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Abstract: State-of-the-art applications of nanomedicine have the potential to revolutionize the 

diagnosis, prevention, and treatment of a range of conditions and diseases affecting women’s 

health. In this review, we provide a synopsis of potential applications of nanomedicine in some of 

the most dominant fields of women’s health: mental health, sexual health, reproductive medicine, 

oncology, menopause-related conditions and dementia. We explore published studies arising 

from in vitro and in vivo experiments, and clinical trials where available, to reveal novel and 

highly promising therapeutic applications of nanomedicine in these fields. For the first time, we 

summarize the growing body of evidence relating to the use of nanomaterials as experimental 

tools for the detection, prevention, and treatment of significant diseases and conditions across 

the life course of a cisgender woman, from puberty to menopause; revealing the far-reaching 

and desirable theoretical impact of nanomedicine across different medical disciplines. We also 

present an overview of potential concerns regarding the therapeutic applications of nanomedicine 

and the factors currently restricting the growth of applied nanomedicine.

Keywords: nanomedicine, mental health, sexual health, reproductive medicine, oncology, 

menopause, dementia

Introduction
Nanomedicine is the application of nanotechnology in the field of medicine with a 

view to enhancing the diagnosis and treatment of various diseases. Nanotechnology 

is already involved in a range of biomedical applications including drug and vaccine 

delivery, diagnostic imaging, nanosensor diagnostics, nano-enabled therapies, and 

tissue engineering.1–3 Across the UK and the European Union, a growing recognition 

of the specific health care requirements of women has resulted in the proposed organi-

zational changes in the provision of health care, focusing predominantly on a life course 

approach to women’s health care.4–7 However, the predictable long-term health care 

needs of women demand greater biomedical and translational research to develop 

the diagnostic tools and treatments necessary to improve the care and well-being 

of women. Although cancer has been the predominant focus of research in the field 

of nanomedicine,8 there is an increasing awareness and exploration of the potential 

application of nanomedicine to noncancerous pathologies. As our understanding of the 

benefits of nanomaterial-based agents and diagnostics continues to grow in terms of 

selectivity, sensitivity, affinity, and detection limits, there is a widespread anticipation 

that nanotechnology will play an increasing role in women’s health.1,9–18 This review 

explores the selection of potential nanomedicine applications in women’s health, from 

puberty to menopause in cisgender women, including mental, sexual, reproductive, 

cancer, and menopause-related health care (Figure 1; Tables 1 and 2). We also address 
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how this exciting technology might be deployed in early-

onset dementia health care. These disciplines align directly 

to the key components of the World Health Organization’s 

“Top Ten Issues for Women’s Health.” Specifically, we 

highlight the potential of nanomedicine to revolutionize 

health care throughout the life course of women and discuss 

the challenges that might restrict the widespread application 

of these nanotechnologies to clinical medicine.

Figure 1 A representative graph showing the significant and predictable health care needs across the life course of a woman.

Table 1 The applications of nanoparticles in women’s health care: 
mental health and sexual health care trials and clinical studies

Sector Speciality Application References

Mental 
health care

Therapeutics enhanced 
drug delivery 
and release 
mechanisms

Ashok et al,40 Leyva-
Gómez et al,41 Kim 
et al,42 Jana et al,43 Zhou 
et al,47 Shah et al48

Increasing 
bioavailability of 
drugs

Gao et al,52 Yan et al53

Alternative drug 
delivery systems

Huang et al,57 wei et al,58 
Grabrucker et al59

Sexual 
health care

Fertility Nanoparticles 
with antifertility 
capability

Gaurav et al,61 Liu et al,62 
Jha et al,66 Marfatia et al70

Sexually 
transmitted 
diseases

Prevention of 
infection

Fayaz et al,71 Caron 
et al,81 Kovarova et al82

Detection of 
infection

Lee et al,83 Singh et al,95 
Singh et al,96 Yang et al,105 
Tang et al,106 Beeghly-
Fadiel et al119

Treatment of 
infection

Rauta et al,97 
Mishra et al,101

vaccination/
immunity 
against infection

Fairley et al,98 
Dixit et al,99 
Cambridge et al,100 
Yilma et al,102 Liu et al,94 
villa et al87

Table 2 The applications of nanoparticles in women’s health care: 
reproductive health care, cancer, and menopause care trials and 
clinical studies

Sector Specialty Application References

Reproductive
health care

endometriosis Imaging of 
endometriosis

Hue et al,110 
Zhang et al111

Delivering gene 
therapies to target 
tissues

Zhao et al,112 
Chaudhury et al113

Uterine 
fibroids

Targeting delivery of 
antitumor drugs

Jiang et al,114 
Ali et al115

Cancer
health care

Tumor imaging Magnetic resonance 
imaging (MRI)

Zhang et al,125 
Yang et al213

Computed 
tomography (CT)

Zhou et al126

Cancer 
screening

Detection of 
malignant cells in 
tissue samples

Liu et al,130 
Jo et al,132 
Palantavida et al129

Therapeutics Receptor specific 
targeting

Zhang et al,142 
Yu et al,156 
Yang et al150

Sensitization of 
malignant cells

Yang et al,121 
Liang et al143

Manipulation of 
cellular pathways

Yang et al,150 
Zhang et al153

Overcoming drug 
resistance

Peetla et al,146 
Roberts et al,147 
wang and Jia149

Menopause-
related
health care

Declining 
estrogen

Improvements for 
hormone therapy

valenzuela and 
Simon,171 Simon170

Osteoporosis Manipulation of 
osteogenesis activity

Hwang et al,178 
Psarros et al179

Bone-specific drug 
delivery

Khajuria et al176

Cardiovascular 
disease

Reduction of LDL 
levels

Xiao et al183

Targeting 
atherosclerotic 
growth/inflammation

Chono et al,181 
Chnari et al,182 
winter et al184
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Mental health care
Mental health is a significant and growing issue in women’s 

health. Analysis of the four Adult Psychiatric Morbidity 

Surveys published since 1993 has demonstrated the growing 

burden of common mental health disorders in women’s 

health care and revealed a gender gap in common mental 

health disorders.19 Analysis of these surveys indicated that 

in England, 20.7% of women had a common mental health 

disorder, a figure which was 7.5% higher than that in men. 

Furthermore, since 2000, the prevalence of common mental 

health disorders in women has continued to increase, yet has 

remained stable, for the most part, in men. Although women 

are found to be more likely to receive treatment than men, the 

antidepressants commonly used in the treatment of common 

mental health disorders such as anxiety and depression are 

not consistently efficacious.

An individual’s gender has been identified as a factor 

affecting treatment response.20 Studies in mice have shown 

that greater neuronal activation arises in response to an acute 

citalopram injection in male mice, than in female mice or 

gonadectomized male mice, suggesting the possible influence 

of gonadal hormones upon the complex interactions between 

serotonin and neural circuits that mediate the hypothalamic–

pituitary–adrenal stress axis.21 It was proposed that the regula-

tion of androgens might dampen and modulate the activation 

of the stress pathway, which could contribute to the greater 

vulnerability of women to stress-related affective disorders. 

In light of the possible inherent gender gap in common mental 

health disorders, it is vital that efforts are made to increase 

the efficacy of the existing pharmacological treatments to 

improve the well-being of women. Both pharmacological 

and neurobiological factors have been implicated in antide-

pressant resistance.22

The function of the blood–brain barrier is believed to 

be a significant factor affecting antidepressant resistance.23 

The blood–brain barrier contributes to brain homeostasis 

and features drug efflux transporters of the ATP-binding 

cassette gene family including P-glycoprotein (P-gp).24 Many 

antidepressants are substrates of P-gp and therefore exhibit 

reduced penetration into the brain.22 Although not all antide-

pressants are subject to the same degree of limitation to brain 

penetration by P-gp in vivo,25–28 several single-nucleotide 

polymorphisms of the ABCB1 gene have been linked to 

reduced levels of clinical response to antidepressants,29–33 

and a poorer tolerance profile.34–36 However, several studies 

have failed to reproduce these results.37–39 The proposed 

involvement of P-gp in antidepressant resistance indicates 

that P-gp may be systematically targeted and inhibited by 

particular drug delivery systems, enabling more of the drug 

to cross the blood–brain barrier, thus establishing greater 

concentrations at the site of action.14

Serotonin–norepinephrine reuptake inhibitors (SNRIs) 

and selective serotonin reuptake inhibitors (SSRIs), in addi-

tion to the other commonly prescribed benzodiazepine class 

of anxiolytics, are orally administered in the majority of 

cases of common mental health disorders. Therefore, these 

drugs are also limited by factors such as low drug aqueous 

solubility, food–drug interactions, high hepatic first-pass 

metabolism effects, and short half-lives. In addition, poor 

compliance is a common cause of anxiolytic resistance in 

all three classes. Promising in vitro and in vivo studies offer 

the hope that nanomedicine could overcome many of these 

causes of low bioavailability and drug resistance.14

The initial studies involving benzodiazepine drug 

nanocarriers have been positive. Lipid-based micelles have 

proved to be successful at improving the aqueous solubil-

ity of diazepam in vitro by 2.3- to 6-fold. Furthermore, 

solid lipid nanoparticles (NPs) carrying clonazepam dem-

onstrate enhanced blood–brain barrier permeability and 

efficacy at lower doses than required by the pure form of 

the drug revealing their potential as oral delivery systems 

for drugs with poor water solubility.14,40,41 In addition, in 

vivo, clonazepam-loaded polymeric NPs demonstrated 

sustained drug release exceeding 80 hours in the presence 

of the enzyme dextranase, subject to the pH of the release 

medium being appropriate, and alprazolam-loaded polymeric 

NPs have also demonstrated sustained drug release over a 

24-hour period in vitro.42,43 Moreover, liposomes have been 

utilized in vivo to encapsulate midazolam, successfully 

increasing the oral bioavailability of the drug by 3.6-fold 

relative to the pure form of the drug.14,44 These examples 

provide clear evidence of the potential of nanoscale drug 

delivery systems to improve the physiochemical properties 

of benzodiazepine drugs, ultimately increasing the fraction 

of the orally administered drugs that reach the systemic cir-

culation. They also suggest the possibility of benzodiazepine 

depots, which could maintain a constant drug concentration 

for a prolonged and predetermined period of time with mini-

mum side effects, offering hope for the safer prescription of 

drugs with improved patient compliance.

Other studies that have been conducted in nanocarriers 

loaded with SNRIs and SSRIs have proved similarly prom-

ising results. Solid lipid NPs carrying duloxetine HCl have 

demonstrated excellent stability in acidic media and enhanced 
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pharmacodynamic properties in vivo. Likewise, duloxetine 

HCl-loaded mesoporous silica NPs exhibited sustained 

drug release during in vitro studies.45,46 Furthermore, solid 

lipid NPs carrying venlafaxine showed a 1.45-fold increase 

in oral bioavailability relative to the pure drug. The drug 

concentrations in the brain were also increased significantly 

when administered through the solid lipid nanocarrier, sug-

gesting a reduction in P-gp-mediated efflux of the drug.14,47 

Moreover, venlafaxine hydrochloride (VHL)-loaded chitosan 

NPs have shown steady release in vitro, and VHL-loaded 

dendrimers demonstrated sustained drug release in vitro.48,49 

Studies of fluoxetine HCl cocrystals, fluoxetine HCl with 

benzoic, succinic, and fumaric acid cocrystal formers in the 

same crystal lattice, further revealed that the solubility of 

the cocrystal formers determined the aqueous solubility of the 

cocrystals. This has the potential to inform the development 

of optimal cocrystal engineering for maximal bioavailability 

in future.14,50 As with the benzodiazepine class of drugs 

described in the preceding paragraph, this initial preclinical 

evidence indicates that SNRIs and SSRIs may benefit from 

nanoscale drug delivery systems that can provide opportuni-

ties for enhanced oral bioavailability and the development 

of drug depots. In addition, these studies demonstrate that 

greater concentrations of SSRIs and SNRIs may be estab-

lished in the brain by reducing P-gp-mediated efflux and by 

preventing the upregulation of P-gp expression through the 

use of drug delivery systems.

Nanomedicine also offers significant potential to improve 

the efficacy of alternative and novel therapies, administration 

techniques, and augmentation strategies. For example, solid 

lipid NPs were successfully demonstrated to increase the bio-

availability of buspirone HCl by 2.35-fold. This phenomenon 

was attributed to reduced hepatic first-pass metabolism, which 

may ultimately enhance the efficacy and diminish the inter-

individual variability associated with this novel anxiolytic 

which is sometimes used to augment antidepressants.14,51 

In addition, in vitro studies of amitriptyline HCl nanocrystals 

suggested that the development of nanocrystals may offer a 

means to increase the rate and extent of drug dissolution.14,52 

Although tricyclic antidepressants such as amitriptyline 

HCl have been largely superseded by SNRIs and SSRIs, this 

study demonstrated the potential of nanocrystals to enhance 

the physiochemical properties of the drug for application 

in suitable, antidepressant-resistant, patients. Furthermore, 

agomelatine cocrystals enhanced aqueous solubility by up to 

4.7-fold relative to the pure form of the drug, which is a novel 

melatonergic antidepressant with a favorable side effect pro-

file relative to the more commonly used antidepressants.14,53

A study conducted on the antidepressant effects of the 

curcumin/solid lipid NP dexanabinol (Cur/SLNs-HU-211) 

dual-drug NPs for the treatment of major depression utilized 

corticosterone-induced cellular and animal models of major 

depression.54 Cur/SLNs-HU-211 showed superior antide-

pressant activity compared to HU-211, Cur, and Cur/SLNs 

in vitro and in vivo.54 Although curcumin remains a contro-

versial and poorly researched alternative form of therapy, 

this study is suggestive of the potential of nanomedicine 

to overcome pitfalls that can curtail experimental leads for 

novel antidepressants; in the case of curcumin, potentially 

improving the normally unstable, reactive, and non-bioavail-

able compound. A superior antidepressant-like effect of tre-

foil factor 3 (TFF3) loaded into negatively charged liposomes 

was observed in animal models of depression. These findings 

indicated the potential of developing TFF3 liposomes as a 

potential antidepressant drug for acute systemic administra-

tion. In this way, the neuropeptide TFF3 may be enhanced by 

nanomedicine to potentially improve the efficacy of clinically 

used antidepressants.55 Moreover, cRGD-modified liposomes 

produced a heightened antidepressant response of TFF3 by 

increasing the brain distribution of TFF3. It is now neces-

sary to conduct further research on the efficacy and safety of 

using cyclic Arg-Gly-Asp (cRGD) coupled with liposomes 

as a drug delivery system targeted at the brain. This may 

enable exploration of the potential use of cRGDL-TFF3 for 

the treatment of common mental health disorders.56

Nanomedicine may also contribute to improving alter-

native drug administration methods. An animal study high-

lighted the potential of micro-emulsions to be utilized as a 

drug delivery system for the transdermal administration of 

citalopram. This study indicated that a formulation, contain-

ing 3% citalopram within an application area of 3.46 cm2, 

was capable of reaching the minimum effective therapeutic 

concentration with no significant local side effects.57 In addi-

tion, curcumin didecanoate CurDD nanosuspensions have 

been proposed as an alternative long-acting intramuscular 

injectable antidepressant through the sustained delivery of 

curcumin.58

In another study, novel biodegradable NPs, composed 

of poly-lactide-co-glycolide (PLGA) conjugated with gly-

copeptides, were shown to be capable of crossing the blood–

brain barrier and were able to deliver Zn2+ ions, which may 

permit their application in the augmentation of antidepressant 

treatments.59

In summary, the clinical application of nanocarrier systems 

in mental health remains a speculative, but tantalizing, pos-

sibility at this time. The studies presented here illustrate the 
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positive theoretical impact of their translation into clinical 

medicine. Nanomedicine may offer the potential to improve 

the efficacy of conventional pharmaceuticals that are cur-

rently limited by antidepressant resistance, by enhancing the 

bioavailability and pharmacokinetics, as well as facilitating 

antidepressant augmentation. Furthermore, it may facilitate 

the development of novel therapies for use in the treatment of 

common mental health disorders. In addition, it may improve 

the range of drug administration methods available to clini-

cians and enable the implementation of long-acting drug 

depots to reduce patient noncompliance. Further investiga-

tion is required before clinical investigation and translation 

is possible, but this may ultimately prove to be productive in 

addressing the significant burden of mental health.

Sexual health care
Statistics on Sexual and Reproductive Health (SRH) services 

in England (2015/2016) revealed that 7% of the resident 

population of women aged between 13 and 54 years had 

contacted the SRH services at least once. Furthermore, 

19% of women aged between 18 and 19 years had accessed 

the SRH service at least once.60 This seems to indicate that 

effective SRH services might have a significant impact on 

their health care experience.

Nanomedicine has the potential to offer improvements 

in reproductive choice and contraceptive safety, and thus 

provide additional benefit to the well-being of women. For 

example, copper–curcumin-β-cyclodextrin (Cu–Cur)CD 

nano-inclusion complexes have demonstrated significant 

spermicidal effects in vitro. Safety and toxicity results were 

also favorable, suggesting that this complex could be poten-

tially used as a topical vaginal contraceptive.61 This type of 

topical vaginal contraceptive could be implemented as a 

short-term, nonsteroidal contraceptive measure. However, 

initial investigations into the potential application of nano-

medicine in long-acting reversible birth control are arguably 

more exciting.

Copper/low-density polyethylene nanocomposite has 

been shown to have potential for use in intrauterine devices 

with antifertility effectiveness demonstrated in rats, together 

with high contraceptive efficacy and fewer clinical side 

effects compared to other copper intrauterine devices in 

humans.62,63 In addition to improving the existing contracep-

tive measures such as intrauterine devices, nanomedicine 

may also enable the development of novel longer-acting 

contraceptive options. For example, a polymeric NP formula-

tion of follicle-stimulating hormone (FSH)-receptor binding 

inhibitor-8, purified from human ovarian follicular fluid, 

has demonstrated antifertility activity when studied in vivo 

in marmosets. In vitro, sustained release of FSH-receptor 

binding inhibitor-8 was exhibited for 21 days.64

Reversible sterilization is an attractive long-term contra-

ceptive option, and early developments have been significantly 

aided by the use of nanomedicine. Gonadotropin-releasing 

hormone (GnRH)-conjugated chitosan may represent a 

promising carrier for the targeted delivery of DNA to GnRH-

expressing cells, which could be used to implement nonin-

vasive sterilization by means of gene silencing.65 Another 

means of reversible sterilization, smart reversible inhibition 

of sperm under guidance (Smart RISUG) utilizes nano- to 

micro-sized magnetic particles in the iron oxide–copper–

styrene maleic anhydride–dimethyl sulfoxide contraceptive 

drug. Drug–sperm interactions are mediated by the presence 

of a pulsed magnetic field to facilitate better spermicidal 

action and control of distribution inside either male or 

female reproductive tubes. Smart RISUG is of significant 

interest because it is long acting, yet readily reversible.66 

The application of RISUG in men offers the hope of greater 

shared contraceptive responsibility. RISUG is a promising 

male contraceptive and has already reached Phase III clinical 

trial stage.67–69

Using nanotechnology to improve and redevelop the 

existing barrier contraceptives, such as condoms, could have 

a positive impact on efficacy. For example, graphene and 

nano-lubricated condoms could offer greater protection for 

sexual partners.70 The inactivation of microbial infectious-

ness by silver NP-coated polyurethane condoms has also 

been demonstrated.71

Although RISUG and nanotechnology-enhanced con-

doms can provide some level of antimicrobial protection, 

additional vaccinations, diagnostic tests, and antimicrobial 

drugs are necessary to prevent and treat sexually transmitted 

infections.70–72

In 2016, women represented 32% of patients receiving 

care for human immunodeficiency virus (HIV) in England, 

thus demonstrating the significant impact of HIV on women’s 

health.73 Although combination antiretroviral therapy has 

helped to improve the morbidity and mortality of patients 

infected with this virus, the presence of the virus persists in 

reservoir organs and treatment remains limited by drug–drug 

interactions, side effects, and noncompliance.74 Nanomedi-

cine can aid the provision of such treatment by capitalizing 

on the ability of nanomedicines to overcome anatomical 

barriers and to partake in active cell targeting and controlled 

release.75 In fact, a Phase I clinical trial has already been 

underway to compare the relative bioavailability of different 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1968

Lloyd-Parry et al

MK-1439 experimental nanoformulations (NFs) with that of 

a MK-1439 film-coated tablet.76 In addition, a Phase I clinical 

trial investigating the pharmacokinetics of the antiretroviral 

agents efavirenz and lopinavir, administered as NFs in 

healthy volunteers, is due to begin, pending the acquisition of 

appropriate funding.77 Furthermore, nanosuspensions of the 

non-nucleoside reverse-transcriptase inhibitor TMC278-LA78 

and the intregrase inhibitor GSK126574479 are examples of 

antiretroviral NFs that have been tested in Phase II clinical 

trials for HIV. Polyethylenimine mannose NPs that carry the 

HIV antigen-coding DNA plasmid DermaVir Patch vaccine 

have also reached this phase of development.80 The potential 

of vaginally administered agents to target HIV has also been 

explored. Lecithin/cholesterol-based liposomes that carry 

MC122081 and PLGA NPs which carry rilpivirine are among 

several NFs to reach the in vivo study stage of development.82 

Proposed methods of nanotechnology-enhanced HIV-1 

detection include surface-enhanced Raman spectroscopy 

using plasmonic NPs; electrochemical detection based on 

direct electron transfer in the virus; optical detection systems 

based on localized surface plasmon resonance; and vertically 

configured electrical detection based on scanning tunneling 

microscopy.83

The proportion of cervical cancers in women which 

are attributable to human papillomavirus (HPV) infection 

is in excess of 99%, of which over 75% are attributable to 

HPV16 and/or 18.84,85 Phase III clinical trials have shown that 

the quadrivalent Gardasil vaccine is effective against HPV 

type 6, 11, 16, and 18 and that the bivalent Cervarix vaccine 

is effective against HPV type 16 and 18.86–89 These vaccines 

consist of virus-like particles that are constructed from L1 

capsid monomer protein of the respective HPV types.90 

Biphasic vesicles used for topical delivery of interferon alpha 

have brought about marked therapeutic effects in patients.91 

The use of biosensors may aid the development of rapid, 

cost-effective, and accurate diagnostic tests with appropriate 

sensitivities and detection limits.92

The second largest proportional increase in sexually 

transmitted disease diagnosis in England between 2014 and 

2015 was reported for gonorrhea (11%).93 Nanomedicine may 

provide a novel means to treat antibiotic-resistant gonorrhea, 

therefore helping to prevent sequela such as pelvic inflam-

matory disease. One study showed that nanoencapsulation 

technology had the potential to enhance adaptive immunity to 

Neisseria gonorrhoea when combined with the intravaginal 

administration of microencapsulated interleukin-12 (IL-12) 

in mice. Treated mice responded faster to antibiotics and 

were significantly less likely to be re-infected than controls, 

due to the adjunct effects of the IL-12, essentially converting 

the infection into a live vaccine.94 A nanobiocomposite 

platform based on polyaniline-iron oxide-carbon nanotubes 

(PANI–nFe3O4–CNT) has also been used to fabricate a 

genosensor for N. gonorrhoeae and proven to be effective.95 

A bioelectrode using chitosan–iron oxide nanocomposite also 

demonstrated a high degree of accuracy for the detection of 

N. gonorrhoeae nucleic acid.96

Research has shown that chlamydia detection rates are 

1.7–2.2 times higher in women than men, thus reflecting 

higher testing rates in women.93 One study demonstrated 

that when the antibiotic clindamycin hydrochloride, effective 

against chlamydia, was encapsulated in a poly-lactic acid 

(PLA)/PLGA-based NP system for oral delivery, enhanced 

efficacy was noted, as a result of improved bioavailability 

and drug action.97 Chlamydia trachomatis recombinant major 

outer membrane protein (MOMP) encapsulated in PLGA 

NPs has also been shown to trigger primarily T helper 1 

(Th1) cells and enhancement of T- and B-cell-mediated 

immunity in mice and to confer protective immunity 

against C. trachomatis.98 Furthermore, PLA-poly(ethylene 

glycol) NPs have been shown to provide sustained delivery 

of a C. trachomatis recombinant MOMP peptide and to 

potentiate systemic adaptive immune responses in vivo.99 

Encapsulating recombinant MOMP C. trachomatis DNA 

vaccine in biodegradable chitosan NPs facilitates stability 

and protection from enzymatic digestion, while also enhanc-

ing delivery and expression of MOMP DNA in vitro and in 

mice.100 Neutral generation-4 polyamidoamine (PAMAM) 

dendrimer – azithromycin conjugate nanodevices have 

displayed an ability to deliver drugs efficiently to growing 

intracellular C. trachomatis in vitro.101 Other studies have 

demonstrated similarly encouraging findings. Silver-polyvinyl 

pyrrolidone NPs in mouse macrophages infected in vitro 

with live C. trachomatis exhibit anti-inflammatory effects, 

possibly due to the regulation of various upstream surface 

receptors and downstream inflammatory pathway genes.102 

Furthermore, charge-switching synthetic adjuvant particle-

based mucosal vaccination elicited protective immune 

responses in mice.103 Gold NPs and silver enhancement 

have been used to enable rapid, simultaneous detection of 

Ureaplasma parvum and C. trachomatis antigens by using a 

method based on visual protein microarray. This may have 

clinical applications for the simultaneous clinical diagnosis 

of U. parvum and C. trachomatis.104

The largest proportional increase in sexually transmitted 

disease diagnosis in England between 2014 and 2015 was 

reported for syphilis,93 highlighting the imperative need to 
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address this issue. A novel quantum dot (QD)-based point 

of care test for syphilis has been developed.105 The potential 

application of Goldmag immune probes, as part of a NP-based 

colorimetric assay for the detection of syphilis, has also 

been indicated.106 In addition, polyelectrolyte-coated gold 

magnetic NPs have been proven to be sensitive and selective 

when used in a syphilis immunoassay, suggesting a possible 

use in point of care diagnostics for syphilis screening.107

Consequently, it is already evident that nanomedicine 

may benefit the health of women by minimizing the side 

effects of contraceptives. Nanomedicine may also enhance 

contraceptive efficacy, enabling the refinement of planned 

pregnancy. Furthermore, it may enable the development of 

reversible long-term contraceptives suitable for all genders, 

with the possibility of promoting equality and shared con-

traceptive responsibility between partners. In addition to 

contraception, nanomedicine may significantly improve the 

prevention, diagnosis, and treatment of sexually transmitted 

diseases which currently pose a significant challenge to 

women’s health. As the diagnosis of bacterial infections 

increases, it is crucial that an effective arsenal of antibacterial 

agents is made available to treat such infections and reduce 

the incidence of serious clinical sequelae. However, with 

antibacterial resistance making many existing therapeutics 

redundant, novel treatments may become increasingly 

important. In addition, viral infections such as HIV and HPV 

are preventable infections; however, they are also attribut-

able to the development of devastating conditions, namely, 

acquired immune deficiency syndrome and cervical cancer, 

respectively. Thus, it is crucial that viral infections are pre-

vented, where possible, with optimized vaccines and barrier 

contraceptives; diagnosed as early as possible using highly 

sensitive diagnostic tools and treated before the development 

of secondary conditions. It is imperative that innovative 

research into theoretical nanomedicine applications in sexual 

health is translated into the clinic, to meet the expectations 

of increasingly scientifically literate patients who deserve 

the best care with minimal side effects.

Reproductive health care
Research is now underway to allow the field of reproductive 

science to benefit from the advancements in nanotechnology, 

by the application of NPs to diagnose and treat common 

conditions that affect many women of reproductive age, 

including endometriosis and uterine fibroids.

Endometriosis, which affects 2%–10% of women of 

reproductive age, involves the development of endometrial-

like tissues outside of the uterine cavity108 and is prevalent in 

25%–30% of women suffering from infertility.109 Conven-

tional imaging of the affected tissues yields limited results, 

and currently, there is no suitable sensitive serum biomarker 

for endometriosis. Therefore, development in this field is 

pressing. NPs may provide the solution for this problem as 

these engineered particles possess a novel ability to provide 

excellent contrast enhancements for specific markers. One 

study demonstrated the production of an enhanced magnetic 

resonance imaging (MRI) contrast of ectopic uterine tissues 

in a rat model. The NPs involved were ultra-small super-

paramagnetic iron oxide NPs (IONPs), achieved through 

the high affinity of the NPs toward macrophages.110 Alter-

natively, magnetic oxide NPs, which had been modified 

with hyaluronic acid (HA-Fe
3
O

4
 NPs), have shown potential 

in detecting lesions.111 Investigations into the treatment of 

endometriosis have used the therapeutic gene, pigment 

epithelium-derived factor (PEDF), which has both antitu-

mor and antiangiogenic properties. Lipid-grafted chitosan 

micelles were loaded with PEDF and intravenously injected 

into rats with surgically induced endometriosis.112 Following 

treatment, there were significant reductions in ectopic lesion 

volume. Growth inhibition of endometrioid cysts was also 

observed. Another study demonstrated that nanoceria (cerium 

oxide NPs) caused a reduction in the levels of reactive oxy-

gen species (ROS) and angiogenic factors in endometriosis. 

Regression of endometriosis is also associated with the 

reduced density of endometrial glands and microvessels.113

Uterine fibroids (leiomyomas) are the most common 

type of pelvic tumor in women of reproductive age, often 

requiring invasive treatment. NPs have the potential to 

provide less intrusive treatment options. Cryosurgery offers 

potential treatment for these tumors. However, reoccurrence 

is a common drawback. Therefore, one previous study used 

nanogold particles conjugated with tumor necrosis factor 

alpha (TNF-α) as a cryo-adjuvant during cryosurgery and 

demonstrated significant reduction in tumor growth.114 Another 

research group investigated an alternative to hysterectomy by 

using poly L-lysine-PLGA NPs to deliver an antitumor and 

antiangiogenic biologically active metabolite of estradiol (2- 

methoxyoestradiol) into a human leiomyoma cell line 

(huLM).115 Both of these studies provided evidence of improved 

activity of the drug compared to the free molecule controls, as 

typically expected due to NP targeting capabilities. The use of 

adenovirus as a gene delivery vector to modify diseased cells 

has also been enhanced by conjugating the virus with magnetic 

NPs. With the appropriate magnetic field, the group demon-

strated a statistically significant suppression of proliferation, 

and induced apoptosis, in both the cell types.116
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The emerging evidence described herein suggests promis-

ing avenues for the clinical translation of nanomedicine in 

reproductive health. From imaging to diagnostics and thera-

peutics, nanomedicine already shows potential to enhance the 

care available for women of reproductive age with conditions 

such as endometriosis and uterine fibroids.

Cancer health care
Cancer located in the breasts, uterus, ovaries, and cervix are 

the first, fourth, sixth, and seventh most common cancers 

among women in the UK (2015), respectively.117 There is a 

growing body of evidence in support for the use of NPs to 

enable the early and accurate diagnosis of cancer and pro-

mote the efficacious treatment of cancers in women. With 

some new methodologies reaching the clinical trial phase of 

development, in time, nanomedicine may provide significant, 

state-of-the-art treatment options for women, subject to 

further investigation.

Currently, the imaging of cancer tissues by methods such 

as MRI, computed tomography (CT), and positron emission 

tomography is restricted by the use of nonspecific contrast 

agents, which only provide limited morphological informa-

tion. The properties of NPs, such as paramagnetic particles, 

can be applied to provide a tissue-specific contrast for imag-

ing and therefore provide a much more detailed image for 

diagnostic purposes.118

The principle of conjugating ligands targeting cancer-

specific receptors with paramagnetic NPs is available for 

some time. For example, in ~20%–30% of breast cancers, 

the tyrosine kinase human epidermal growth factor receptor 2 

(HER2)/neu receptor is overexpressed.119 In 2003, a study dem-

onstrated how IONPs conjugated with molecules that targeted 

this receptor could be manipulated to improve MRI contrasts.120 

A more recent study showed how NPs coated in biocompat-

ible material could be used to increase lifespan in the circula-

tion. In this study, iron paramagnetic NPs were coated with 

HER2/neu antibody-conjugated poly(amino acid) derivatives 

(PAION-Ab)121 and showed specific targeting to SKBR-3 cells, 

which overexpressed the receptor and thus possess the potential 

to be a good MR contrast agent. This principle, however, is 

yet to be tested in vivo. Another study demonstrated promi-

sing in vivo results for targeting HER2- or epidermal growth 

factor receptor (EGFR)-positive breast cancer cells, by using 

conjugated IONPs with a block copolymer PEO-b-PγMPS to 

reduce the nonspecific uptake of the NPs by macrophages.122 

This increases the availability of the circulating NPs to the 

cancer cells and therefore has the potential to increase tissue-

specific uptake and subsequently signal intensity under MRI.

Regarding ovarian cancer, current imaging methods 

are incapable of detecting tumors ,0.5 cm;123 this must be 

improved for both detection and treatment purposes. It has 

been reported that 90% of solid ovarian cancer tumors over-

express the folate receptor alpha; therefore, NPs targeting this 

receptor offer potential benefits.123,124 Folic acid (FA)-targeted 

IONPs have been developed as a T2-negative contrast agent 

for MRI. It has been demonstrated in a xenograft tumor 

mouse model that FA-targeted IONPs specifically targeted 

the Skov-3 cells (with overexpressed FA receptors). There-

fore, there is a potential to specifically localize carcinoma 

tissues, using the NPs as a negative contrast.125 Another 

group used polyethylenimine-entrapped gold NPs, which 

were modified with a FA-linked polyethylene glycol (PEG) 

to form (FA-Au PENPs), to be used as a nanoprobe for CT 

imaging of cells which overexpressed the FA receptor.126

MRI/CT imaging can leave much to be desired in terms 

of the resolution of tumor images, especially with tumors of 

small diameter. Therefore, one group by using a combination 

of photo acoustic tomography which has good resolution 

and imaging depth and fluorescence molecular tomography 

which provides 3D optical imaging used an NP contrast to 

provide images of ovarian cancers.127 HER2/neu-specific 

affibody conjugation to imaging and quantification of IONPs 

was labeled at the cysteine residue of the affibody with near-

infrared dye (NIR-830 dye). This proposed method provides 

a more advanced imaging prospect, specifically for ovarian 

cancer, and thus has promising clinical implications.

Cervical cancer screening is an important aspect of 

women’s care, identifying women at risk of developing or 

who have developed cervical cancer. Initially, QDs conju-

gated to anti-EGFR antibodies were studied for the replace-

ment of the organic dyes used in histological analyses.128 

However, it was found that ultra-bright fluorescent meso-

porous silica NPs, functionalized with FA, exhibit greater 

fluorescence and have thus been developed to distinguish 

precancerous and cancerous cervical epithelial cells.129 

These NPs significantly increased the sensitivity of testing 

compared with currently available tests such as HPV-DNA 

and pathology tests.

A metastasizing cancer will often release cancer cells 

into the blood stream, and it could therefore be possible to 

detect these cells in a blood sample. However, the concentra-

tion of cancer cells can be very small and therefore difficult 

to identify. Serum detection for ovarian cancer is limited, 

but NPs may offer new techniques. One research group 

has developed a technique to separate and detect ovarian 

cancer cells from female whole blood using FA-conjugated 
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magnetic IONPs.130 Unlike the previously discussed FA 

imaging methods, these NPs aim to mechanically separate 

cancer cells from other blood cells and are able to bind 

with metastasized cells overexpressing the FA receptor in a 

sample of whole blood. The sample is placed on a magnetic 

separator, and the pellet containing the IO–FA NP captured 

cells can be examined. This provides a method of identifying 

minute quantities of circulating ovarian cancer cells and 

could thus provide a means of early detection to enhance 

treatment options.

The detection of circulating breast cancer cells has been 

explored using a nanostructure-based platform for rare cell 

capture; this technique relies upon the platform’s increased 

surface area. The streptavidin-conjugated silicon nanowire 

was shown to identify 16.2±5.5 cells per 0.5 mL of whole 

blood.131 Dual aptamer-modified silica NPs have also been 

developed which target two cell lines, mucin 1 and human 

epidermal growth factor receptor 2 (EGRF2). This system 

will allow for the identification of two different types of 

breast cancer cells, thus enabling a broader range of diag-

nosis. Moreover bespoke NPs (dye-doped), in which dye 

molecules are directly incorporated in the NPs, lead to the 

creation of highly fluorescent NPs. This technique boasts a 

1 cell/100 μL detection limit, which is much better than that 

reported in previous studies.132

Sentinel lymph nodes are the lymph nodes in which 

cancer tissues drain. Thus, if a cancer has metastasized, 

there will often be cancer cell parents in these lymph nodes. 

While operating to remove breast tumors, surgeons must 

identify the sentinel lymph nodes to allow for a biopsy of 

these lymph nodes to be taken as these can be histologically 

analyzed to confirm whether the cancer has metastasized. 

Current techniques include radiocolloid tracer, isosulfan 

blue dye, and indocyanine green (ICG).133 These either 

require specialist gamma tracing equipment or, in the case 

of isosulfan blue dye, cause anaphylactic shock in 1.1% of 

patients.134 Carbon NPs have been proposed to replace these 

techniques as the black appearance of the NPs can be detected 

by the operating surgeon to identify the correct lymph nodes 

to biopsy. Injection of 1 mL of carbon NP suspension leads to 

a significantly increased identification rate and also reduced 

false negative compared with blue dye (carbon NP versus 

blue dye: identification rate 100% versus 88%, false nega-

tive 11.1% versus 15.8%).135 Due to their 150 nm diameter, 

carbon NPs are unable to enter the circulation, thus providing 

a distinct advantage (Figures 2 and 3).

Progression in the field of NPs has recently shifted toward 

sugar-based NPs. Some cancer cells are preprogramed to 

internalize sugar-based molecules at a faster rate than normal 

cells as some have an increased expression of glucose trans-

porters (GLUT), described by the Warburg effect.136 The 

fluorescent dye, ICG, was combined with NPs by encap-

sulation in levan NPs via self-assembly to demonstrate the 

effectiveness of sugar-based NPs. Without encapsulation, 

ICG has a very short half-life in the human environment, and 

so encapsulation helps to stabilize the dye, and the activity 

is preserved. These NPs were shown to successfully accu-

mulate in breast cancer cells due to the increased expression 

of GLUT. Levan, in particular, has fructose moieties that 

interact with GLUT5 and pose new avenues for the explora-

tion of drug delivery and imaging.136

Figure 2 Nanoparticles in cancer management.
Notes: Nanoparticle accumulation at the tumor site can be used to deliver (A) 
contrast agents such as dextran-coated iron oxide nanoparticles for magnetic 
resonance imaging (MRI) or (B) chemotherapeutic drugs encapsulated in 
nanomaterials such as micelles. Reproduced with permission of Annual Review of, 
volume 14 © by Annual Reviews, http://www.annualreviews.org. Albanese A, Tang 
PS, Chan wCw. The effect of nanoparticle size, shape, and surface chemistry on 
biological systems. In: Yarmush ML, editor. Palo Alto, CA: Annual Review of Biomedical 
Engineering. vol 14. 2012:1–16.3

Figure 3 A photograph demonstrating the black-dyed lymph nodes (shown by the  
white arrows) in breast tissue 1 day postinjection of nanoparticle carbon suspension.
Notes: Scale bar is 1 cm. Reprinted from Diagn Microbiol Infect Dis, 67(2), Tang JF, 
Xu ZH, Zhou L, Qin H, wang YF, wang HH, Rapid and simultaneous detection of 
Ureaplasma parvum and Chlamydia tra chomatis antibodies based on visual protein 
microarray using gold nanoparticles and silver enhancement, 122–128, Copyright 
(2010), with permission from elsevier.104
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Treatment of cancer is complex due to the incredibly 

varied properties of different cancers. Therefore, NPs have 

been developed to target cancers in a variety of ways. 

First, some NPs have been developed to sensitize the 

cancerous tissues to currently available drugs. For example, 

in ovarian cancer, the functionalization of nanoscale gold par-

ticles with thio-glucose-targeting ligands has been shown to 

facilitate the delivery of chemotherapeutic agents into ovarian 

cancer cells. In addition, NPs also exhibited radio-sensitizing 

effects upon a human ovarian cancer cell line (SK-OV-3), 

believed to result from the increased production of ROS.137

Enhancing drug delivery can also be facilitated by NPs. 

This is of particular interest as cancer drugs are often very 

cytotoxic to other noncancerous tissues. Choriocarcinoma is 

a malignant, trophoblastic cancer of placental origin, which is 

typically located in the uterus but may also occur in extrauter-

ine sites such as ovaries. EnGeneIC delivery vehicles (EDVs) 

have shown potential for use in the targeted NP delivery of 

doxorubicin into placental tissues with greater antitumor 

activity in mouse models of choriocarcinoma relative to the 

free drug. Therefore, these high-capacity nanospheres, which 

may be targeted to EGRF to reduce non-trophoblastic drug 

delivery, may prove to be a promising drug delivery system 

for the treatment of choriocarcinoma.138 A phase 1 clinical 

trial (ACTRN12609000672257) in nonpregnant human 

subjects with advanced epithelial cancer has shown that EDVs 

are safe in patients with advanced solid tumors and display 

modest clinical efficacy.139 Neoadjuvant NP-albumin-bound 

paclitaxel (nab-PTX) is a treatment currently used for certain 

cancers due to the associated albumin receptor and SPARC 

affinities to albumin. This has also been suggested as a fea-

sible therapeutic option for recurrent cervical cancer, being 

tolerable and potentially effective even after patients fail to 

respond to platinum-taxane or topotecan chemotherapy.140 

A meta-analysis investigated nab-PTX compared with PTX 

for breast cancer treatment and concluded that in randomized 

trials, there was a significantly greater chance of achieving a 

pathological complete response, an indication of better long-

term outcome. This review also found that nab-PTX reduced 

the number of hypersensitivity reactions, one cause of these 

being the solvents used to make PTX into a soluble form, 

which is not necessary with nab-PTX. This provides solid 

evidence to support the use of nab-PTX.141 Ovarian cancer-

targeted PTX NPs, which had been modified with FSH beta 

81-95 peptide, were shown to successfully deliver chemo-

therapeutic compounds into ovarian cancer cells.142 Similarly, 

folate (FOL)-mediated PLGA-PEG NPs containing PTX, 

a drug that interferes with normal microtubule function, 

were delivered to endometrial carcinoma HEC-1A cells. 

Results highlighted an enhanced level of tumor targeting 

and efficiency, which was significantly better than with the 

free drug alone.143

Combination drug therapies have also been manipulated 

by NPs. Transactivation of transcription-targeted solid lipid 

NPs are a promising drug delivery system. This may enable 

the co-delivery of PTX and tocopheryl succinate-cisplatin as 

a combination therapy, which shows effective and synergistic 

antitumor activity against cervical cancer.144 In breast cancer, 

neuropeptide Y Y1 receptors are overexpressed in compari-

son with normal breast cells which only express neuropeptide 

Y Y2. Capitalizing on these properties, one research group 

developed a conjugate molecule of doxorubicin and PNBL-

NPY, the Y1 receptor ligand. This was internalized by the 

MCF-7 breast cancer cells which caused significant inhibition 

of cell growth, due to the drug, but also due to the synergistic 

interactions at the neuropeptide receptor.145

Cancer cells can develop acquired drug resistance, and in 

general, drug-resistant cells prevent intracellular drug accu-

mulation. Therefore, NPs are being modified to bypass these 

cellular defence systems.146 Several types of NPs have been 

developed to target cervical cancer. NP delivery of siRNA 

against TWIST (a transcription factor reactivated in cancer) 

was used to reduce cisplatin resistance and resulted in reduced 

tumor burden in mice treated with cisplatin plus MSN-

siTWIST, compared with mice treated with cisplatin alone. 

This was due to the reduction of disseminated tumors.147 

Another method to bypass cisplatin resistance is F3-targeted 

cisplatin-hydrogel NPs. This has been shown to be an effec-

tive therapeutic which can overcome the resistance of human 

ovarian tumor endothelial vessels to chemotherapy in vivo.148 

PTX can also be loaded into cationic nanostructured lipid NPs 

and has the potential to overcome PTX resistance and display 

therapeutic efficacy both in vitro and in vivo.149

Another mechanism for cancer treatment is the enhance-

ment of apoptosis in cancer tissues by stimulating specific 

mechanisms and causing a reduction in tumor mass. This 

has been well studied in cervical cancer. For example, 

folate receptor α (FRα)-targeted nanoliposomes inhibit 

proliferation and induce apoptosis of cervical tumor cells 

in vivo, while exhibiting no significant toxicity, suggesting 

that this may represent a novel modality for gene therapy 

in the treatment of cervical cancer.150 Nanoquinacrine has 

also been shown to induce apoptosis in cancers through the 

inhibition of HH-GLI cascade by GLI1-inducing apoptosis 

of cervical cancer stem cells.151 Also, nanorealgar can inhibit 

the proliferation of different cervical carcinoma cell lines and 
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induce apoptosis in cervical carcinoma cells.152 In ovarian 

cancer, the combination of salinomycin and silver NPs has 

been shown to increase the therapeutic potential of the che-

motherapy agent by enhancing apoptosis and autophagy in 

human ovarian cancer cells.153 Furthermore, the induction 

of apoptosis and inhibition of angiogenesis by PEGylated 

liposomal quercetin showed significant suppression of tumor 

growth, compared with free quercetin, in in vitro and in vivo 

models of cisplatin-resistant ovarian cancers.154 In SKBR-3 

(HER2 positive cells) breast cancer cells, the induction of 

cell death was stimulated by the delivery of YopJ, an effec-

tor from the bacteria Yersinia pestis, fusing with glutathione 

S-transferase to form self-assembled protein NPs. This was 

found to downregulate MAPK and NFκB pathways, induce 

cell death, and inhibit the MEK1 pathway, and thus has the 

potential for reversing some drug resistance.155

Gene therapy is a pioneering area of cancer medicine. The 

ability to transfer a gene with the intent to cause a change in 

cellular mechanisms is highly promising. Encapsulating mol-

ecules such as siRNA can protect such material from RNase 

degradation in circulation. For example, T7-LPC/siRNA 

NPs were shown to deliver EGFR siRNA into breast cancer 

cells through receptor-mediated endocytosis and then induce 

the downregulation of EGFR. This inhibited the growth of 

tumour.156 Another example is that chitosan/HPV16 E7 siRNA 

complexes in cervical cancer cells were shown to target two 

oncoproteins and induce apoptosis, thus suggesting these 

might represent a useful NP system for the treatment of cer-

vical cancer.157 In addition, TNF-related apoptosis-inducing 

ligand/endostatin-loaded NPs have also been suggested as 

cervical cancer gene therapy modalities, on account of their 

enhanced cytotoxicity.158 In ovarian cancer, antitumor effects 

were observed in studies where PLGA NPs encapsulating the 

proapoptotic human PNAS-4 (hPNAS-4) gene, along with cis-

platin, were delivered into mouse ovarian carcinoma cells.159 

Degradable NPs have been used to deliver the proapoptotic 

survivin T34A gene and were shown to inhibit tumor growth 

in a mouse xenograft model of SKOV3 human ovarian can-

cer.160 In addition, it has been found that Fe
3
O

4
-dextran-anti-

βHCG carrying Hpa-antisense oligodeoxynucleotide has the 

potential to be an effective gene therapy for choriocarcinoma 

with significant inhibitory effects displayed on transplanted 

choriocarcinoma tumors in vivo. In this way, NPs can function 

as a harmless and effective gene vector.161,162

Thus far, the most significant medical research and 

clinical translation in the field of nanomedicine has been 

related to the subject of oncology. Specific visualization 

and quantification of pathological processes, combined with 

the delivery of multiple simultaneous targeted payloads of 

chemotherapeutics, NP-delivered gene therapy, and reduced 

incidence of drug resistance all offer significant hope of 

improving the prognosis of women receiving treatment for 

their respective cancer(s).

Menopause-related health care
Menopause occurs when the ovaries cease to make estro-

gen. Menopause is marked by the ending of a woman’s 

menstrual cycles and may be initiated by the surgical 

removal of the ovaries. Menopausal symptoms are typically 

experienced, and the long-term reduced levels of estrogen 

can result in health problems, such as osteoporosis and car-

diovascular disease.

Hormone therapy is the best available treatment for the 

vasomotor symptoms of menopause163 and has the addi-

tional benefit of promoting an increase in bone density, 

thereby reducing the risk of fracture among postmenopausal 

women.164 However, clinical trial results165,166 revealed that 

both estrogen alone and estrogen with progestin significantly 

increased the risk of stroke. Estrogen and a progestin were also 

associated with a significantly increased risk of breast cancer, 

coronary events, and pulmonary embolism. Consequently, the 

use of hormone therapy has declined.167 However, micellar 

NP estradiol emulsions offer hope for enhanced transdermal 

hormone replacement therapy, which retains the advantages 

of transdermal administration while reducing adverse local 

side effects. Potential advantages of this technique include 

a lower incidence of venous thromboembolism and stroke 

and avoidance of first-pass metabolism when compared to 

oral administration.168,169 This represents the first product of 

its kind with the capacity to deliver consistent, therapeutic 

levels of estradiol systemically and to reduce the vasomotor 

symptoms observed in postmenopausal women.170 Additional 

benefits include improved safety and greater patient compli-

ance than other transdermal delivery systems.171 The findings 

of a Phase II clinical trial showed that treatment with nano-

particulate transdermal hormone therapy (nanoparticulate 

estradiol and nanoparticulate progesterone) for 12 weeks 

had beneficial, or neutral, effects on anthropometric markers 

of inflammation and hormonal variables in postmenopausal 

women, with no clinical evidence of cardiovascular disease. 

Of particular interest was the observed reduction in C-reactive 

protein and fasting insulin levels; known markers for chronic 

inflammation and cardiovascular risk, respectively.172,173

Osteoporosis is a major health concern which arises due 

to long-term estrogen reduction at menopause. However, the 

application of nanomedicine offers the hope of improved 
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diagnostics and therapeutics, bone tissue engineering, nano-

structure implantable materials, and surface modifications 

and coatings, which may provide a means of managing 

postmenopausal osteoporosis. Nanostructured ceramics, 

polymers, metals, and composites, which enhance osteoblast 

function and which have greater surface area and roughness 

to promote osteointegration, are of significant interest. The 

use of antimicrobial and drug-eluting coatings may help to 

improve the safety of surgical interventions by preventing 

infection.174 The possibility of rebalancing bone turnover, 

using nanomedicine as a means of stabilizing osteoporosis, 

is of great interest. For example, calcium phosphate (includ-

ing hydroxyapatite and β-tricalcium phosphate) NPs exhibit 

excellent biocompatibility, biodegradability, and biological 

activity, and therefore seem to be suitable vehicles for 

bone-specific drug delivery.175 Furthermore, risedronate/

zinc-hydroxyapatite NPs have been shown to represent a 

positive countermeasure to treat rat-modeled postmeno-

pausal osteoporosis by means of rebalancing bone turnover 

in favor of bone formation.176 Another study proposed the 

use of bisphosphonate (Bis)-conjugated iron (II, III) oxide 

(Fe
3
O

4
) NPs as a novel treatment for osteoporosis. These 

authors used a water-dispersible magnetic NP, which had 

radiofrequency-induced thermogenic properties to reduce the 

activity of osteoclasts through thermolysis.177 Alternatively, 

the orally available enteric-microencapsulated parathyroid 

hormone (1-34)-deoxycholic acid nanocomplex may have the 

potential to effectively treat osteoporosis based on observa-

tions showing improvements in osteogenesis and trabecular 

connectivity in the ovariectomized rat model.178 These studies 

reveal that there may be significant improvements to be made 

in reducing the development of postmenopausal osteoporosis 

through the administration of targeted nanotherapeutics.

Experimental evidence suggests that NPs may have the 

capacity to enhance the diagnostic imaging and treatment 

of postmenopausal cardiovascular disease.179 Suppression 

of in-stent neointimal growth was observed in rabbits 

treated with liposomes carrying prednisolone phosphate180 

while liposomes carrying dexamethasone resulted in anti-

inflammatory effects in atherogenic mice.181 Furthermore, 

anionic micelles and NP-apoB100 antibody conjugates 

have successfully reduced low-density lipoprotein levels 

in vivo.182 Another study showed that fullerenes carrying 

vimentin displayed antioxidant and anti-inflammatory effects 

within cells in an adipose tissue model.183 Experimentally, 

perfluorocarbon NPs carrying fumagillin and theranostic 

NPs carrying 5-(4-carboxyphenyl)-10,15,20-triphenyl-2,3-

dihydroxychlorin have been successfully applied to MRI 

imaging, targeting [alpha]v[beta]3 integrin and macrophages 

respectively.184,185

Menopause can result in the development of significant 

and potentially life-threatening sequelae such as osteoporosis 

and cardiovascular disease. Women are almost inevitably 

subject to the effects of menopause, which makes it an 

important area for the advancement of health care provi-

sion. Nanomedicine may reveal sophisticated approaches to 

improve the management of menopausal symptoms and the 

imaging, diagnosis, and treatment of sequelae.

Early-onset dementia health care
Data published by Alzheimer’s Research UK suggests that 

dementia is the leading cause of death among women in the 

UK. It is estimated that women constitute 61% of people 

living with dementia, while 39% are men. This proportional 

difference is likely to result from the fact that age is the 

largest risk factor for this condition, and women typically 

live longer than men.186 However, other factors should be 

considered. It is necessary to identify gender-specific risk 

factors in order to substantiate the hypothesis that women 

are more likely than men to develop dementia at any given 

age. Currently, there is a lack of firm evidence to support 

this view, but evaluation of the relative ratio of early onset 

dementia diagnoses in men and women may help to test this 

hypothesis.

Although Alzheimer’s disease (AD) and other forms of 

dementia are primarily considered to be degenerative diseases 

of old age, ~4% of people with AD are under the age of 

65 years.187 This section of the review presents a synopsis of 

the applications of nanomedicine in the diagnosis and treat-

ment of AD, which in rare circumstances can affect cisgender 

women between puberty and menopause.

Studies investigating the applications of nanotechnolo-

gies in the diagnosis of AD have yielded promising results, 

suggesting that improvements in both the early imaging of 

AD-affected brains and the detection of AD biomarkers may 

be possible.188 The detection and identification of amyloid 

plaques by MRI, using NPs doped with contrast agents or 

tagged with fluorescent probes, is of particular interest. IO and 

gold NPs, thioflavin T, and QDs have all been explored in 

this context.

The successful detection of amyloid in transgenic mice 

using monocrystalline IONPs, covalently tethered to the N 

terminus of amyloid beta (Aβ ) peptide for MRI, has already 

been reported.189 Furthermore, the synthesis of fluorescent-

maghemite NPs has created a method to use multimodal 

imaging agents to detect and remove amyloid fibrils by 
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manipulation with an external magnetic field.190 In addition, 

the synthesis of superparamagnetic IONPs, coated with a 

1,1-dicyano-2-[6-(dimethylamino)naphthalene-2-yl]propene 

carboxyl derivative, has been investigated in vitro for MRI 

studies of AD. Fluorophotometry results showed that the 

combination contrast agent resulted in the enhancement of 

fluorescence.191 The potential of metal NPs is further evi-

dent with the example of gold NPs. Noninvasive, label-free 

nanoplasmonic optical imaging for the real-time monitoring 

of amyloid fibrogenesis in vitro has been developed, observ-

ing the random movements of gold NPs in Aβ solution, and 

quantifying the kinetics of the fibrogenesis. It is hoped that 

this technology may eventually enable long-term monitoring 

of neuronal cells to aid in the identification of the mecha-

nism of amyloid growth.192 Furthermore, heterodimeric NPs, 

consisting of a cobalt (II) magnetic core and a platinum shell 

fused to gold NPs and stabilized by a lipoic acid–PEG coat-

ing, have been used successfully in conjunction with MRI 

to image Aβ protofibrils in the early reversible stages of Aβ 

self-assembly.193

Further innovative imaging methods are under develop-

ment. One study showed that thioflavins, released from NPs 

administered via intracerebral injection, have the potential to 

target fibrillar amyloid in vitro and in vivo in the hippocam-

pus of transgenic mice.194 Therefore, thioflavin-loaded NPs 

represent another possible methodology in need of transla-

tional experimentation. In addition, novel QD nanoprobes 

have also been shown to be effective in the real-time imag-

ing and quantification of Aβ peptide aggregates in vivo.195 

Moreover, a QD probe, conjugated with Aβ antibody for the 

molecular imaging of AD in a mouse model, confirmed the 

possibility of tracking the state of Aβ in vivo accumulation 

in mice, indicating a potential use in the molecular diagnostic 

imaging of AD in humans.196

In addition to imaging, detection of biomarkers for 

AD (Aβ peptide and tau) is a key area of investigation in 

nanomedicine. The development of biosensors has been 

significantly aided by the advent of nanomedicine, with 

several developments having the potential to improve the 

diagnosis of AD. Indeed, the development of NP-based 

bio-barcodes, involving oligonucleotide-modified gold NPs 

and magnetic microparticles, has permitted the detection of 

soluble pathogenic biomarkers for AD in cerebral spinal 

fluid.197 Furthermore, the electrochemical detection of Aβ 

by saccharide-immobilized gold NPs on a carbon electrode 

demonstrated low detection thresholds, making this a prom-

ising methodology that requires further investigation.198 

In addition, scanning tunneling microscopy has been applied 

to the electrical detection of AD biomarkers with the pro-

duction of a similarly ultrasensitive immunosensor for Aβ, 

capable of detecting concentrations exceeding 10 fg/mL.199 

The development of gold NP-based immuno-polymerase 

chain reaction (nano-iPCR) further enabled the detection 

and quantification of tau protein in cerebrospinal fluid. Data 

indicated that Nano-iPCR is superior than ELISA in terms 

of sensitivity and detection range for tau protein detec-

tion, revealing the possibility of substantial improvements 

in the detection of biomarkers for AD.200 An alternative 

exploitation of the properties of gold NPs saw the develop-

ment of an ultrasensitive and highly selective method of 

detection suitable for AD biomarker tau protein. Utilizing 

the two-photon Rayleigh scattering properties of gold NPs, 

anti-tau antibody-coated gold NPs proved to be highly 

sensitive to tau protein and suitable for further translational 

investigation.201

Research has already begun into the potential use of 

nanotechnology applications of nanoscale inhibitors of Aβ 

plaque formation, nanoscale antioxidants, and NP-delivered 

cholinesterase inhibitors to treat AD.202 It could be argued that, 

to date, the most successful method of minimizing cognitive 

defects through the nanoscale inhibition of Aβ plaque forma-

tion has been the implementation of hydrophobic chelating 

agents. The hydrophobicity of these agents aids their pas-

sage across the blood–brain barrier, while their ability to 

sequester metal ions, which can accelerate the formation of 

Aβ plaques, reduces plaque development. Such agents have 

progressed to pilot Phase II clinical trials with metal-protein 

attenuation demonstrated by iodochlorhydroxyquin showing 

modest efficacy in AD patients.203 In addition, NPs carrying 

novel D-penicillamine have also been proposed for metal 

chelation therapy in AD as a result of their observed ability 

to dissolve pre-existing Aβ aggregates in vitro.204 Although 

most investigation into the use of nanoscale inhibitors of 

Aβ plaque formation remains at the preclinical stage of 

development, there are several promising lines of investiga-

tion. For example, resveratrol has been shown to reduce the 

accumulation and deposition of Aβ in vivo by controlling 

AMPK signaling. In this way, the neuroprotective action 

of the kinase against Aβ plaque accumulation and deposi-

tion may suggest appropriate lines of investigation for the 

development of novel treatments for AD.205 In addition, 

PEGylated phospholipid nanomicelles have been shown 

to interact with Aβ in vitro, thus mitigating Aβ plaque 

formation, aggregation, and neurotoxicity in the SHSY-5Y 

human neuroblastoma cell line.206 KLVFF beta sheet blocker 

peptide-loaded liposomes have also been said to represent a 
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potential treatment to prevent amyloid aggregation in AD, 

because of their good colloidal stability and surface tension–

lowering abilities.207 An alternative means of diminishing 

the aggregation and neurotoxicity of amyloid is by using 

pullulan-modified cholesteryl nanogels which bind to Aβ 

oligomers, thus acting as chaperones for misfolded proteins 

in primary cortical neuron cultures in vitro.208

As outlined earlier, nanomedical innovation is promot-

ing the investigation of curcumin as an alternative thera-

peutic across a wide range of medical applications. Indeed, 

curcumin-associated nanoliposomes are known to inhibit 

the aggregation of Alzheimer’s Aβ peptide in vitro.209 Simi-

larly, nanoliposomes carrying a curcumin-lipid derivative, 

and decorated with an anti-transferrin monoclonal antibody 

conferring brain targeting functionality, have proven to be 

successful in delaying Aβ peptide aggregation, thus indicat-

ing a potential role in the treatment of AD.210

C60 fullerene is a well-characterized free-radical scav-

enger and in its hydrated form has demonstrated the ability 

to inhibit fibrillization of Aβ peptide. In addition, the 

intraventricular administration of hydrated C60 has been 

shown to reduce Aβ-induced cognitive impairments in rats. 

C60 fullerenes therefore exhibit multiple synergistic mecha-

nisms which could potentially be exploited in the treatment 

of AD, warranting further translational investigation of 

fullerenes as neuroprotectants.211

Increasing cholinergic activity, through the delivery 

of cholinesterase inhibitors using nanoscale drug delivery 

systems, is another therapeutic route being explored. Rivastig-

mine, a hydrophilic cholinesterase inhibitor, delivered in 

liposomes, offered a profound therapeutic effect that was 

greater than when delivered as a solution in an aluminum 

chloride (AlCl(3))-induced Alzheimer’s rat model. The 

liposomes offered greater improvement than the solution 

in terms of spatial memory; histopathological examination 

of rat brains also showed substantially reduced amyloid 

plaque formation.212 Furthermore, nanodelivery systems 

may also enable the therapeutic use of acetylcholine. For 

example, the administration of acetylcholine alone in a 

kainic-acid-induced mouse model of AD did not bring about 

any significant effect, probably due to its poor ability to cross 

the blood–brain barrier and its short half-life.213 However, 

single-walled nanotubes loaded with acetylcholine restored 

cognitive function to pre-AD levels. If administered within a 

lysosome-specific, cytotoxicity-free dose range, it is possible 

that translational research may enable the implementation of 

therapeutic acetylcholine alongside cholinesterase inhibitors 

to increase cholinergic activity.

The development of effective treatments for AD has been 

hindered by the uncertain mechanisms underlying progres-

sion of the disease and limited investigational capacity in 

humans, on account of the complexity and relative isolation 

of the brain, which frequently demands invasive procedures. 

The existence of just two main biomarkers for AD makes 

diagnosis of the disease challenging. Such challenges may 

potentially interfere with the results of clinical trials, and 

incorrectly diagnosed patients could even be recruited by 

such trials. Although the health care and clinical outcomes of 

AD patients currently lag behind that of many other diseases 

such as cancer, nanomedicineve has the potential to support 

developments in this field. These developments might include 

improved imaging, which could enable research to offer a 

better understanding of the disease processes, more sensitive 

diagnostic tools to improve the early and accurate diagnoses 

of the disease or provide more effective treatments by exploit-

ing the properties of nanomedicine to enhance the efficacy 

of the existing and novel therapies. Nanomedicine can thus 

assist in bringing about landmark developments necessary to 

improve the well-being of AD patients. That being said, much 

investigative works are still to be done to devise methodolo-

gies appropriate for translation into humans.

Conclusion
The clear advancements being made in the field of NPs can, 

in part, be attributed to their highly favorable characteristics. 

A vital property of NPs is their ability to target a specific 

ligand/receptor of a cell (Figure 4). This adaptable feature 

of NPs allows researchers to manipulate the natural biology 

of diseased cells, creating NPs containing pharmaceuticals 

which can then target the specific diseased cells. Coupled 

with the enhanced surface area of NPs, this also leads to a 

greater ability to detect small numbers of cells, with specific 

target ligands/receptors in samples, and thus provides an 

excellent way of detecting disease. Furthermore, loading 

NPs with pharmaceuticals has been shown to improve the 

bioavailability of drugs, for example, by protecting the drugs 

from the internal environment, and therefore improving 

pharmacological performance. Loading can also lead to the 

sustained release of pharmaceuticals, as NPs can act as local 

deposits for drugs. This could thereby reduce noncompliance 

problems associated with drug efficacy.

Although significant progress is being made, there are 

still many potential pitfalls in the translation of nanomedi-

cine into clinical practice. One of the most important issues 

is the potential toxicity of the particles themselves. These 

foreign, and synthetic, molecules are known to exhibit a 
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variable degree of cytotoxic effects upon human cells. Further 

research must now concentrate on this potential barrier, 

focusing particularly on the composition of the NPs and the 

ligands present on their exterior, together with the metabolic 

fate of such particles. Particular emphasis should be directed 

toward finding techniques to form NPs at a low cost with as 

little specialist equipment as necessary. This would make 

such treatment more accessible in the future.

The life course of a woman presents a unique set of 

medical challenges that are yet to be adequately addressed 

by the medical field. It is hoped that nanomedicine can 

provide promising and novel therapeutic applications, to 

allow physicians and patients to address these challenges 

more effectively. This review was intended to present a 

synopsis of the contribution nanomedicine could offer to the 

treatment of women’s health and to encourage researchers 

to assist in the translation of this exciting technology to the 

clinic. Ample justification for such future effort is clearly 

evident in the primary literature, which already shows an 

abundance of primary research papers offering exciting and 

efficacious applications for nanomedicine in the treatment 

of women’s health.
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