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Abstract 

Background: The zone adjacent to a transcription start site (TSS), namely, the pro-
moter, is primarily involved in the process of DNA transcription initiation and regula-
tion. As a result, proper promoter identification is critical for further understanding the 
mechanism of the networks controlling genomic regulation. A number of method-
ologies for the identification of promoters have been proposed. Nonetheless, due to 
the great heterogeneity existing in promoters, the results of these procedures are still 
unsatisfactory. In order to establish additional discriminative characteristics and prop-
erly recognize promoters, we developed the hybrid model for promoter identification 
(HMPI), a hybrid deep learning model that can characterize both the native sequences 
of promoters and the morphological outline of promoters at the same time. We devel-
oped the HMPI to combine a method called the PSFN (promoter sequence features 
network), which characterizes native promoter sequences and deduces sequence 
features, with a technique referred to as the DSPN (deep structural profiles network), 
which is specially structured to model the promoters in terms of their structural profile 
and to deduce their structural attributes.

Results: The HMPI was applied to human, plant and Escherichia coli K-12 strain data-
sets, and the findings showed that the HMPI was successful at extracting the features 
of the promoter while greatly enhancing the promoter identification performance. 
In addition, after the improvements of synthetic sampling, transfer learning and label 
smoothing regularization, the improved HMPI models achieved good results in identi-
fying subtypes of promoters on prokaryotic promoter datasets.

Conclusions: The results showed that the HMPI was successful at extracting the 
features of promoters while greatly enhancing the performance of identifying promot-
ers on both eukaryotic and prokaryotic datasets, and the improved HMPI models are 
good at identifying subtypes of promoters on prokaryotic promoter datasets. The HMPI 
is additionally adaptable to different biological functional sequences, allowing for the 
addition of new features or models.

Keywords: Promoter identification, Convolutional neural networks (CNNs), Fully 
connected networks, Structural profiles
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Introduction
According to their definition in genetics, functional areas around transcription start 
sites (TSSs), which are crucial to initiating and regulating DNA transcription are 
referred to as promoters [1, 2]. Therefore, reliable promoter identification is a crucial 
course of action in genomics for furthering our present understanding of genetic regula-
tion networks.

Researchers face a significant barrier in identifying promoters and nonpromoters, 
such as human and plant promoters, that have a greater variety and are more difficult 
to describe [3, 4]. In recent years, a variety of biological experimental base approaches 
have been used to find promoters [5]. Such traditional procedures were both difficult 
and costly [6]. Newer promoter identification methods based on computational tech-
niques with lower complexity and running costs have recently been proposed [7]. There-
fore, determining the difference between nonpromoters and promoters and extracting 
the most distinctive characteristics for promoter recognition among various species is 
critical. Context features, signal features and CpG features are the three types of traits 
employed to characterize promoters in general. Transcription factor recognition ele-
ments [8], CAAT boxes [9], TATA boxes [10] and other functional promoter element 
regions are always used to extract signal features. Consequently, a number of other 
regions of the promoter are discarded. Context features are obtained by executing 
k-length windows and estimating the k-mer (plausible subsequences of length k) fre-
quency [11]. Nonetheless, certain information, such as the spatial connections among 
the base pairs placed within the sequences, has still been overlooked. The existence of 
CpG islands was used for the identification of promoter regions in CpG feature-based 
approaches [12, 13]. However, because CpG islands are contained within only 70% of 
promoters, the methods are unlikely to significantly enhance the identification outcome. 
To conclude, the techniques comprising three single features are frequently insufficient.

Furthermore, novel sequence feature-based techniques for promoter identification 
have recently been proposed and have yielded promising results. Successful identifica-
tion of promoter areas was made by Umarov et al. (2017) using primary sequences of 
promoters without any prior understanding of certain promoter properties [14]. To pre-
dict the strength of Escherichia coli promoters, Bharanikumar et al. used position weight 
matrices to represent the promoter sequences [15]. These findings suggest that the pri-
mary sequences of promoters may imply more information on discriminative factors 
than these aforementioned traits. However, because promoters are typically complicated 
and heterogeneous, promoter sequence-based signals cannot reliably identify promot-
ers very well. According to recent research, structural characteristics have a key role in a 
variety of bioprocesses [16]. Although DNA is frequently represented as a rather inflex-
ible double-helical structure, the innate structural attributes provide a wealth of useful 
details [17]. Whereas the nucleotide sequence mostly determines these structural fea-
tures, research has demonstrated that promoters do possess different patterns in terms 
of their structure compared to other sequences [18]. This outcome suggests that the 
structural attributes that indicate promoter structural profiles have the potential to be 
employed as a supplement to the primary sequences in promoter identification.

The focus of such research has always been the identification methods and models, 
in addition to the methods describing promoter properties. Deep neural networks have 
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recently been used in tasks such as promoter identification and recognition, owing to 
the remarkable performance and excellent application of deep learning models in differ-
ent sectors. Convolutional neural networks (CNNs) were utilized for the analysis of the 
sequence characteristics of eukaryotic and prokaryotic promoters and for building pre-
diction models by Umarov et al. [14]. In addition, Oubounyt et al. postulated the Dee-
Promoter model for examining and analysing the essential features of the sequences of 
short eukaryotic promoters and for the accurate recognition of the promoter sequences 
of mice and humans [19]. The DCDE deep learning method for the extraction of distinc-
tive characteristics from human promoters was proposed by Xu et al. [20].

For better modelling of the promoters and improvement in the identification out-
comes, we developed a hybrid model for promoter identification (HMPI) aimed at iden-
tifying the promoter. The HMPI is in fact inspired by these aforementioned studies and 
the outstanding modelling potential of deep learning-based algorithm. We propose the 
PSFN (promoter sequence features network) method to model the original promoter 
sequences and derive the sequence features based on CNNs. Additionally, in the PSFN, 
we incorporate the centre loss as an aspect of the classification loss function to further 
boost the specificity of promoters and nonpromoters. The validity of the HMPI is dem-
onstrated by the identification results using the primary promoter sequences as input. 
Furthermore, to model the promoter structural profiles and extract structural features, 
we propose the DSPN (deep structural profiles network), which contains smaller con-
nections among layers, based on a fully connected network and DenseNet [21]. Owing 
to the DSPN layers being directly connected, the network can be much deeper, more 
efficient, and more precise for modelling promoter structural characteristics. Ultimately, 
we build the HMPI, which combines the DSPN and PSFN. The efficiency of the HMPI 
was demonstrated by experiments on datasets corresponding to both plants, humans 
and the Escherichia coli K-12 strain.

The main contribution of the present research is the advancement of an effective 
hybrid deep learning model called the HMPI for promoter identification. In the HMPI, 
the original sequences and structural profiles of promoters are modelled simultane-
ously through the PSFN and DSPN, which are methods we proposed based on CNNs, 
fully connected networks and DenseNet. Additionally, instead of deriving a single type 
of feature, we extracted and combined the sequence features and structural features 
for promoter identification. The experimental results demonstrate that the HMPI can 
significantly improve the promoter identification performance on both eukaryotic and 
prokaryotic promoter datasets. The results also suggest that the structural information 
recovered by the DSPN and the distinguishing element information extracted by the 
PSFN may complement one another in promoter identification. In addition, after the 
improvements of synthetic sampling, transfer learning and label smoothing regulariza-
tion, the improved HMPI models achieved significant results in identifying subtypes 
of promoters on the subdatasets of prokaryotic promoters. Furthermore, as a hybrid 
model, the HMPI can be extended to include more characteristics and has the prospects 
of application to various functional biological sequences.
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Experiments and results
A variety of experiments are presented in this section to provide evidence of the 
efficacy of our approaches and models. We used Keras, which is a Python-based 
approach, to conduct the experiments (https:// keras. io/).

Data preparation and performance assessments

The datasets used in the investigation were gathered from eukaryotes and prokary-
otes. To identify eukaryotic promoters, we collected promoter datasets from both 
plants and humans. To obtain sufficient promoter data to conduct the experiments, 
the Eukaryotic Promoter Database (EPD) was searched, and all the cases of 29,597 
human promoters were collected [22]. Furthermore, PlantPromDB was searched 
and all the cases of 8272 plant promoters were obtained [23]. These datasets provide 
verified high quality promoter data. For negative datasets, nonpromoters for humans 
were collected from the UCSC database (http:// www. genome. ucsc. edu), and nonpro-
moters for plants were processed from TAIR [24]. The negative sequences were gath-
ered from regions such as exons, coding regions, introns, and 3’ untranslated regions, 
and the negative sequence start site was selected randomly based upon the premise 
that the sequence length of 251 bp was sufficient. Table 1 lists the specifics of these 
datasets.

To identify prokaryotic promoters, the Regulon DB [25] was searched and the data 
were processed as the same processing flow proposed by Bin et al. [26]. All the cases of 
2860 promoters of Escherichia coli K-12 strain were collected. These promoters came 
from six different subtypes of promoter data, and the negative samples were selected 
randomly from coding regions of the Escherichia coli K-12 strain. Table 2 lists the specif-
ics of these datasets.

Table 1 Datasets and the details of eukaryotic promoters

Organism Data sources Dataset type Numbers of 
sequences

Location/length

Human EPD Promoters 29,597 [− 200, + 50] bp

UCSC Non-promoters 50,000 251 bp

Plants PlantProm DB Promoters 8272 [− 200, + 50] bp

TAIR Non-promoters 12,834 251 bp

Table 2 Datasets and the details of prokaryotic promoters

Organism Data sources Subtype/type Numbers of 
sequences

Location/length

Escherichia coli K-12 Regulon DB σ24 484 [− 60, + 20] bp

σ28 134 [− 60, + 20] bp

σ32 291 [− 60, + 20] bp

σ38 163 [− 60, + 20] bp

σ54 94 [− 60, + 20] bp

σ70 1694 [− 60, + 20] bp

Non-promoters 2860 81 bp

https://keras.io/
http://www.genome.ucsc.edu
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In this study, all samples are divided according to the same proportion, 1/5 as a test 
set, 4/5 as a training set. The widely used measures of the sensitivity Sn , the specificity 
Sp , the Matthew correlation coefficient Mcc [27], and the accuracy Acc are utilized to 
assess the performance of models.

Effectiveness of the PSFN at identifying eukaryotic promoters

The PSFN for modelling the original promoter sequences and deriving sequence fea-
tures in the HMPI is developed in “Modelling the original promoter sequences” sec-
tion of “Methods”. The results of the studies in this section are shown to confirm the 
efficiency of the features derived from promoter sequences through the PSFN. We 
also compared a method called PSFNcce, which has a model structure that is nearly 
identical to the PSFN. Only the loss function distinguishes these two approaches. The 
PSFN employs the joint loss function (Eq. 9) whereas PSFNcce employs the categor-
ical cross-entropy (CCE) loss function (Eq.  8). In these two approaches, the Adam 
optimizer is employed to optimize both objective functions [28]. In addition, as com-
parison tests, two more cutting-edge deep learning classification models, GoogLeNet 
[29] and ResNet [30], are utilized to predict promoters. Table 3 shows the outcomes 
of using these four approaches to identify the promoters and the negative samples in 
the test set, on the datasets of humans and plants which are indicated in Table 1.

Table  3 shows that PSFNcce has higher sensitivity Sn than the other three tech-
niques, implying that it performs better on positive samples (promoter sequences). 
On both human and plant datasets, the PSFN outperforms the other three approaches 
in terms of the Mcc , Acc , and Sp . The results demonstrate the efficiency of the 
PSFN, and the sequence features recovered by the PSFN can be used to characterize 
human and plant promoters from a variety of angles. As previously stated, the PSFN 
approach uses the centre loss as a component of the joint loss function to improve 
the discriminative ability of the learned sequence features. We lower the dimensions 
by PCA (principal component analysis) and TSNE (t-distributed stochastic neigh-
bor embedding) methods [31] and show the features of the sequences extracted via 
PSFNcce and the PSFN to check the validity of the centre loss intuitively. The reduc-
tion and display of the plant datasets is as an example due to space limits. Figure 1a, b 
depicts the sequence features retrieved from the training set, and Fig. 1c, d represents 
the features derived from the test set.

Table 3 Detailed outcomes of the four methods mentioned above

The best results of each measure are shown in bold

Organism Method Sn (%) Sp (%) Acc (%) Mcc

Human PSFNcce 86.79 92.32 90.26 0.7930

PSFN 85.16 94.42 90.97 0.8055
ResNet 82.13 90.60 87.45 0.7303

GoogLeNet 83.75 86.84 85.69 0.6982

Plants PSFNcce 87.92 94.62 91.99 0.8314

PSFN 86.96 96.96 93.04 0.8539
ResNet 80.92 89.56 86.17 0.7086

GoogLeNet 87.92 92.83 90.90 0.8089
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The comparison in Fig. 1 clearly shows that, in the right figures, the data in clusters lie 
close to each other, and there are clearly fewer interleaved and overlapped parts among 
the various classes of clusters in the left figures. With the centre loss as a loss function 
element, the models reveal increased intraclass compactness and interclass dispersion.

Effectiveness of the DSPN at identifying eukaryotic promoters

We develop the DSPN in “Extraction of the structural characteristics of promoters” 
section of “Methods” and used the DSPN in the HMPI to model the structure-related 
profiles and extract the structural features from the primary promoter sequence. The 
outcomes of the trials for confirming the efficiency of the structural features retrieved 
with the DSPN will be presented in this section.

The matrices of the structural profile properties derived from the sequences of the 
promoter through Eq. (11) are used as the inputs of the DSPN to evaluate the capa-
bilities of the DSPN to characterize structural profiles and authenticate the efficiency 
of the deduced structural features. With a 12× (L− 1) input of the matrix (see Eq. 11) 

Fig. 1 a Features derived from the training sets of plants through the PSFNcce. b Features derived from the 
training sets of plants through the PSFN. c Features derived from the test sets of plants through the PSFNcce. 
d Features derived from the test sets of plants through the PSFN
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from a primary sequence of promoters, as discussed in the “Extraction of the structural 
characteristics of promoters” section of “Methods”, the softmax activation function is 
employed to allow the possibility of the input sequence belonging to each category, and 
the CCE loss function (see Eq. 8) is employed as the supervision signal for training the 
network. Moreover, the comparative experiments utilize a set of three frequently applied 
deep learning models with comparatively better efficiency. With the same inputs as the 
DSPN, the CNNs [14], GoogLeNet [29], and ResNet [30] are applied to identify promot-
ers. Table 4 shows the results of the DSPN and three other comparative models with the 
input of matrix S of promoters and negative samples in the test set, on the datasets of 
humans and plants, which are indicated in Table 1.

Table 4 shows that the CNNs outperforms the other three models in terms of the Sn , 
and the DSPN outperforms the other three models in terms of the Mcc , Acc , and Sp 
on the human dataset, which implies that the DSPN is better at describing the struc-
tural profiles of the human promoters of sequences, and the CNNs is better at describ-
ing human promoters than nonpromoters. On the plants dataset, Table 4 shows that the 
DSPN has the best performance on the Mcc and Acc , and GoogLeNet and the CNNs 
have the best Sp and Sn . This implies that promoter sequences can be best characterized 
by CNNs, and nonpromoter sequences can be best characterized by GoogLeNet. Simi-
larly, the plant datasets can be comprehensively characterized by the DSPN.

Comparing Table  3 with Table  4 shows that simply using promoter structural pro-
files to identify promoters is less successful than using promoter sequences, indicating 
that original sequences include more discriminative information than generated struc-
tural characteristics. Furthermore, the identification results utilizing the sequences of 
promoters on plant datasets are superior to those on human datasets, as presented in 
Table 3; however, the opposite is true in Table 4, utilizing the structural profiles of pro-
moters. It can be inferred that the extracted sequence features can be distinctly differ-
entiated from the structural features. The information implied in structural features and 
the information implied in sequence features may complement each other.

Effectiveness of the HMPI at identifying eukaryotic promoters

In this part, we will first show the conservative property of the structural profiles 
of promoter sequences. Statistical analysis is performed on the twelve properties 
described in Additional file  1: Table  S1. Owing to space constraints, we show the 

Table 4 Detailed outcomes of the four methods mentioned above with the input of matrices of 
structural profile properties

The best results of each measure are shown in bold

Organism Method Sn (%) Sp (%) Acc (%) Mcc

Human DSPN 80.60 90.36 86.73 0.7144
CNNs 82.63 86.76 85.22 0.6874

ResNet 80.81 86.84 84.59 0.6725

GoogLeNet 78.31 89.56 85.37 0.6847

Plants DSPN 75.24 90.33 84.41 0.6695
CNNs 81.76 85.50 83.23 0.6607

ResNet 71.37 90.80 83.18 0.6428

GoogLeNet 67.51 93.69 83.42 0.6500
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statistical results on the plant datasets as a demonstration in Additional file  1: Fig-
ure S1. Figure S1 shows that there were obvious differences in the average expression 
of each structural profile ( SP ) property between plant promoters and nonpromot-
ers. Especially in the core promoter regions near the TSSs (locations at coordinate 
0 in Additional file 1: Figure S1), the statistical results of promoters show significant 
variation in the expression of each SP property while the curves of nonpromoters are 
relatively flat. This indicates that these twelve SP properties of promoter sequences 
are strongly conserved and can be used for further feature extraction and promoter 
identification.

Next, we will compare the performance of the HMPI on plant and human data-
sets and compare the HMPI to the most sophisticated and elaborate classification 
models GoogLeNet and ResNet, the promoter identification techniques for humans 
[20, 32, 33], and the promoter identification techniques for plants [27, 34] that have 
been recently put forward. SD-MSAEs [32] created a human promoter recognition 
technique by combining the advantages of several sparse autoencoders and statisti-
cal divergence within deep learning. SCS [33] used decision trees to build a hierar-
chical promoter recognition system that included CpG, k-mer, and structural data. 
DCDE-MSVM [20] was found to be a highly effective deep convolutional divergence 
encoding technique based on CNNs and statistical divergence. using a genetic algo-
rithm. PromoBot [34] chose triplet pairs utilizing a genetic algorithm to differentiate 
between promoters and nonpromoters on the basis of the frequency of nonadjacent 
triplet pairs and later classified them using an SVM. TSSPlant [27] employed a model 
based on a backpropagation artificial neural network to predict promoters based on 
eighteen major signal and compositional properties of plant promoter sequences. 
Table 5 shows how different strategies compare in terms of performance.

Table 5 clearly shows that the HMPI has the best Mcc , Sp , and Sn results on human 
datasets. Similarly, the HMPI has also been able to achieve the highest Mcc and Sp on 
the plant datasets. This suggests that the HMPI is quite good at identifying human 
promoters. TSSPlant has the best Sn results on the plant datasets, but it also has the 

Table 5 The comparison of the performance of the HMPI and other methods mentioned above at 
identifying eukaryotic promoters

The best results of each measure are shown in bold
* The represented measurements are not calculated

Organism Results source Sn (%) Sp (%) Mcc Method

Human This article 85.84 94.72 0.8151 HMPI

82.13 90.60 0.7303 ResNet

83.75 86.84 0.6982 GoogLeNet

[32] 85.19 81.91 ∗ SD-MSAEs

[33] 78.45 ∗ 0.6413 SCS

[20] 79.67 78.90 * DCDE-MSVM

Plants This article 90.34 95.95 0.8684 HMPI

80.92 89.56 0.7086 ResNet

87.92 92.83 0.8089 GoogLeNet

[34] 89 86 * PromoBot

[27] 94 86 0.82 TSSPlant
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lowest Mcc and Sp , implying that it has a larger false-positive rate, which suggests 
that the HMPI continues to have the best overall identification results on the plant 
datasets. These results authenticate the validity of the HMPI.

Application of the HMPI to identify prokaryotic promoters and their types

In this section, we will first compare the performance of the HMPI at identifying pro-
moters on the Escherichia coli K-12 strain datasets to those of several identification 
models [26, 35–37]. Stability [35] used DNA double stranded stability features to iden-
tify promoters. iPro54 [36] considered local and global pseudonucleotide composition 
(PSEKNC) characteristics for promoter identification. iPromoter-2L [26] considered the 
influence of different sliding windows based on PSEKNC. MULTiPly [37] applied global 
statistical features to classify promoters. To accommodate the changes in the data length 
of Escherichia coli K-12 strain promoter sequences, the number of nodes in the DSPN is 
set to 80, 500, 80, 150, 500, 500, and 128, respectively, in this section. Table 6 shows the 
outcomes of identifying promoters through the HMPI and four other comparative mod-
els on the Escherichia coli K-12 datasets, which are indicated in Table 2.

Table 6 shows that compared to the other four methods, the HMPI achieves the best 
results in all four indices of the Sn , Sp , Acc and Mcc . This indicates that the features 
derived from the HMPI can better represent the promoter of the Escherichia coli K-12 
strain and that the HMPI is well suited for identifying prokaryotic promoters. However, 
there are always multiple subtypes of prokaryotic promoters. For instance, six subtypes 
for promoters of the Escherichia coli K-12 strain are indicated in Table 2. We will con-
tinue with several experiments to confirm the validity of the HMPI at identifying prokar-
yotic promoter subtypes in this section.

As illustrated in Table 2, the data volumes of promoters in each subtype vary greatly, 
and several of the volumes are quite small for modelling. To better adapt to these prob-
lems, we made different changes to the HMPI, and the improved HMPIs are denoted as 
HMPIat and HMPIlsr.

First, in HMPIat, we introduce an adaptive synthetic sampling approach ADASYN 
[38] for learning imbalanced datasets, which uses a weighted distribution for differ-
ent minority class examples according to their level of difficulty in learning and gener-
ates more synthetic data for minority class examples. In addition, because the one-hot 
encoding of the promoter sequence is difficult for adaptive synthetic sampling, we apply 
transfer learning on the second layer of the PSFN [39] to generate synthetic data. Fig-
ure 2a depicts the training set features derived by the second layer of the PSFN within 

Table 6 The comparison of performance of the HMPI and other methods mentioned above at 
identifying prokaryotic promoters

The best results of  each measure are shown in bold

Organism Method Sn (%) Sp (%) Acc (%) Mcc

Escherichia coli K-12 HMPI 90.21 88.11 89.16 0.7834
Stability 76.61 79.48 78.04 0.5615

iPro54 77.76 83.15 80.45 0.6100

iPromoter-2L 79.20 83.15 80.45 0.6343

MULTiPly 87.27 86.57 86.92 0.7385
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the HMPI, and Fig. 2b depicts the training set features derived by the second layer of 
the PSFN model within HMPIat, both on the Escherichia coli K-12 dataset. As shown 
in Fig. 2, the application of the ADASYN and transfer learning makes the distribution of 
minority classes clearer.

Second, in HMPIlsr, we propose the utilization of a label smoothing regularization 
(LSR) method to assign a uniform label distribution to the nonground truth classes, 
which can regularize the supervised model, as inspired by Zhedong et al. [40]. The distri-
bution of the ground truth is denoted by q(k) in Eq. (7), and the distribution of LSR can 
be denoted as follows.

where K  is the number of classes and ε is a small number. In this paper, we set ε as 0.2 . 
Substituting Eq. (1) into Eq. (6), we obtain the categorical cross-entropy loss function 
with LSR, as shown in Eq. (2). In addition, compared to the HMPI method, Eq. (2) 
replaces Eq. (6) in the HMPIlsr method.

Finally, we compared the promoter subtype identification performance of the HMPI, 
HMPIat and HMPIlsr with iPromoter-2L [26] on the Escherichia coli K-12 datasets. 
Table  7 shows the outcomes of identifying promoter subtypes through the HMPI, 
HMPIat, HMPIlsr and iPromoter-2L methods on the Escherichia coli K-12 dataset, 
which are indicated in Table 2.

According to the comparison in Table 7, HMPIlsr achieves the best results and outper-
forms iPromoter-2L [26] on both the Acc and Mcc indices on three subtypes of σ24, σ32 

(1)qLSR(k) =

{

ε
K , k �= y
1− ε + ε

K , k = y

(2)LLSR = −(1− ε)log(p(y))−
ε

K

K
∑

k=1

log(p(k))

Fig. 2 a The training set features derived by the second layer of the PSFN within the HMPI. b The training set 
features derived by the second layer of the PSFN within the HMPIat



Page 11 of 20Wang et al. BMC Bioinformatics          (2022) 23:206  

and σ70, which demonstrates that the HMPIlsr model with improved labelling smooth-
ing regularization achieves good performance at identifying prokaryotic promoter sub-
types. Besides, HMPIat achieves the best results on both the Acc and Mcc indices on the 
σ28 subtype, outperforming iPromoter-2L by 13.7% on the Mcc ; achieves the best Mcc 
on the σ38 subtype; and achieves the best Acc on σ54. This demonstrates that the HMPIat 
model with the improvement of the ADASYN method and transfer learning has advan-
tages in enhancing the identification performance of subtypes with small data volumes. 
In summary, the experiments in this section indicate that the HMPI performs very well 
at identifying prokaryotic promoters, and the improved HMPI models achieve good 
results in identifying subtypes of prokaryotic promoters. It is further demonstrated that 
the hybrid HMPI model is effective at identifying promoters.

Discussion
Table 5 demonstrates the validity of the HMPI at identifying eukaryotic promoters when 
compared to several existing methods. Besides, according to Tables 6 and 7, the HMPI 
performs very well at identifying prokaryotic promoters, and the improved HMPI mod-
els achieve good results in identifying subtypes of prokaryotic promoters. We attribute 
these results to the framework and detail settings of the HMPI. The PSFN in the HMPI 
utilizes three CNNs blocks to capture fine-grained small-scale local characteristics, the 
medium-grained features and the larger local features of promoter sequences respec-
tively, and incorporate the centre loss as a portion of the categorization loss function to 
achieve both intraclass compactness and interclass dispersion. The DSPN in the HMPI is 
equipped with direct connections which make it has the potential to increase promoter 
structural profile utilization and enhance information flow.

In addition, HMPI also outperforms both DSPN and PSFN, comparing Table  5 to 
Tables 3 and 4. The findings suggest that the deduced information implied in structural 
features may complement the information implied in sequence features in the identifica-
tion problem of promoters.

Table 7 Comparison of the performance of the HMPI, HMPIat, HMPIlsr, and iPromoter-2L on 
identifying subtypes of Escherichia coli K-12

The best results are shown in bold

Organism Subtype iPromoter-2L HMPI HMPIat HMPIlsr

Acc (%) Mcc Acc (%) Mcc Acc (%) Mcc Acc (%) Mcc

Escherichia coli K-12 σ24 93.50 0.7338 95.45 0.8443 94.76 0.8138 96.85 0.8901
σ28 96.82 0.5708 97.20 0.6547 97.55 0.7078 97.20 0.6777

σ32 94.41 0.6524 93.71 0.6343 94.76 0.6855 95.10 0.7100
σ38 94.69 0.2962 94.41 0.2644 94.41 0.3782 94.06 0.2219

σ54 94.04 0.6459 96.50 0.2616 96.85 0.3196 96.15 0.2531

σ70 80.66 0.6056 85.66 0.7037 86.01 0.7117 86.36 0.7188
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Conclusion
It is critical to correctly identify promoters in order to continue understanding genomic 
regulatory networks. In the current paper, we developed the HMPI, a hybrid deep learn-
ing model for the identification of promoters, which is able to model the structural 
profiles of promoters and original sequences of promoters simultaneously to compre-
hensively identify promoters. To derive the features from the original sequences, we first 
introduce the PSFN, an approach that utilizes and enhances CNNs by incorporating the 
centre loss as a portion of the categorization loss function to achieve both intraclass 
compactness and interclass dispersion. Furthermore, we developed the DSPN, a fully 
connected network with direct links among multiple layers, to represent the structural 
features of promoters. Since the network is equipped with direct connections, it may 
be significantly deeper, more efficient and valid; and this network has the potential to 
increase promoter structural profile utilization and enhance information flow. Finally, 
we developed the HMPI, a hybrid architecture that combines the DSPN and PSFN to 
precisely identify promoters. The HMPI can be extended to additional models and fea-
tures, and it could also be utilized for various biological functional sequences. The HMPI 
was applied to human, plant and Escherichia coli K-12 strain datasets, and the results 
showed that the HMPI was successful at extracting the features of promoters while 
greatly enhancing the performance of identifying promoters on both eukaryotic and 
prokaryotic datasets. In addition, after improving synthetic sampling, transfer learning 
and label smoothing regularization, the improved HMPI models achieved good results 
at identifying subtypes of promoters on prokaryotic promoter datasets.

Methods
The framework of the HMPI

Recently, studies employing original sequences have yielded promising results in terms 
of the identification of promoters, indicating that original promoter sequences might 
include additional discriminative details compared to signal features recovered from 
recognized functional regions [14, 15]. We propose the PSFN method to extract pro-
moter sequence characteristics and model the original promoter sequences based on 
this assumption. Quadrature encoding is employed for encoding promoter sequences, 
and the class label is turned into a class centre vector using an embedding layer to calcu-
late the centre loss.

Furthermore, when compared to coding or nonregulatory sequences, investigations 
have demonstrated that promoters do have distinct structural profiles, and the sequence 
itself is primarily responsible for determining them [18]. The structural profile property 
matrix was used to generate the structural profiles of dinucleotides, twelve in number, 
within promoter sequences in this work. We develop the DSPN to extract additional 
structural traits and details out of these twelve attributes. Because of the relatively 
straightforward connections among layers, the input structural features and additional 
front-layer data could be exploited in a better way.

Because promoter sequence features have a better probability of characterizing the 
information pertaining to promoter elements whereas structural features indicate the 
structural information of the promoter, we combined the DSPN and PSFN to design the 
HMPI.
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Each of the individual sequence traits extracted through the PSFN and the structural 
traits extracted through the DSPN are concatenated as one novel characteristic in order 
to illustrate the nonpromoter or original promoter sequences. A completely connected 
layer (indicated as Dense in Fig. 3) and a softmax layer identify the new features. Fig-
ure 3 depicts the overall framework.

Modelling the original promoter sequences

The original sequences of the promoter are employed as input for the analysis and 
extraction of the possible features within the sequence comprising the promoter and 
to improve the performance in terms of the identification of promoters. We proposed 
the PSFN method for modelling the original promoter sequences using CNNs and 
used experiments to confirm its validity. Our inspiration was primarily based on the 
application of CNNs in promoter categorization and functional gene element analysis 
[14, 41]. Figure 4 depicts the PSFN methodical framework. The method’s details are 
described as follows.

Fig. 3 The framework of the HMPI (hybrid model for promoter identification)
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Promoter sequence encoding

To encode promoter sequences, quadrature encoding is employed in an attempt to lose 
the least possible sequence information during encoding. Seq = B1B2B3 · · ·Bj · · ·BL , 
where Bj ∈ (A,C,G,T) is used to express a sequence of raw genomes of length L . Fol-
lowing the one-hot encoding of individual bases, the sequence Seq can be depicted as 
a 4 × L matrix S:

Feature extraction

We make various tweaks to the basic CNNs [42] to minimize the computational com-
plexity and obtain more useful features. A set of three CNNs blocks are used in the 
PSFN to learn the encoding matrices. A dropout layer, a LeakyReLU activation layer, and 
a convolution layer compose each block of the CNNs. The CNNs block can be summa-
rized as follows:

where x denotes the input of a CNNs block, and conv(x) denotes the convolution layer. 
Because the first block is the basis for the follow-up blocks, we utilized one-dimensional 
convolutional kernels, and the feature mappings act on 4 channels. Thirty-two feature 
maps comprise the first convolution block for capturing fine-grained and small-scale 
local characteristics having a slim receptive field, with a kernel size of 3. Sixty-four 

(3)Si,j =

{

1, if Bj is the ith item of (A,C,G,T)
0, Otherwise

.

(4)f (x) = Dropout(LeakyReLU(conv(x)))

Fig. 4 The framework of the PSFN (promoter sequence features network)
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feature maps comprising a kernel size of 4 constitute the second convolution block 
for learning the medium-grained features using the first block’s feature maps. Within 
the last convolution block, the size of the kernel is 5 to extract the local features with 
larger receptive fields. High-level and coarse-grained local features are stored by 128 
feature maps. Finally, the last convolution block’s output is flattened, and a completely 
connected layer is utilized to deduce the ultimate sequence characteristics. Later, as a 
numeric vector, the expression of an original sequence of promoters is possible.

In an attempt to attain a network that is sparser, the LeakyReLU activation func-
tion, which aids in accelerating the calculations and alleviating the vanishing gradient 
problem, is employed as the activation layer [43]. The LeakyReLU function is pre-
sented in Additional file 1: Equation S1. To confirm the activity of adequate neurons, 
the α in the LeakyReLU function is 0.2.

Furthermore, the ReLU is utilized as activation function in the last connected layer. 
The function is given Additional file 1: Equation S2.

During training, a dropout layer is employed to randomly remove units from the 
network with a given probability with the goal of preventing units from overadapting 
[44]. The likelihood of dropping out is set to 0.25 in this case.

The loss function

A loss function is employed as the supervisory signal to train a network in the major-
ity of the existing CNNs. Following the feature extraction layer, there is a fully con-
nected layer with K  neurons ( K=2 in a binary classification task, such as promoter 
identification) that uses the softmax activation function to calculate the probability 
that the sample is placed in every class:

Herein, the probability that the input belongs to category k is represented via 
p(k) ∈ [0, 1], k = 1, . . . ,K .

The CCE loss is the most frequently employed softmax loss function and is repre-
sented by the following expression:

In this equation, the distribution of the ground truth is denoted by q(k) , the output 
class is represented by k and the actual class is y.

Then Eq. (6) is equivalent to Eq. (8).

(5)p(k) = Softmax(WT
k x + bk) =

eW
T
k x+bk

∑K
i=1 e

W
T
i x+bi

(6)LCCE = −

K
∑

k=1

log(p(k))q(k)

(7)q(k) =

{

0, k �= y
1, k = y

(8)LCCE = − log(p(y))
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The softmax loss function LCCE decreases whereas and the interclass dispersion 
increases as model training progresses. The centre loss is utilized as a portion of the 
loss function within CNNs to improve the discriminative capability of the modelling 
effect [45]. We may prepare CNNs to attain features possessing two primary learning 
objectives, intraclass compactness and interclass dispersion, simultaneously using the 
combined supervision of the centre loss and softmax loss.

The cluster centre is ascertained using the real class of a specific sample feature, and 
the centre loss is given by the Euclidean distance among the cluster centres and the sam-
ple features. The joint loss function is shown in the diagram below.

Herein, the sample feature is denoted by x , and the cluster centre of class y is denoted 
by cy . The label of the class is converted into the vector of class centre cy with the identi-
cal length as x using an embedding layer.

Extraction of the structural characteristics of promoters

Structural profile properties refer to specific characteristics of DNA molecules, such as 
their stability and bendability, which are related to dynamic DNA structure (potential 
to change in conformation) [16]. Although the nucleotide sequence mostly determines 
these structural profile properties, research has demonstrated that promoters do possess 
different patterns in these properties compared to other sequences, and these properties 
play an important role in promoter identification [17, 18]. The values of twelve structural 
profile properties associated with each dinucleotide are provided in Additional file  1: 
Table S1.

To obtain the structural characteristics of promoters, we first obtained the structural 
profile property matrix and calculated the twelve properties of dinucleotides in the 
structural profiles of promoter sequences. We also conduct normalization (subtract the 
mean and divide by the standard deviation) for properties to ensure that each property 
can possess the same opportunity to be calculated. Second, the DSPN was developed to 
model the twelve considered structural profile qualities and extract promoter structural 
traits. The following are the specifics.

The matrix of structural profile properties

For each of the sixteen combinations of dinucleotides that include AA,AC,AG,AT,CA,. . . , 
and TT in a DNA sequence, there are various structural profile ( SP ) properties. Herein, 
the twelve SP properties listed as follows [46] have been implemented: (1) SP1 : A-phi-
licity [47], (2) SP2:base stacking [48], (3)SP3:B-DNA twist [49], (4)SP4:bendability [50], 
(5)SP5 : bending stiffness of DNA [51], (6)SP6 : denaturation of DNA [52], (7)SP7:duplex 
disrupt energy [53], (8)SP8:duplex free energy [54], (9)SP9:propeller twist [49], (10)SP10 : 
deformation of protein [55], (11)SP11 : twist of protein-DNA [55], and (12) SP12:Z-DNA 
[56]. Additional file 1: Table S1 has the original values for each of these twelve attributes 
for each dinucleotide. We standardized the original values of the twelve characteristics 
because of their various distributions. The following is the normalization equation:

(9)LCCE−CL = − log(p(y))+ �
∥

∥x − cy

∥

∥

2
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As mentioned above, for every dinucleotide, such as AA,AC,AG,AT,CA,. . . , and TT (a 
total of 16 combinations), there are 12 SP properties. Herein, SPik denotes the value 
of the ith ( i = 1, 2, · · · , 12)SP property for the k - th(k = 1, 2, · · · , 16 ) combination of 
dinucleotides. In addition, the normalized SPik is represented by SPistdk  . Furthermore, 
meanK (SPi) represents the mean and stdK (SPi) represents the standard deviation of SPi 
for the K - th combination of dinucleotides.

We apply a window 2  bp long on the raw promoter sequence of length L to obtain 
the matrix of structural profile properties, and the dinucleotides within the window 
were represented with twelve normalized values. Finally, we can attain the 12× (L− 1) 
matrix of structural profile properties. As an example, a length L promoter sequence 
Seq = B1B2B3 · · ·Bj · · ·BL , B ∈

{

A,C,G,T
}

 can be presented as a matrix S like the one 
presented below.

Herein, SPistd
(

BjBj+1

)

 defines the i - th ( i = 1, 2, · · · , 12 ) normalized SP value corre-
sponding to dinucleotide BjBj+1.

The DSPN (deep structural profiles network)

The DSPN uses DenseNet [21] and a fully connected network to represent the consid-
ered promoter structural profiles. We develop the DSPN, which has partial direct con-
nections among layers, for the further modelling of the calculated structural properties 
and for extracting structural features. Several layers are furnished with uninterrupted 
attainment to link the gradients directly from the loss function with the input structural 
attributes. These direct connections ensure a more desirable flow of information and use 
of the structural profiles of promoters. Furthermore, the links in the network produce 
short routes, which help to alleviate the vanishing gradient issue, encourage reuse of fea-
tures, and make the network relatively easy to train. The DSPN framework is shown in 
Fig. 5.

(10)SPistdk =
SPik −meanK (SPi)

stdK (SPi)

(11)Si,j = SPistd
(

BjBj+1

)

Fig. 5 The framework of the DSPN (deep structural profiles network)
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In the DSPN, seven blocks are employed, as seen in Fig. 5. A fully connected layer, a 
LeakyReLU activation layer, a dropout layer, and a normalization layer make up indi-
vidual blocks. The following is a description of each block.

In this equation, Dense(x) represents the fully connected layer.
Moreover, the LeakyReLU activation function is utilized in the activation layer to 

obtain a better sparse network. Then, a dropout layer is utilized to drop units at ran-
dom at a probability of 0.2. In the normalization layer, batch normalization (shown 
in Additional file 1: Equation S3) is used to reproduce the distribution, strengthening 
the training process stronger and enhancing the training accuracy.

The structural properties of SPs are concatenated as part of the inputs of blocks 3 
and 6. In addition, the features extracted by block 2 are linked to block 6 due to the 
direct linkages. Furthermore, because certain blocks are directly linked to the gra-
dients, the vanishing gradient problem is mitigated to a certain extent. In the seven 
DSPN blocks, the number of neurons in the connected networks is set to 250, 1000, 
250, 1000, 1500, 1000, and 128, respectively. The output of the 7th block is a vector 
that represents the extracted structural feature of the primary promoter sequence, 
which is fed in as the matrix of the properties of structural profiles.

In DSPN, a fully connected layer containing two nodes follows the extracted struc-
tural features and outputs the probability that the sample sequence belongs to each 
category utilizing a softmax activation function (see Eq. 5). The CCE loss is the loss 
function used in the DSPN (see Eq. 8).
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