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ABSTRACT Height and weight are measurements explored to tracking nutritional diseases, energy expen-
diture, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable
to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those
cases, it can be estimated approximately by anthropometric means. Different groups have proposed different
linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions.
In this paper, we present a complete study of the application of different learning models to estimate height
and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial
neural networks. The predicted values are significantly more accurate than that obtained with conventional
linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more
than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities
for anthropometric applications in industry, textile technology, security, and health care.

INDEX TERMS Machine learning, statistical learning, health information management.

I. INTRODUCTION
Height and Weight are measurements broadly explored to
tracking child’s growth, nutritional diseases, energy expen-
diture, clinical conditions and health status [1]; Patients reg-
ularly are not ambulant or may be unable to communicate,
and a sequence of these factors may not allow accurate
estimation or measurements [2], [3].

Intensive care unit scoring systems, drug dosages, and
infusion rates are commonly based on body weight, as well
as, height is usually used to obtain a relation of healthy
versus unhealthy weight [4]. Therefore, a correct estimation
of height and weight of critically ill patients are critical for an
adequate clinical care [1], [2].

W. C. Chumlea has been one of the first researchers to
proposed linear equations to predict body height [1], [5], [6]
and weight [1], [7] from anthropometric measurements for
an elderly population. The equations are based on lin-
ear regressions, developed for a selected population in the
USA, predicting weight within 95% confidence limits in

a range of 7.60-8.96kg, as well as, height with standard
errors between 7.84cm and 8.44cm, depending on gender and
Ethnicity; Therefore, the equations may be inappropriate for
other populations [1].

Different groups have proposed subtly different weight/
height prediction equations, based on single and multiple
linear regressions, exploring other anthropometric parame-
ters or analyzing other populations, achieving similar stan-
dard errors [8]–[12]. Linear regressions are attractive models
because their representations are simple, and a straightfor-
ward algebra returns an analytical solution [13], that can be
easily implemented by a healthcare professional.

Contemporaneously with the Chumlea’s work, the
Machine Learning (ML) field and its models from statistics
and probability theory began to play and important role
in research, engineering, economy, health, etc. [14]–[16].
ML is closely related to computational statistics, and it is
defined as the development of algorithms that learn and make
predictions from data or experience [17]. ML algorithms can
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find patterns in complex scenarios, usually impossible to
be identified by humans [18], therefore, ML regressions are
usually more accurate than conventional regressions [13].

Recently, kernel machines have been presented as
an appropriated approach for regression of biometric
data [19]–[21]. As stated by Scholkopf, kernel machines
provide modularity in the design, enabling easy combination
with different learning algorithms, and have few parameters
to be tuned in comparison with other models such as neural
networks in an optimization procedure without spurious local
minima [22], [23]. Moreover, other works have demonstrated
that kernel machines have a strong founding theory, providing
a more appropriated data representation for the problem that
has been studied [24], [25].

Therefore, in this work, we aim to analyze the regres-
sion capability of kernel machines in comparison with tra-
ditional approaches for height and weight estimation from
anthropometric measurements. We consider both sparse and
non-sparse kernel machines - Support Vector Regression
and Gaussian Process, respectively - to address the regres-
sion problem. Additionally, we also include a comparison
with the results obtained by neural networks since such
models have been extensively applied in machine learning
problems recently. The method is demonstrated using the
ThirdNational Health andNutrition Examination Survey [26]
and the U.S. Army Anthropometry Survey [27] databases.
Finally, the potentiality of the method is explored in a sce-
nario of a patient without or partial mobility.

II. METHODS
A. STATISTICAL REGRESSIONS
In statistical regression, the relationships are modeled using
linear or nonlinear predictor functions whose unknownmodel
parameters are estimated from the experimental data. For
instance, a mapping has two or more explanatory variables,
given by [13]:

fθ (x) = 〈w, x〉 + b; θ = {w, b} (1)

where 〈w, x〉 is the dot product between the weight vec-
tor w and the inputs values x and b is a bias or residual error,
conventional regression models are often fitted using the least
squares approach. For example, Chumlea et al. [5] establish
a linear prediction equation where f1 is height, x1 is the knee
height, andw1 is amultiplicative coefficient different for each
analysed population.

Statistical regressions are attractive models to drawing
conclusions about general principles based on a set of obser-
vations. In this work, the results obtained for different statis-
tical traditional regressions are similar to the obtained with
linear regressions (LR); for that reason, our discussion is
limited to LR.

B. MACHINE LEARNING REGRESSIONS
ML regression models are highly adaptable and are capable
of modeling complex relationships; it can be implemented
instead of statistical regression for the following cases:

the primary goal is to predict rather than explain, predictor
variables are correlated or have non-linear relationships to
the target variable, and there are numerous complex variable
interactions.

As represented in Figure 1, in the case of ML Regres-
sion, instead of defined functions (Hand-crafted model) as
used in statistical regression, one part of the existing data
(i.e. Training and Validation Set) is used to identify settings
for the model parameters that return the best realistic pre-
dictive performance, building and tuning the model. Another
part of the data with new examples (i.e. Test Set) is used to
test the performance of the regression model [28].

FIGURE 1. Comparison between traditional and machine learning
work-flow regressions.

Sparse kernel machines are those one in which the kernel
evaluation needs only a subset of the training data. In SVMs,
for example, as less support vectors are used, sparser is
the model since it will assign zero weights to most train-
ing patterns. Therefore, usually sparsity is a desired behav-
ior because it gives a better interpretability and provides
much faster solutions reducing the computational cost of the
model. However, the information carried in the patterns with
assigned zero weights is lost and it could be important in
some type of problems [29], in special, those problems that
are more susceptible to overfitting.

1) SUPPORT VECTOR REGRESSION (SPARSE)
Support Vector Regression (SVR) with different Kernel func-
tions such as Linear, Polynomial, and Gaussian function
were explored. SVR with Gaussian Kernel achieved the
best performance, the Gaussian base function is given by
G(x1, x2) =< φ(x1), φ(x2) >, where φ(x) is a transformation
that maps x to a high-dimensional space. For that reason,
in this work our discussion is limited to SVR with Gaussian
Kernel [30].

2) GAUSSIAN PROCESSES REGRESSION (NON-SPARSE)
Gaussian process Regression (GPR) uses lazy learning meth-
ods and a similarity measure between points to predict values
for unseen points from training data, more details can be
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found in [31] and [32]. Therefore, it is possible to compute
the prediction intervals using the trained model.

3) NEURAL NETWORK REGRESSION
The Neural Network Regression (NNR) is composed by
Two-layer feed-forward with ten hidden sigmoid neurons.
A Levenberg-Marquardt algorithm has been explored for
training [33].

In this work, 70% of the analyzed data corresponds to the
training group (train the ML regression and adjust the model
weights); other 15% is the validation group, used to determine
whether the classification accuracy of the ML regression is
increasing or over-fitting. Finally, the rest 15% is going to
test the trained ML model. The weight and height prediction
performance of the different models were assessed using
the Root Mean Square Error (RMSE). RMSE amplifies and
severely punishes significant errors, and it ismore appropriate
to gauge model performance [34]. Moreover, it is on the
same scale and units of the analyzed parameter (i.e. weight
in kilograms and height in centimeters).

C. DATABASES
1) NHANES III
The Third National Health and Nutrition Examination Sur-
vey were collected between 1988 and 1994, contains data
for 33,994 persons. Three ethnic groups are analyzed,
non-Hispanic white (40%), non-Hispanic Black (30%) and
Mexican-American (30%) subgroups for the US popula-
tion [26]. In this work, we have selected adult subjects (over
21 years), with full data about anthropometric parameters
related with height and weight corresponding to 4261 and
14783 subjects, respectively. Details about the measurement
methodology to collect data can be found in [5] and [26].

2) ANSUR
The 1988 U.S. Army Anthropometry Survey is one of the
most widely used anthropometry databases because of the
rigorous methodology and a large number of measures [27].
The database is composed of two Gender subgroups:
Male (1774) and Female (2208) subjects, totalizing
3982 samples.

III. ANTHROPOMETRIC CORRELATION ANALYSIS
There are several correlations between anthropometric
measurements of the human body, such as body height
and Member-height, as well as, weight and Member-
circumference. In Figure 2 are represented, usual correla-
tions explored in healthcare: Height vs. Knee-height (a) and
weight vs. Buttock-circumference (b).

The most representative anthropometric Square Correla-
tion Coefficients (R2) for weight and height are summarized
in Figure 3. The correlation analysis has been elabo-
rated for a non-Hispanic white male group (NHANES III,
1369 subjects) and a Male Group (ANSUR, 1776 subjects).

Weight is often related withWaist-circumference [5], with-
out regard that there are high correlations with Buttock, Arm,
Calf, Biceps, and Chest circumference as well. Therefore,

FIGURE 2. Scatter diagrams for a non-Hispanic white male group
(1369 subjects): Height vs. Knee-height (a) and weight vs.
Buttock-circumference (b).

FIGURE 3. Weight and Member-circumference (left), as well as, height
and Member-height (right) correlations for a non-Hispanic white Male
Group (NHANES III, 1369 subjects) and a Male Group (ANSUR,
1776 subjects).

an individual or combinational parameter analysis of other
parameters may be explored in cases where is not possible to
measure Waist-circumference.

An analysis of the predicted weight and height for different
individual or combinations of AnthropometricMeasurements
is illustrated in the following subsections.

A. PREDICTED WEIGHT
Three cases of the multiple possible combinations of anthro-
pometric parameters are explored to analyze the performance
to predict weight of the ML regressions. Anthropometric
data corresponds to 14783 adult subjects from NHANES III
database.
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FIGURE 4. Predicted vs Measured weight scatter diagram; for Linear (L), Support Vector (S), Gaussian Process (G) and Neural Network (N) regressions.
Anthropometric parameters explored are: (a) Waist circumference (Waist); (b) Waist, Height, Buttock circumference (Butt.), Thigh Circumference (Thigh),
Gender, Ethnicity (Ethn.); (c) Waist, Height, Butt., Thigh, Arm Circumference (Arm), Gender and Ethn. Group of 14783 adult subjects from NHANES III.

The combination of anthropometric parameter inputs are
organized as follow:

• Comb. 1: Waist circumference;
• Comb. 2: Gender, Ethnicity, height, as well as, Buttock
and Waist circumferences;

• Comb. 3: Comb. 2 in addition to Arm circumference.

Figure 4 shows the scatter diagram of the Predicted vs.
Measured weight of the proposed combinations obtained by
Linear and ML regressions; a solid line is used to represent a
perfect correlation (R2 = 1).
For Comb. 1, (Fig. 4(a)) where the Waist circumference

parameter is the only input parameter, the RMSE values
obtained are similar to the reported in the literature [5], which
confidence interval (CI) is next to 78% and limits between
16.55kg and 18.49kg.

Furthermore, in the cases of Comb 2. and Comb. 3
(Fig. 5(b) and (c)), if more parameters are explored to train
the models, the prediction is much more accurate. A CI
of 95% with limits of 3.20kg and 3.50kg is obtained with
linear regression, whereas, the best prediction performance
is achieved with GPR, CI of 98% with limits of 1.80kg and
2.25kg. The prediction performance of NNR and SVR are
subtly larger than the obtained with GPR.

UnlikeML regressions, the weight prediction with conven-
tional regressions fails (cL) for values smaller than 50kg and
higher than 110kg, as shown in Figure 4. (c). The same behav-
ior is observed for other possible combinations of anthropo-
metric values. In Figure 5, it can be seen the tendency of the
weight prediction with a LR and its difference with a perfect
correlation (Solid Line).

Examples of the prediction model performance for differ-
ent anthropometric parameter combinations are summarized

FIGURE 5. Scatter diagram of the Predicted vs. Measured weight by using
a conventional (Linear) regression, for a group of adult subjects from the
NHANES III database (14783 subjects); (a) lighter 50kg (approx.
1500 subjects), and (b) heavier than 110kg (approx. 300 subjects). The
solid line is a perfect weight prediction.

in Table 1; each subtable is organized by the number
of anthropometric parameters explored as input: one, two
(vertical and a horizontal parameter) and four parameters.

The ML regressions performance is better than conven-
tional regression, for all possible combinations. RMSE values
for the predicted weight obtained from SVR and GPR are
similars (difference in the third decimal place); however,
the accuracy in terms of CI is subtly better for GPR.

B. PREDICTED HEIGHT
The correlation between predicted and measured height
is analyzed for individual or different combinations of
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TABLE 1. Weight prediction performance (RMSE in kilograms) of linear, support vector, gaussian process, and neural network regressions; for 14783 adult
subjects (NHANES III). The anthropometric parameters input are height, gender, Ethnicity (Ethn.), as well as, Buttock (Butt.), Thigh (Thigh), Waist, (Waist)
and Arm circumferences (Arm).

TABLE 2. Height prediction performance (RMSE in centimeters) of linear, support vector, gaussian process, and neural network regressions;
for 4261 adult subjects (NHANES III). The anthropometric parameters input are Knee height (Knee), Gender, Ethnicity (Ethn.), Functional leg (Leg)
and forearm (Arm) lengths, as well as, Wrist (Wrist) and sitting (Sit) heights.
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FIGURE 6. RMSE values for weight (a) and height prediction (b) for Male
and Female groups analyzed jointly using a GPR, where Gender and
Non-Gender means using or not the Gender as input parameter,
respectively. Group of 14783 adult subjects from NHANES III.

anthropometric parameter inputs, parameters with more cor-
relation with body’s height have been selected for the
analysis.

Thus, the anthropometric parameters entries are Knee-
height, Gender, Ethnicity, functional-Leg and Forearm-hand
lengths, as well as, Wrist and Sitting heights. The Height
prediction performance values (RMSE in centimeters) of the
explored models are summarized in Table 2. Similarly to the
weight prediction case, the performance of the ML regres-
sions is better than conventional regression, for all possible
combinations.

A CI of 94% with limits of 11.2cm and 13.5cm is obtained
with conventional regression models, whereas, a CI of 95%
with limits of 6.7cm and 9.0cm, is achieved with GPR.

For comparison purposes, the Weight and Height pre-
diction performance (RMSE and R-square values) obtained
with the proposed model, as well as, the most representative
values previously reported in the literature are summarized
in Table 3. Our model reaches an RMSE value of 2.11 and
an R-Squared of 0.84, for Weight and Height predictions,
respectively. Therefore, for both predictions, the GPRmethod
has a better performance than the linear methods.

C. GENDER AND ETHNICITY PARAMETERS
It is well-known that anthropometric correlation values are
different for male and female subjects, such that weight
and height estimation equations have different coefficients
for each gender. Furthermore, different equations have been
reported for groups in various continents [5], [6]. In our
analysis, all subjects are analyzed together, and Gender and
Ethnicity are input parameters of the ML regressions.

FIGURE 7. True success rate of a support vector machine to classify
gender, parameters explored for weight (a) and height (b) estimations.
Group of 14783 adult subjects from NHANES III.

FIGURE 8. RMSE values for weight (a) and height prediction (b), where
Ethnicity and Non-Ethnicity means using or not the Ethnicity as input
parameter, respectively. Group of 14783 adult subjects from NHANES III.

1) GENDER ANALYSIS
As can be observed in Tables 1 and 2, weight and height
estimations are more accurate if the Gender parameter (1 for
male and 0 for female subjects) is considered. For example,
in the case that Buttock circumference is the only one
input, the weight prediction SVR model has an RMSE
of 7.14kg. However, if the Gender parameter is a second
input, the RMSE is reduced to 5.88kg.

Moreover, if more than two parameters are analyzed (e.g.
Buttock andWaist circumferences), the prediction is notmore
sensitive to Gender, as shown in Figure 6.
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TABLE 3. Height and weight predictions performance from anthropometric measurements.

FIGURE 9. Weight estimation from Lower and Upper limb, and Depth anthropometric parameters, that can be measured comfortably for patients
without or partial mobility. Analysis based on the ANSUR database (3997 subjects).

The effect can be explained by the property of the ML
regression to identify the subject Gender. To test our hypoth-
esis, a Support Vector Machine (SVM) is explored as a binary
classifier to determine the subject Gender, using the same
input parameters employed in the SVR. As can be seen in
Figure 7, considering two input parameters, the SVM classi-
fier has a true success rate (TSR) of 80% to classify the sub-
jects Gender; exploring more than two parameters, the TRS
reach values next to 90%.

Therefore, the Gender parameter plays an important role
in the prediction if just one anthropometric parameter is
explored as an input parameter, but it is redundant in the
case that more than two parameters are analyzed by the ML
regression.

2) ETHNICITY NON-SENSITIVE
As aforementioned, the NHANES III database is com-
posed of three ethnic groups [26]. Therefore in our anal-
ysis, the parameters are established as non-Hispanic white
(1), non-Hispanic Black (2), and Mexican-American (3)
parameters.

The prediction performance has not an important depen-
dence with Ethnicity, which RMSE values are similar in the

cases of the Ethnicity parameter is considered or not, as rep-
resented in Figure 8 and summarized in Table 1 and 2. The
same non-Sensitivity to Ethnicity is found for the ANSUR
database.

On the other hand, analogously to the Gender classifica-
tion, an SVM was explored unsuccessfully to classify the
Ethnicity of the subjects (TSR next to 50%).

3) CROSS-VALIDATION DATABASES
Cross-validation tests between the NHANES III and the
ANSUR databases test have been implemented. As summa-
rized in Table 4, RMSE values achieved with both Inter-
and Intra- database analysis are quite similar, proving the
generalization of the ML regression model.

IV. ESTIMATING WEIGHT FOR A SUBJECT
WITHOUT MOBILITY
In this numeral, groups of anthropometric measurements
are proposed to estimate weight based on anatomical
regions exploring a Gaussian Process Regression. Therefore,
the healthcare professional has different options to collect
circumferences and member lengths; that can be measured
comfortably for patients without or partial mobility. The
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TABLE 4. Cross-validation between the NHANESIII and ANSUR databases.

group of measurements are organized as follow:
• Case 1. Lower Limb: Knee-height, and Calf, Knee,
Thigh Distal, Thigh Proximal circumferences;

• Case 2. Upper Limb: Acroradial-Length, and Axillary
arm, Scye, Biceps flexed, Elbow circumferences;

• Case 3. Depth parameters: Acroradial-Length, and
Chest, Waist and Buttock depths;

• Case 4. Lower and Upper Limb;
• Case 5. Limbs and Depth parameters.
Weight estimations are based on the ANSUR database,

which contains anthropometric parameters such as Calf, Axil-
lary Arm, and Biceps circumferences, as well as, Chest,Waist
and Buttock depth. Male and Females groups are analyzed
jointly, and Gender is an input parameter.

It is important to note that the ANSUR anthropometric
measurements were obtained in a stand-up or sitting posi-
tions. Consequently, the values are subtly different of the
obtained from a patient placed in a Recumbent or Fowler
positions.

As represented in Figure 9, the weight prediction from the
Lower limb has the best performance, with a CI of 94% and
limits between 4.05 and 5.16kg. If the patients’ height is a
known parameter, the CI reaches values close to 95% and
limits between 3.19 and 4.20kg.

In case that is possible to measure both limbs (lower and
upper), the CI obtained is 97% with limits between 2.94 and
3.91kg. Furthermore, if Depth parameters can be measured
as well, the prediction reach the best accuracy value with a
CI of 98% and limits between 1.14 and 1.77kg, and 99%
with limits between 0.64kg and 1.13kg if the Height subject
is known.

V. CONCLUSION
Weight and Height prediction performance from anthro-
pometric measurements obtained with Machine Learning
regression models is better than the achieved with conven-
tional statistical regressions.

In particular, the non-sparse kernel machine (Gaussian
Process Regression) shows the best performance. Despite
having a more expensive computational cost, the Gaussian
Process Regression has the ability to choose the kernel hyper
parameters directly from the training data what makes it a
more flexible model with fewer setup requirements.

Besides, we believe that the non-sparsity of the Gaus-
sian Process Regression enabled the usage of important
information that might be discarded in the SVM through the
assignment of zero weight for some inputs.

Weight and Height can be predicted for Female and Male
subjects with the same ML regression, where Gender is one

input parameter. On the other hand, the Weight and Height
predictions obtained with ML regressions have not a depen-
dence with ethnicity for both populations analyzed.

According to the Cross-validation database analysis,
theMLmodels are robust and general for analysis of different
populations. Trained models obtained with ML regressions
can be embedded in applications software to run on mobile
devices and smartphones, opening new opportunities for
anthropometric applications in industry, textile technology,
security, and health-care.
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