis was conducted on participants’ origi-
nal responses: 1 = correct and 0 = incorrect, whereby 
correct meant that the participant correctly remem-
bered whether or not a face was presented earlier. Linear 
mixed-effects regression was conducted on RTs (meas-
ured in milliseconds). Across all analyses, participants 
were a random factor while we did not include items as 
a random factor to avoid eliminating item variance that 
needed to be attributed to the predictors of interest (i.e., 
the number of corneal reflections and the skin contrast 
score). Model comparisons were conducted via the likeli-
hood ratio (LR) tests to determine the significance of pre-
dictors of interest.

Results
Sensitivity index d′ and response bias index c
The values of the sensitivity index d′ were generally high 
across virtual face images, with a mean of 2.05 (no sen-
sitivity being 0). This suggests that the virtual faces were 
overall remembered well, with the exception of three vir-
tual faces (bottom row in Fig. 2) yielding negative scores. 
Figure 2 presents the virtual faces that were employed to 
test memory in Experiment 1 together with the sensitiv-
ity index d′ and the computational measures associated 
with each face. A slight bias was found among partici-
pants toward responding having seen a face before (aver-
age of c scores = 0.63). Overall, the results of Experiment 
1 suggested that participants were able to recall virtual 
faces well.

Accuracy
We first ascertained which of the models were significant 
using LR tests. The number of corneal reflections in the 
eyes was a significant predictor when compared to the 
null model, χ2(1) = 38.18, p < 0.001. When skin contrast 
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as the predictor was added to the model, the model 
improved, χ2(1) = 13.94, p < 0.001 compared to the model 
that only contained the number of corneal reflections.

Overall, we found that participants were more likely 
to have higher memory recognition accuracy when 
virtual faces had a higher number of corneal reflec-
tions (β = 0.19, SE = 0.05, z = 3.64, 95% CI [0.09, 0.30], 
p < 0.001), and when the faces had increased skin contrast 

(β = 63.83, SE = 18.01, z = 3.54, 95% CI [29.00, 102.08], 
p < 0.001).

Response times
Contrary to accuracy scores, the null model for the 
response times compared with the model containing 
the number of corneal reflections as a predictor yielded 
no improvement in the model, χ2(1) = 2.74, p = 0.10. 

Fig. 2  d′ scores averaged across participants (top row), the skin contrast value denoted as “skin” (middle row), and the number of corneal reflections 
denoted as “cornea” (bottom row) for each virtual face. The larger values of d′ show good memory, whereas the negative values indicate that the 
face was poorly remembered
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In line with the accuracy scores, adding skin contrast 
as a predictor did improve the model, χ2(1) = 85.25, 
p < 0.001. The model with the number of corneal reflec-
tions and skin contrast as predictors was significantly 
better than the model containing only the number of 
corneal reflections.

We found that virtual faces with increased corneal 
reflections yielded faster response times (β =  − 43.15, 
SE = 7.88, t(914.85) =  − 5.48, 95% CI [− 58.60, − 27.69], 
p < 0.001). However, higher skin contrast yielded signifi-
cantly slower (not faster) response times (β = 31,062.75, 
SE = 3281.45, t(917.23) = 9.47, 95% CI [24621.28, 
37,500.92], p < 0.001).

Discussion
The results in Experiment 1 showed that across the vir-
tual face images, the values of sensitivity index d′ were 
high, with the exception of three faces. High memory 
recognition accuracy in general might, however, have 
resulted from a relatively small number of faces to 
memorize. In terms of raw accuracy scores, skin con-
trast and corneal reflections were predictive of memory 
performance. The virtual faces with a higher skin con-
trast and a higher number of corneal reflections were 
more likely to be remembered better than the faces 
with reductions in these features. The two features 
thus covaried with accuracy in the hypothesized direc-
tion, i.e., facilitating memory performance. Participants 
responded significantly faster on the faces in which 
the eyes had a higher number of corneal reflections, 
whereas increased skin contrast yielded significantly 
longer response times. This difference in the direction 
of the observed effects on response times was not pre-
dicted. It might be that more detailed skin appearance 
as indicated by higher values of skin contrast might 
have required more processing time because skin is a 
more global feature (compared to corneal reflections 
that are more localized).

Based on these results with virtual faces, for better 
memory of the face, the skin texture may be suggested 
to be rougher (rather than smoother) and the eyes with 
corneal reflections included (rather than reduced). The 
downside of Experiment 1, however, is that we did not 
control for any extraneous factors (e.g., face distinctive-
ness). It is possible that distinctiveness, known to affect 
the ability to remember faces (Valentine, 1991), has cova-
ried with the features of interest, and thus explains the 
results as much as those features do. A controlled set of 
faces is therefore needed to seek convergent evidence 
regarding the extent to which altering skin contrast and 
the presence of corneal reflections affect face memory. 
We address this caveat in Experiment 2.

Experiment 2
Experiment 2 used human faces and examined how face 
memory was affected by the extent of manipulation made 
to different faces by smoothening the skin and remov-
ing/preserving the corneal reflections. We predicted that 
violations in the two features would negatively impact 
memory performance. Based on the prior literature 
(Vaitonytė et al., 2021), we expected that the absence of 
corneal reflections would exert a stronger influence, in 
that the worst memory would be observed with respect 
to the faces lacking corneal reflections, with and without 
changes in skin.

Method
Participants
Sixty-three participants took part in this experiment, the 
same sample as those participants in Experiment 1.

Stimuli
The stimulus set consisted of the photographs of human 
faces that were taken from the Chicago Face Database 
(CFD; Ma et  al., 2015), randomly selecting 12 female 
and 12 male individuals of four races that are present in 
CFD: Asian, Black, Caucasian, and Hispanic. We aimed 
to include the faces of different ethnicities and both sexes 
in the stimulus set to have a representative sample of the 
database. All images of the 96 different identities (i.e., (4 
races × 12 female pictures) + (4 races × 12 male pictures) 
had a neutral facial expression, were free from makeup, 
and depicted the face in frontal view. The CFD images 
allowed us to better control for extraneous factors, i.e., 
distinctiveness and attractiveness. We ascertained that 
the selected images were comparable in perceived dis-
tinctiveness and attractiveness relying on the extensive 
norming data that accompanies the images present in 
CFD. Each face in CFD was evaluated by a large group 
of raters on a number of dimensions. The ratings in CFD 
include, for instance, trustworthiness, dominance, and 
competence in addition to distinctiveness and attrac-
tiveness. Moreover, various characteristics were meas-
ured from images related to face morphology, including 
nose shape, face roundness, width-to-height ratio, as 
well as low-level features (i.e., luminance). Based on the 
luminance values that CFD lists, we ascertained that 
the selected images had comparable median luminance 
values as measured globally from the face (M = 141.22, 
SD = 30.42), which is not surprising because the images 
in CFD were acquired under standardized conditions 
(i.e., the backdrop, lighting conditions, and camera set-
tings were kept constant). There was only some vari-
ation in luminance due to ethnicity of the face, such 
that Black faces (M = 93.75, SD = 16.22) had slightly 
lower luminance values than other ethnicity faces: 
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Asian (M = 160.46, SD = 13.85), Caucasian (M = 153.50, 
SD = 10.10), and Hispanic (M = 157.17, SD = 10.19). The 
selected faces were found to be moderately attractive 
(M = 3.34, SD = 0.61), and there was not much variation 
across different ethnicities regarding perceived attrac-
tiveness: Asian (M = 3.21, SD = 0.56), Black (M = 3.33, 
SD = 0.43), Caucasian (M = 3.39, SD = 0.80), and His-
panic (M = 3.44, SD = 0.59). Similarly, the raters assessed 
each face on how unusual it was, i.e., whether it would 
stand out in the crowd which is comparable to distinc-
tiveness. The selected stimuli were low in distinctive-
ness (M = 2.24, SD = 0.40). There was not much variation 
across different ethnicities regarding perceived distinc-
tiveness: Asian (M = 2.17, SD = 0.39), Black (M = 2.39, 
SD = 0.30), Caucasian (M = 2.24, SD = 0.36), and His-
panic (M = 2.14, SD = 0.51).

To alter the original CFD faces, we applied manipu-
lations to the eyes and the skin of the selected faces, 
whereby a 2 (corneal reflections present vs. corneal 
reflections absent) × 3 (skin natural vs. skin smooth-
ened subtly vs. skin smoothened substantially) design 
was used, yielding six different sets of stimuli. In sum, 
the experimental stimuli comprised the faces that rep-
resented 2 sexes (female, male) × 4 races (Asian, Black, 
Caucasian, Hispanic) × 6 conditions (the corneal reflec-
tion and the skin manipulations). We used a within-
subjects design since each participant was exposed to 
all manipulations in the eyes and the skin as shown in 
Fig. 3, but the same participant was never exposed to a 
specific face more than once. This means that we cre-
ated six different lists with different randomized order 

of items, e.g., while one participant was presented with 
a Caucasian male face with the corneal reflections 
removed, the other participant saw the same Cauca-
sian male face with the corneal reflections removed and 
the skin smoothened subtly. This way the same identity 
of the face was never presented more than once to the 
same participant.

To prepare the images, we cropped them to an oval 
to remove all non-facial information (e.g., hair). While 
the width slightly varied due to inherent variation in 
the facial width (from 550 to 650 pixels), the height was 
kept constant (800 pixels). Manipulations in the eyes 
and skin of humans were made using the Adobe soft-
ware (Lightroom, version 1.10.0.4 and Photoshop, ver-
sion 13.0.1 × 32). To smoothen the skin for subtle skin 
smoothness, a filter was applied across the entire face 
while the facial areas that contained eyebrows, eyes, 
and lips were preserved. The filter was created based 
on a preset of fixed parameters (luminance = 50 and 
noise = 100), which were set through experimentation 
in order to create the skin that was smooth, but not 
too silky. To create faces with substantial skin smooth-
ness, the same filter was applied twice. The removal 
of the corneal reflections consisted of selecting the 
white foci in both the right and left eyes and replacing 
them with the areas next to them (i.e., the color of the 
iris). The rationale to smoothen the skin so as to cre-
ate two different degrees of smoothness was such that 
we aimed to have a fine-grained manipulation. Had we 
only manipulated skin in a subtle manner, such change 
might have been too subtle. Similarly, manipulating 

Fig. 3  Example of a face stimulus in all conditions in Experiment 2. The top row shows different levels of skin contrast: the face with the smoothest 
skin (right), the face with skin that is the least smooth (left), and the face whose skin is in-between regarding smoothness (middle) when corneal 
reflections are present. The bottom row shows each face with differing skin appearance when corneal reflections are removed
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skin in a substantial manner only might have created 
a sharp distinction between natural faces and manipu-
lated faces.

Procedure
Participants commenced Experiment 2 after a short 
break following the completion of Experiment 1. The 
general procedure of Experiment 2 was the same as in 
Experiment 1 and is shown in Fig.  1B. Participants first 
memorized the faces in the “study” phase, then they 
received a set of statements whose veracity they needed 
to indicate, after which there followed the “test” phase 
where participants decided whether or not each pre-
sented face had been shown before. In the “study” phase 
of Experiment 2, participants were presented with a total 
of 48 faces, each presented for 2 s, half of which were pre-
sented in the “test” phase. The other 24 faces comprised 
a set of new (previously not shown) faces, including the 
natural faces and the items in which the eyes and the 
skin were manipulated as described above. The distractor 
task was similar to Experiment 1. The order of items was 
pseudo-randomized. The duration of completing the dis-
tractor task slightly varied across participants, depending 
on each participant’s pace, but on average lasted about 
2–3 min.

The decision to present 48 faces in the “study” and 
“test” phases was based on a pilot test which showed that 
presenting 48 faces across the 6 conditions (8 images per 
condition) provided a suitable balance between having a 
sufficiently high number of items per condition and pre-
venting subject fatigue. As in Experiment 1, participants’ 
accuracy and RTs were collected as dependent variables.

Analysis
Data were preprocessed and analyzed in R (version 4.0.3; 
R Core Team, 2021). Participant responses were trans-
formed into sensitivity index d′ and the response bias 
index c in the SDT framework (Stanislaw & Todorov, 
1999), while raw accuracy and RTs were fitted with 
GLMM. We compared the values of d′ between differ-
ent conditions using the Mann–Whitney U tests (as d′ 
values were not normally distributed). The significance 

threshold was adjusted using the Bonferroni correction 
method (p < 0.05/15 = 0.003) based on the fifteen com-
parisons between 2 × 3 conditions (the corneal reflection 
and the skin manipulations).

In the Mixed-Effects Model analyses, we looked sepa-
rately at the effect of the skin conditions (skin natural vs. 
skin smoothened subtly vs. skin smoothened substan-
tially) and the eye conditions (corneal reflections pre-
sent vs. corneal reflections absent) on accuracy and RTs. 
The reference categories were “skin natural” and “cor-
neal reflections present” regarding the skin and the eyes, 
respectively. Both participants and items were included 
as random factors in all models. We thus looked at the 
effect of each predictor on its own so as to be able to 
understand how the absence of corneal reflections ver-
sus the smoothening of the skin impacted memory per-
formance. We preprocessed the response time data by 
removing RTs longer than three standard deviations from 
the mean both by participant and by condition, affecting 
2.68% of the data.

Results
Sensitivity index d′ and response bias index c
We compared 2 × 3 conditions with one another using 
the Mann–Whitney U tests, which resulted in fifteen 
comparisons and an alpha level of 0.003. We found that 
only in a few cases the results survived the p-value cor-
rection. Tables 1 and 2 present an overview of the results. 
As can be seen in Table  2, compared to original faces 
(corneal reflections present and skin natural), memory 
was significantly worse for faces with corneal reflections 
absent and skin natural (p < 0.001). Similarly, when com-
pared to the original faces, memory was worse for the 
faces with corneal reflections absent and skin smooth-
ened subtly (p < 0.001), as well as the faces with corneal 
reflections absent and skin smoothened substantially 
(p < 0.001). There was a tendency for the faces with cor-
neal reflections present and skin smoothened substan-
tially to be remembered worse than the original faces 
(p = 0.004). Similarly, there was a tendency for the faces 
with corneal reflections present and skin smoothened 

Table 1  Response times, accuracy, sensitivity index d′ and response bias c across different conditions

Condition Mean RT (SD) in ms Mean accuracy 
(SD) in %

Mean value 
of d′

Mean value of c

Corneal reflections present and skin natural 1360 (691) 70.49 (45.65) 0.68 0.78

Corneal reflections present and skin smoothened subtly 1318 (688) 64.10 (48.02) 0.45 0.64

Corneal reflections present and skin smoothened substantially 1286 (661) 63.78 (48.11) 0.45 0.67

Corneal reflections absent and skin natural 1393 (707) 55.13 (49.79) 0.19 0.67

Corneal reflections absent and skin smoothened subtly 1350 (674) 57.35 (49.51) 0.24 0.62

Corneal reflections absent and skin smoothened substantially 1379 (705) 54.45 (49.85) 0.15 0.75
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subtly to be remembered worse than the original faces 
(p = 0.009). For all other comparisons, having applied the 
Bonferroni correction, the results of memory differences 
turned out to be not statistically significant. Overall, this 
means that the removal of corneal reflections signifi-
cantly reduced the memory recognition accuracy while 
the smoothening of skin did not have such an effect, 
albeit a tendency.

Accuracy
As shown in Table 1, participants were most accurate at 
remembering original faces (70.49%), while they were 
least accurate on the faces with corneal reflections absent 
and skin smoothened substantially (54.45%), the faces 
with corneal reflections absent and skin natural (55.13%), 
and the faces with corneal reflections absent and skin 
smoothened subtly (57.35%). The two conditions in 
which manipulations to the face were made only regard-
ing the skin, i.e., corneal reflections present and skin 
smoothened subtly (64.10%), and corneal reflections pre-
sent and skin smoothened substantially (63.78%), were 
only slightly worse remembered compared to original 
faces with corneal reflections present and the skin that 
was natural.

We investigated the observed tendencies in participant 
ability to recall different faces by fitting the accuracy data 

to Mixed-Effects Logistic Regression analysis and using 
the LR tests to assess the model fit. We first added eyes 
to the model as the predictor, which produced a better 
fit to the data compared to the null model, χ2(1) = 11.49, 
p < 0.001. When skin as the predictor was added to the 
model, it did not improve it, χ2(2) = 1.63, p = 0.44. The 
eyes-by-skin interaction also did not produce a better fit 
to the data when compared to the model containing only 
eyes as the predictor, χ2(4) = 2.48, p = 0.65.

The effect of eyes suggested that the faces that had no 
corneal reflections (β =  − 0.47, SE = 0.14, z =  − 3.45, 
95% CI [− 0.75, − 0.20], p < 0.001) were recalled sig-
nificantly worse compared to the faces that had corneal 
reflections present. On the other hand, participants’ 
memory of the faces that had skin smoothened sub-
tly was not significantly different from the faces that 
had natural skin (β = 0.06, SE = 0.18, z = 0.33, p = 0.74), 
nor was their memory worse with the faces that had 
skin smoothened substantially (β =  − 0.15, SE = 0.17, 
z =  − 0.89,    p = 0.37).

These results indicated that removing corneal reflec-
tions from the eyes was detrimental to memory perfor-
mance, while if only the skin was smoothened, subtly and 
substantially, this did not affect memory performance. 
However, as can be seen from the coefficient values, 
substantially smoothening the skin affected memory 

Table 2  All binary comparisons of d′ values between different conditions with the associated effect size

r denotes the effect size, *p < 0.003 is significant after applying the Bonferroni correction

Corneal 
reflections 
present and skin 
natural

Corneal 
reflections 
absent and skin 
natural

Corneal 
reflections 
present and skin 
smoothened 
subtly

Corneal 
reflections 
absent and skin 
smoothened 
subtly

Corneal 
reflections 
absent and skin 
smoothened 
substantially

Corneal 
reflections 
present and skin 
smoothened 
substantially

Corneal reflec-
tions present and 
skin natural

r, p-value 0.43, < 0.001* 0.23, 0.009 0.38, < 0.001* 0.44, < 0.001* 0.25, 0.004

Corneal reflec-
tions absent and 
skin natural

r, p-value 0.24, 0.008 0.05, 0.59 0.02, 0.85 0.23, 0.01

Corneal reflec-
tions present and 
skin smoothened 
subtly

r, p-value 0.18, 0.04 0.24, 0.008 0.02, 0.85

Corneal reflec-
tions absent and 
skin smoothened 
subtly

r, p-value 0.06, 0.48 0.18, < 0.05

Corneal reflec-
tions absent and 
skin smoothened 
substantially

r, p-value 0.22, 0.01

Corneal reflec-
tions present and 
skin smoothened 
substantially
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performance in the expected direction; such faces tended 
to be remembered worse, but not significantly so.

Response times
As shown in Table 1, participants tended to respond the 
slowest on items that had changes made to the eyes only, 
i.e., the faces with corneal reflections absent and skin nat-
ural (1393  ms) whereas they were the fastest with faces 
that had corneal reflections present and skin smoothened 
substantially (1286 ms). Although these tendencies were 
not statistically significant, we reported the results for 
completeness.

When we compared the null model with the model 
containing eyes as the predictor, it did not produce a bet-
ter fit to the data, χ2(1) = 3.50, p = 0.06. Adding skin as 
predictor to the model did not improve it, χ2(2) = 1.55, 
p = 0.46, nor did the interaction term, χ2(5) = 7.80, 
p = 0.17. Participants responded equally fast to the 
faces that had the eyes with corneal reflections present 
and the faces that had the eyes with corneal reflections 
absent (β = 51.92, SE = 27.53, t(72.87) = 1.87, p = 0.06). 
Across the skin conditions, participants’ response time 
to faces with skin smoothened subtly (β =  − 36.04, 
SE = 33.71, t(67.51) =  − 1.07, p = 0.29) and faces with 
skin smoothened substantially (β =  − 35.80, SE = 33.65, 
t(67.32) =  − 1.06, p = 0.29) was shorter but not signifi-
cantly different from response times on the faces with 
natural skin. As indicated by the negative coefficient val-
ues, participants tended to speed up for faces whose skin 
was smoothened.

Discussion
The results in Experiment 2 showed decreased memory 
recognition performance for faces that lacked corneal 
reflections; however, the smoothening of the skin did 
not affect memory performance. Participants’ response 
time was not affected by the manipulations made to the 
skin, nor by those made to the eyes. However, there was 
a trend for slower responses when the faces lacked cor-
neal reflections and there was also a trend for faster (not 
slower) responses when the faces had the skin smooth-
ened, both in a subtle and in a substantial manner. With 
none of these trends in the response time data being sig-
nificant, we will refrain from discussing these trends or 
their potential causes.

General discussion
Previous studies have found that memory for virtual 
faces is worse than for photographic images of humans 
(Balas & Pacella, 2015; Crookes et al., 2015). The reasons 
are, however, poorly understood. Previous work also 
showed that more broadly there exist processing differ-
ences between virtual and real faces (Farid & Bravo, 2012; 

Vaitonytė et  al., 2021) and that these differences can be 
associated with the appearance of the eyes and skin 
(Balas & Tonsager, 2014). Computational and experimen-
tal work revealed that specific features of the eyes and 
skin might be responsible for the discrepancies in per-
ception between virtual and real faces, in that faces lack-
ing corneal reflections and having reduced skin contrast, 
i.e., less detail, are judged less human-like (Vaitonytė 
et al., 2021). However, it remained unclear what the role 
of corneal reflections and skin contrast is in the context 
of a more general cognitive task, such as a memory task. 
Remembering the face involves a perceptual compo-
nent (Herweg et al., 2020), i.e., the face first needs to be 
perceived—the information needs to be extracted from 
a perceptual stimulus—before it can be encoded into 
memory.

The current memory experiments employing virtual 
faces (available from companies developing such faces) 
as well as real human faces (acquired under standard-
ized conditions and manipulated) demonstrated that 
increased corneal reflections and skin contrast in a 
face yielded better memory for that face. Experiment 1 
showed that the virtual faces that had a higher number of 
corneal reflections and a higher skin contrast were more 
likely to be remembered than the virtual faces that had 
reductions in these features. Experiment 2 allowed us to 
systematically look at the effect of each predictor using 
the eye conditions (corneal reflections present vs. corneal 
reflections absent) and the skin conditions (skin natural 
vs. skin smoothened subtly vs. skin smoothened substan-
tially). Results showed that the absence of corneal reflec-
tions had a statistically significant and negative effect on 
memory recognition accuracy; however, this was not the 
case for a smoother skin, which only showed a trend in 
the predicted direction. This means that the faces with 
smoother than normal skin tended to be remembered 
worse but not significantly so. The findings from both 
experiments provided convergent evidence that the pres-
ervation versus the violation of the two features impacts 
the ability to remember the face. More broadly, these 
findings suggest that the appearance of eyes and the 
appearance of skin are relevant to both subjective per-
ceptual decisions when people evaluate the human-like-
ness of the face and the retrieval of faces from memory.

The two experiments are complementary because they 
bring corresponding evidence from different contexts. 
The virtual faces in Experiment 1 are not manipulated 
and are available in the industry. The human faces in 
Experiment 2 are not available in the industry but pro-
vide a highly controlled set of images.

Due to the nature of how the virtual faces were col-
lected, we were not able to control for any extraneous 
factors, e.g., distinctiveness and attractiveness, which 
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may influence face memory (Valentine, 1991). Although 
it seems unlikely that distinctiveness influenced the 
results by visual inspection of the virtual faces, we cannot 
rule out this possibility. We compensated for this caveat 
in Experiment 2 by having a set of faces that were com-
parable in perceived distinctiveness, attractiveness, and 
low-level characteristics (i.e., luminance). Future stud-
ies may still want to employ a set of virtual faces (e.g., 
obtained via 3D scanning) and a set of photographic 
images matched on identity which would enable both the 
examination of the effect of corneal reflections and skin 
contrast on memory and a direct comparison between 
virtual and real faces regarding the memory recognition 
accuracy. Another valid future direction, more broadly 
for psychology research, is understanding how skin 
contrast may vary depending on the face ethnicity and 
whether this influences the ability to memorize different 
faces.

In general, examining the role of skin surface informa-
tion and the eyes in face processing is not new. Espe-
cially, skin surface cues have received attention from 
researchers. Various pieces of evidence show that skin 
texture is important for face representations of age (Lai 
et al., 2013), sex (Bruce et al., 1993), race (Bülthoff et al., 
2021), discriminating between familiar and unfamiliar 
faces (Rogers et  al., 2022), as well as in making social 
evaluations, e.g., attractiveness (Jaeger et  al., 2018). For 
instance, recently Bülthoff et  al. (2021) demonstrated 
that it is possible to change the perception of race having 
exchanged the skin surface details, as well as exchanging 
the eyes between the Asian and Caucasian faces. Despite 
this, until recently there has been only scant research on 
how the skin and the eyes might be implicated in the per-
ception of human-likeness (Cheetham et al., 2013; Mac-
Dorman et  al., 2009), and which specific aspects of the 
facial appearance are relevant when judging the face as 
human-like or not (Vaitonytė et al., 2021).

Faces with smooth skin, either obtained via FaceGen or 
image editing (as was done in this study), show less indi-
viduating information (Crookes et  al., 2015), making it 
difficult for them to be memorized. This idea can be illus-
trated with research that used facial averaging, a tech-
nique in which multiple facial images are superimposed 
onto each other to produce an average image (Sutherland 
et  al., 2017). The faces constructed using this technique 
come across as attractive and even create the illusion 
of being familiar, yet they are difficult to remember and 
distinguish from each other due to a lack of distinctive 
features (Unnikrishnan, 2009). Of note is, however, that 
facial averaging reduces distinctiveness both at the level 
of face structure and skin surface texture.

Corneal reflections are relatively unexplored when it 
comes to face processing and thus the explanation why 

the absence of corneal reflections disrupts face memory 
is at first unintuitive. While there is literature showing 
that the eyes are the feature that receives a dispropor-
tionately large amount of visual attention within the face 
(Rogers et al., 2018), and provide a wealth of information 
for social coordination in communicative settings (Hes-
sels, 2020; Ho et  al., 2015), such cognitive/motivational 
explanation as to why people look at the eyes is likely 
incomplete. As shown by research using eye tracking, 
people show most interest in visual stimuli that present 
both social information and visually salient information 
(Rubo & Gamer, 2018). Regarding corneal reflections, a 
plausible explanation with respect to their importance 
might be related to the way the eyes look physically. 
There is evidence that the eyes are visually cueing atten-
tion, even when they are located not on the head but 
elsewhere in the body (Levy et al., 2013). Moreover, the 
characteristic appearance of the eyes, i.e., the contrast 
that is created between the sclera and the darker-colored 
iris and pupil (Kobayashi & Kohshima, 1997) may reflect 
a broader sensitivity of the human visual system to con-
trast polarity relationships in the face (Gilad et al., 2009). 
Contrast is also a feature that is used in face recognition 
systems (Viola & Jones, 2001). In humans, the sensitiv-
ity to contrast polarity emerges very early on in develop-
ment since 5- to 6-month-old infants are already sensitive 
to contrast reversal in the eyes (Ichikawa et al., 2013).

Prior studies found that contrast is crucial for typical 
face processing. However, to our knowledge no previous 
work has linked corneal reflections to the susceptibility of 
humans to contrast polarity despite that the mechanism 
at play for both might be similar. While it is unclear to 
what extent corneal reflections appear robustly in facial 
images, it can be suggested following recent work that 
examined the faces generated using Generative Adversar-
ial Networks (GANs) (Hu et al., 2021) that corneal reflec-
tions represent a fairly stable feature. It was shown that 
the similarity of corneal reflections across both eyes was 
diagnostic when automatically discriminating between 
real facial images and those created using GANs (Hu 
et al., 2021). This result permits speculating that corneal 
reflections occur reliably, at least in the faces depicted in 
frontal view, otherwise corneal reflections would not be 
incorporated into the faces produced using GANs, albeit 
in their imperfect form. Taken together, the eyes as a fea-
ture, and within the eyes, corneal reflections represent 
the cue that is exploited by the visual system for face pro-
cessing and subsequently memory.

From the practical side, identifying important facial 
features for typical face processing has implications for 
real-world applications, such as the development of Intel-
ligent Virtual Agents, and more generally, virtual rendi-
tions of real people. Our research identifies facial features 
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that need to be rendered in a detailed manner to create 
naturally looking artificial faces. Given the role of accu-
mulated experience on face representations (Caharel 
et  al., 2002), it is natural human faces that show typical 
face processing, whereas the faces that come across as 
unnatural exhibit deficient processing and are remem-
bered poorly. Such faces are also not likely to evoke ani-
macy perception (Wheatley et  al., 2011). Perceiving an 
entity as an animate is important for sustaining in-depth 
processing and engagement. For example, the faces of 
dolls do not sustain continued perceptual processing 
as opposed to natural human faces as revealed using 
electroencephalography (Wheatley et  al., 2011). Other 
research that employed artificial agent stimuli, including 
virtual agent faces, and functional magnetic resonance 
imaging, similarly showed that there exist neural differ-
ences between the processing of faces of humans and the 
faces of artificial agents, with reduced responses for the 
latter in the face-selective brain region, the fusiform face 
area (FFA) (Cheetham et  al., 2011; Rosenthal-von der 
Pütten et  al., 2019; Wang & Quadflieg, 2015). In other 
words, the FFA, which is the brain area that is specialized 
for face processing is less active when the facial stimuli 
are not full-blown faces.

The real extent of the implications on users of reduced 
neural activation in response to almost but not quite real 
faces remains unclear. In fact, neuroscientific evidence 
for the existence of the uncanny valley (Mori, 1970/2012) 
is slim (Rosenthal-von der Pütten et  al., 2019). Despite 
this, there is robust evidence that humans have high 
standards for what they consider human-like (Looser & 
Wheatley, 2010), and that the entities that are higher in 
perceived human-likeness/realism engender more posi-
tive social interactions compared to those that are lower 
in human-likeness/realism (Yee et al., 2007). Having vir-
tual agents with natural faces may thus benefit future 
applications in scenarios, such as e-commerce (Etemad-
Sajadi, 2016), healthcare (Robinson et  al., 2014), and 
education (Belpaeme et al., 2018). In such settings, face-
to-face interactions are desirable and need to be sup-
ported by the extraction of social cues from faces. More 
generally, our results may also be applicable, although 
this has to be ascertained directly, to immersive virtual 
reality contexts, especially those that are aimed at simu-
lating agents and their socio-communicative behaviors 
(Roth et al., 2019).

Regardless of the method that is used to synthesize 
the face, e.g., FaceGen or 3D scanning, there is still a 
need to test which specific facial characteristics in 
stimuli are associated with observers’ perception and 
memory. In fact, using various methods to synthesize 
the face and different face stimuli permits a thorough 
understanding of the cognitive processes involved in 

face processing. While computational advancements 
allow for automatic classification of images into real 
and artificial through, for example, neural networks 
(Liu et  al., 2020), the process behind the classifica-
tion decision is typically not transparent (Zhang et al., 
2021). This warrants an experimental investigation to 
uncover the stimulus characteristics that drive human 
responses to faces, the knowledge of which may benefit 
researchers working at the intersection of virtual agent 
development and psychology. Our work shows that 
at least two of these facial parts (i.e., cornea and skin) 
need to be modeled with high fidelity or else the gen-
erated faces risk engendering deficient processing (cf. 
Egger et al., 2020). More broadly, those who would like 
to use artificial faces as stimuli in cognitive psychology 
research should take into account that the quality of the 
generated face will influence how it is processed.

As any other study, this study also has its limitations. 
First, we only had a small number of facial images of 
virtual agents that were collected from the Internet. 
Collecting the virtual face images meant that we had 
a heterogenous set of stimuli in terms of the lighting 
conditions under which the images were produced, 
the age of the faces, etc. Similarly, the fact that it was 
a small number of images that needed to be memo-
rized in Experiment 1 might explain an overall good 
memory accuracy with respect to the virtual faces. In 
Experiment 2, we, however, had a larger number of 
facial images and a systematic approach to manipulate 
corneal reflections and skin smoothness. Secondly, the 
current study used static facial images, and thus we are 
not able to directly extrapolate the results to dynamic 
contexts which are more ecologically valid than a static 
context. Despite this, the current study has laid the 
foundation for follow-up experiments with dynamic 3D 
faces. Dynamics is a fruitful future direction as it would 
enable us to examine the processing of virtual faces 
under conditions that approach real-life settings.

Conclusions
Naturalistic facial appearance of virtual agents, or a 
lack thereof, affects how users perceive and engage 
with these agents. The results in this work showed 
that the retrieval of faces from memory is influenced 
by the degree of corneal reflections being present in 
the eyes, and—albeit to a lesser extent—skin contrast, 
with higher skin contrast (more detailed and thus natu-
ral skin appearance) indicative of better face memory. 
The current findings are useful to cognitive and social 
psychologists as well as to developers wishing to create 
artificial faces that are engaging and emulate naturalis-
tic human appearance.
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