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ABSTRACT: The “fixed diagonal matrices” (FDM) dispersion
formalism [Kooi, D. P.; et al. J. Phys. Chem. Lett. 2019, 10, 1537] is
based on a supramolecular wave function constrained to leave the
diagonal of the many-body density matrix of each monomer
unchanged, reducing dispersion to a balance between kinetic energy
and monomer−monomer interaction. The corresponding variational
optimization leads to expressions for the dispersion energy in terms of
the ground-state pair densities of the isolated monomers only,
providing a framework to build new approximations without the
need for polarizabilities or virtual orbitals. Despite the underlying
microscopic real space mechanism being incorrect, as in the exact case
there is density relaxation, the formalism has been shown to give
extremely accurate (or even exact) dispersion coefficients for H and
He. The question we answer in this work is how accurate the FDM
expressions can be for isotropic and anisotropic C6 dispersion coefficients when monomer pair densities are used from different levels
of theory, namely Hartree−Fock, MP2, and CCSD. For closed-shell systems, FDM with CCSD monomer pair densities yield a mean
average percent error for isotropic C6 dispersion coefficients of about 7% and a maximum absolute error within 18%, with a similar
accuracy for anisotropies. The performance for open-shell systems is less satisfactory, with CCSD pair densities performing
sometimes worse than Hartree−Fock or MP2. In the present implementation, the computational cost on top of the monomer’s
ground-state calculations is O(N4). The results show little sensitivity to the basis set used in the monomer’s calculations.

1. INTRODUCTION
The attractive London dispersion interaction between atoms
and molecules is weaker than covalent bonding forces, but while
the latter decay exponentially with the separation R between the
monomers, dispersion interactions decay only polynomially in
1/R. Because of this dominating long-range character,
dispersion plays a crucial role in various chemical systems and
processes, such as protein folding, soft solid state physics, gas−
solid interfaces, etc. An accurate, computationally efficient, and
fully nonempirical treatment of dispersion forces remains an
open challenge, and it is the objective of several ongoing efforts
(see, e.g., refs 1−3 for recent reviews and benchmarks).
We have recently introduced a class of variational wave

functions that capture the long-range interactions between two
quantum systems without deforming the diagonal of the many-
body density matrix of each monomer.4 The variational take on
dispersion is certainly not new, as, for example, variational
calculations of the dispersion coefficients have been performed
in the context of (Hylleraas) variational perturbation theory5

and variational calculations of the dispersion energy at finite
intermonomer distance have been carried out in the framework
of symmetry-adapted perturbation theory (SAPT) using
orthogonal projection.6 The distinctive feature of our approach
is the reduction of dispersion to a balance between kinetic

energy andmonomer−monomer interactions only, providing an
explicit expression for the dispersion energy in terms of the
ground-state pair densities of the isolated monomers.
Although the supramolecular wave function constructed in

this “fixed diagonal matrices” (FDM) approach can never be
exact, as density distortion is prohibited, it provides a variational
expression for the dispersion energy when accurate pair densities
for the momoners are used, at a computational cost given
essentially by the ground-statemonomer calculations. The FDM
approach has been found to yield exact results for the dispersion
coefficients up to C10 for the H−H case (and up to C30 for the
second-order coefficients), and very accurate results (0.17%
error on C6) for He−He and He−H.4 This is achieved by
reshuffling the contributions of kinetic energy and potential
energy inside each monomer, as shown in Table 1 of ref 7.
Another way to look at it is the following: dispersion between
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two systems in their ground states is a competition between a
distortion of the fragments’ ground states (which raises the
energy with respect to E0

A + E0
B) and the interfragment

interaction that can lower the energy of the two systems
together. As proven by Lieb and Thirring,8 the rise in energy due
to the distortion of the fragments’ ground states can be always
made quadratic with respect to a set of variational parameters,
with the interfragment interaction being linear. With our FDM
constraint we force the quadratic rise in energy of the isolated
fragments to be of kinetic energy origin only, since only the off-
diagonal elements of the monomer’s reduced density matrices
are allowed to change. For the special case of two ground-state
one-electron fragments, this can be shown to give the same result
for the dispersion coefficients as second-order Rayleigh−
Schrödinger perturbation theory.7

This FDM construction is fundamentally different from
approaches to incorporate dispersion based on the adiabatic
connection (AC) and the fluctuation dissipation theorem (see,
for example, ref 9 and references therein). In these methods the
interacting system is connected to a noninteracting one with the
same density via the AC formalism: the monomer’s pair density
changes as the electron−electron interaction is turned on. A
different AC approach in which only the monomer−monomer
interaction is turned on has been introduced very recently in ref
10: the main difference from our FDM formalism is that in our
case we keep the densities (and pair densities) of the monomers
equal to their isolated ground-state values, while in ref 10 the
density is kept equal to the one of the complex for all coupling
strength values.
The FDM expressions for the dispersion energy in terms of

the ground-state pair densities of the isolated monomers offer a
neat theoretical framework to build new approximations, by
using pair densities from different levels of accuracy, including
exchange−correlation holes from density functional theory.
This idea is similar in spirit to the exchange dipole moment
(XDM) of Becke and Johnson,11,12 with the main difference that
in our case we do not need the static atomic polarizabilities, as
everything can be expressed in terms of ground−state monomer
densities and exchange−correlation holes, with a clear supra-
molecular variational wave function behind our expressions.7

Another related approach is the “weighted” exchange-hole
(WXhole) idea,13 in which an approximation for the frequency
dependence of the response function is used in order to perform
the frequency integration. Again, this is not needed in the FDM
approach, which is based on ground-state quantities only.
Besides a route for DFT-based approximations, the FDM idea

has the advantage of providing not only energetics but also a
simplified supramolecular wave function that can be used in
other contexts, for example, in a QM/MM framework to model
interactions between the QM andMM parts, following the ideas
of refs 14−16 and using results for the functional derivative of
the FDM dispersion energy reported in ref 7.
Before considering the use of the FDM framework to build

DFT-based approximations or other kinds of models, one
should ask the fundamental question: how accurate can this
approach be if we use accurate monomer’s ground-state pair
densities, beyond the simple H and He cases? In other words,
how accurate can the FD construction be if we eliminate the
other sources of error? The aim of this work is exactly to answer
to this question by exploring the performance of the FDM
expression for the dispersion C6 coefficient for atoms and
molecules using different levels of theory for the monomer
calculations, studying the convergence and basis set dependence

of the results. We test the approach on 459 pairs of atoms, ions,
and small molecules, using Hartree−Fock (HF), second-order
Møller−Plesset perturbation theory (MP2), and coupled cluster
with singles and doubles (CCSD) ground-state pair densities.
We should keep in mind that the FDM expression is guaranteed
to be variational, yielding a lower bound toC6, only when we use
exact pair densities of the monomers. As we shall see, for closed-
shell systems, this is almost always the case with CCSD pair
densities, which yield in general good results, slightly under-
estimating C6, although there are exceptions. With HF pair
densities, as it was already found in a preliminary result for the
Ne−Ne case in ref 4, C6 is, in the vast majority of cases,
overestimated.
The paper is organized as follows. In section 2 we illustrate our

working equations, including the expressions for the isotropicC6
coefficients and for the anistropies, with the computational
details reported in section 3. The results are discussed in section
4, and conclusions and perspectives are in section 5.

2. THEORY
We consider two systemsA and B separated by a (large) distance
R having isolated ground-state wave functions Ψ ̲x( )A

A0 and

Ψ ̲x( )B
B0 , where x denotes the spin-spatial coordinates (r, σ) and

̲x A B/ denote the whole set of the spin-spatial coordinates of
electrons in system A/B. The FDM framework is defined by the
following constrained minimization problem4,7

ρ ρ

= ⟨Ψ | ̂ + ̂ |Ψ ⟩ − −

− [ ]

Ψ →|Ψ | |Ψ |
E R T V T T

U

( ) min

,

R ee
AB

R
A B

A B

disp
FDM

,
0 0

0 0

R
A B
0

2
0

2

(1)

where T̂ is the usual kinetic energy operator acting on the full set
of variables x̲A, x ̲B, and

∑̂ =
| − |∈ ∈

V
r r

1
ee
AB

i A j B i j,

With T0
A/B we denote the ground-state kinetic energy expect-

ation values of the two separated systems and

∫ ∫ρ ρ
ρ ρ

[ ] = ′
′

| − ′|
U r r

r r

r r
, d d

( ) ( )A B
A B

0 0
0 0

(2)

where ρ0
A(B) are the ground-state one-electron densities of the

two systems. The constraint ΨR → |Ψ0
A|2,|Ψ0

B|2 means that the
search in eq 1 is performed over wave functions ΨR(x ̲A, x ̲B) that
leave the diagonal of the many-body density matrix of each
fragment unchanged with repect to the ground-state isolated
value. We work in the polarization approximation, in which the
electrons in A are distinguishable from those in B. The
constrained-search formulation, eq 1, makes dispersion a simple
competition between kinetic energy and monomer−monomer
interaction, as all the other monomer energy components
cannot change by construction. This also guarantees that no
electrostatic or induction contributions appear in eq 1.
For the minimizer of eq 1 we use the variational ansatz of ref 4

∑Ψ ̲ ̲ = Ψ ̲ Ψ ̲ +
∈ ∈

Jx x x x r r( , ) ( ) ( ) 1 ( , )A B
A

A
B

B
i A j B

R i j0 0
, (3)

where the function JR correlates electrons in A with those in B
and is written in the form
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∑′ = ′J c b br r r r( , ) ( ) ( )R
ij

ij R i
A

j
B

,
(4)

where cij,R are parameters, which are determined variationally.
The functions bi

A/B(r) for now are an arbitrary set of “dispersals,”
used as basis to expand JR. The constraint ΨR → |Ψ0

A|2, |Ψ0
B|2 is

enforced by imposing4

∫ ρ = ∀Jr r r r r( ) ( , ) d 0A
i R i j i j0 A A B A B (5)

∫ ρ = ∀Jr r r r r( ) ( , ) d 0B
j R i j j i0 B A B B A (6)

Thanks to this constraint, the expectation of the external
potential and that of the electron−electron interactions inside
each monomer cancel out in the interaction energy, whose
variational minimization takes a simplified form.4,7 If we peform
the multipolar expansion of the monomer−monomer inter-
action, we can, accordingly, expand cij,R in a series of inverse
powers of R:

= + + +− − − −c c R c R c R R( )ij R ij ij ij,
(3) 3 (4) 4 (5) 5 6

(7)

which leads to explicit expressions for the dispersion coefficients.
In this paper, we focus on the leading C6 coefficient of the term
−C6R

−6 in the dispersion interaction energy, which is
determined by the variational parameters cij

(3) in eq 7, denoted
simply cij in the rest of this work.
As detailed in the Supporting Information of ref 4, the

variational equation forC6 corresponding to our wave function is
given in terms of the matrices τij

A/B, Sij
A/B, and Pij

A/B (which
determine the kinetic correlation energy)

∫τ ρ= ∇ ·∇b br r r r( ) ( ) ( ) dij
A A

i
A

j
A

0 (8)

∫ ρ=S b br r r r( ) ( ) ( ) dij
A A

i
A

j
A

0 (9)

∫ ∫=P P b br r r r r rd d ( , ) ( ) ( )ij
A A

i
A

j
A

1 2 0 1 2 1 2A A A A A A (10)

with similar expressions for system B, and of the matrix wij
(which determines the monomer−monomer interaction)

∑= + +
=

w h d D d D( )( )ij
e x y z

e e i
A

e i
A

e j
B

e j
B

, ,
, , , ,

(11)

with e = x, y, z, and he = (1, 1,−2) when the intermolecular axis is
parallel to the z-axis. The vectors di

A and Di
A determine the

dipole−dipole interaction terms:

∫ ρ= bd r r r rd ( ) ( )i
A A

i
A

1 0 1 1 1A A A A (12)

∫ ∫= P bD r r r r r rd d ( , ) ( )i
A A

i
A

1 2 0 1 2 2 1A A A A A A (13)

with, again, similar expressions for monomer B. In eqs 10 and 13
P0
A/B is the ground-state pair density of the two monomers, with

usual normalization to N(N − 1).
In our previous work4 the matrices Sij

A/B + Pij
A/B were

diagonalized through a Löwdin orthogonalization among the
bi, transforming the matrices wij and τij

A/B accordingly. The
variational coefficients cij were then determined via the solution
of a Sylvester equation:4,17

∑ ∑τ τ+ = −c c w4
k

ik
A

kj
l

il lj
B

ij
(14)

Here we diagonalize τij
A/B with Sij

A/B + Pij
A/B as a metric through

a generalized eigenvalue problem, again transforming accord-
ingly wij, so the indices indicate from now on matrix elements
with the transformed bi. The advantage is that this eigenvalue
problem needs to be solved only once for each monomer, while
the Sylvester equation, eq 14, needs to be solved for each pair
AB. This way we can directly obtain the variational coefficients cij
as

∑ ∑δ τ δ τ+ =c c w4
k

ik i
A

kj
l

jl j
B

il ij
(15)

τ τ+ =c c w4i
A

ij j
B

ij ij (16)

and

τ τ
= −

+
c

w4
ij

ij

i
A

j
B

(17)

The dispersion coefficient C6 then takes the simpler (and
computationally faster) form

∑ ∑ ∑τ τ
τ τ

= − − + =
+

C c w c
w1

8
( )

2AB

ij
ij ij

ij
ij i

A
j
B

ij

ij

i
A

j
B6

2
2

(18)

For molecules, eq 18 gives access to the orientation-
dependent C6

AB coefficient, where the kinetic energy terms τi
A/B

are clearly rotationally invariant, and the dependence on the
relative orientation of the monomers enters through wij, as
shown by eqs 11−13. In order to compare with values from the
literature, it is often necessary to compute the orientation-
averaged isotropic C̅6

AB coefficients, which can be obtained by
performing the orientation average directly on each wij

2, yielding

∑
τ τ

̅ =
+

C
w2AB

ij

ij

i
A

j
B6

2

(19)

The wij
2 is the spherically averaged interaction term given by

∑ ∑= + +
= =

w d D d D
2
3

( ) ( )ij
e x y z

e i
A

e i
A

f x y z
f j
B

f j
B2

, ,
, ,

2

, ,
, ,

2

(20)

To also assess the accuracy for the orientation dependence,
we consider the case of linear molecules, for which one usually
defines anisotropic dispersion coefficients by writing the
dispersion coefficient C6 as

18

∑

θ ϕ θ ϕ

θ θ

π θ ϕ θ ϕ

= ̅ + Γ + Γ

+ Δ − | |
=−

−

C
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A
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B

AB

m

m
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m
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6

6 6 2 6 2

6
2

2
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(21)

where Pn denotes Legendre polynomials and Y m denotes
spherical harmonics. The anisotropic dispersion coefficients
Γ6
AB and Δ6

AB can be obtained from our formalism as

∑
τ τ

Γ =
̅

−∑ + ∑ +

+
= =

C

h d D d D2
3

( ) ( )
AB

ij

e x y z e e i
A

e i
A

f x y z f j
B

f j
B

i j
6

6

, , , ,
2

, , , ,
2

(22)
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∑
τ τ
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̅

∑ + ∑ +
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(23)

A similar expression holds for Γ6
BA, but with the roles of A and

B exchanged.
On top of the monomer calculations, the diagonalization to

compute C6 scales formally as nA
3 + nB

3, where nA/B is the
number of dispersals bi

A/B needed to converge, which, however,
seems so far independent of system size. We should however
also mention the cost of computing the matrix elements: the
most expensive part is the first step of the two-step contraction
to obtain Pij, which scales as N n( )A Borb

4
/ , while the second step

scales as N n( )A Borb
2

/
2 , as expensive as obtaining Sij and τij,

whereNorb is the number of spatial orbitals used in themonomer
calculations.

3. COMPUTATIONAL DETAILS
3.1. Choice of the Dispersals bi(r). For the dispersals

bi
A/B(r) of eq 4, we have chosen multipoles centered in r0 = (x0,
y0, z0):

= − − −b x x y y z zr( ) ( ) ( ) ( )i
s t u

0 0 0
i i i

(24)

For atoms the obvious choice for r0 is the position of the
nucleus; for molecules, in this first exploration, we have set r0 at
the center of nuclear mass.We include all bi, such that si + ti + ui <
nmax, where nmax

A/B is a parameter, which is set equal to 22 in all our
calculations, which yields in general reasonably converged
results (see section 3.5 for a more detailed discussion on
convergence). We should remark that the choice of eq 24 is
dictated mainly by the immediate availability of integrals: our
goal here is to investigate whether the method is worth investing
in further implementation and optimization. The question on
how to determine the best possible bi

A/B(r) is open, with
different strategies discussed in ref 7.
In our previous work,4,7 the atomic (spherically symmetric)

case was also studied in detail. In those calculations a different
basis set was used instead of eq 24, namely, a spherical multipole

θ ϕ= +b r Yr( ) ( , )i
l n

l m
i i

i i (25)

where now the parameters li, mi, and ni need to be chosen. This
set of spherical multipoles includes the previous (Cartesian)
multipoles from eq 24, but also includes cases where li + ni are
odd, which are not included in the Cartesian multipoles. The
spherical multipole expansion was found to converge faster
(sometimes much faster), but it requires nonstandard integrals.
Since our purpose here is to test the overall accuracy of the
method, we have preferred to use easily available integrals.
3.2. Matrix Elements.We denote the spatial orbitals used in

the monomer calculations by ϕa(r) with indices a, b, c, and d.
The spin-summed one-body reduced density matrix (1-RDM) is
written as γab:

∑γ γ ϕ ϕ′ = ′r r r r( , ) ( ) ( )
ab

ab a b
(26)

normalized here to N. The method only depends on the spatial
diagonal ρ0(r) = γ(r, r). The 2-RDM is written as Γab,cd, again
spin-summed, corresponding to

∑ ϕ ϕ ϕ ϕΓ ′ ′ = Γ ′ ′r r r r r r r r( , ; , ) ( ) ( ) ( ) ( )
abcd

ab cd a b c d1 2 1 2 , 1 1 2 2
(27)

with normalizationN(N− 1). The method only depends on the
spatial diagonal (pair density), P0(r1, r2) = Γ(r1, r2; r1, r2).
To compute the matrix elements of section 2, we need the 1-

RDM and 2-RDM of the monomers and the integrals of the
dispersals bi(r) with the spatial orbitals, which, with the choice of
eq 24, are all of the kind

∫ ϕ ϕ= − − −I x x y y z z r r r( ) ( ) ( ) ( ) ( ) dstu
ab s t u

a b0 0 0 (28)

For every monomer we need to calculate Sij of eq 9, τij of eq 8,
and di of eq 12 from the 1-RDM and Pij of eq 10 andDi of eq 13
from the 2-RDM. We first write all the matrix elements by
assuming that the constraint of eqs 5 and 6 is satisfied, which
amounts to assuming

∫ ∑ρ
γ

= = =p
N

b
N

Ir r r
1

( ) ( ) d 0i i
ab

ab
s t u
ab

, ,i i i
(29)

When this does not hold, we make the appropriate
modifications in terms of pi; see eqs 36−39 below.
We then have for the matrix Sij of eq 9

∑ γ= + + +S Iij
ab

ab s s t t u u
ab

, ,i j i j i j
(30)

and for τij of eq 8

∑ ∑

∑

τ γ γ

γ

= +

+

+ − + + + + − +

+ + + −

s s I t t I

u u I

ij i j
ab

ab s s t t u u
ab

i j
ab

ab s s t t u u
ab

i j
ab

ab s s t t u u
ab

2, , , 2,

, , 2

i j i j i j i j i j i j

i j i j i j
(31)

The components of the vector di of eq 12 are given by the
dipole moment in directions e = x, y, z. For example, for the x-
direction

∑ γ= +d Ix i
ab

ab s t u
ab

, 1, ,i i i
(32)

while for y and z we get analogous expressions with +Is t u
ab

, 1,i i i
and

+Is t u
ab

, , 1i i i
, respectively. For convenience, we also define (with

analogous expressions for the y- and z-directions)

∫ ∑ρ γ= − =d x x Ir r( ) ( ) dx
ab

ab
ab

,0 0 1,0,0
(33)

The matrix Pij of eq 10, which is a sort of overlap mediated by
the pair density, is given by

∑= ΓP I Iij
abcd

ab cd s t u
ab

s t u
cd

, , , , ,i i i j j j
(34)

For the components of the vector Di of eq 13 we have, for
example, in the x-direction

∑= ΓD I Ix i
abcd

ab cd
ab

s t u
cd

, , 1,0,0 , ,i i i
(35)

with similar expressions with I0,1,0
ab and I0,0,1

ab for the other two
components. When pi of eq 29 is not zero, we need tomodify the
matrix elements according to

∑ γ= −+ + +S I Nppij
ab

ab s s t t u u
ab

i j, ,i j i j i j
(36)

∑ γ= −+d I pdx i
ab

ab s t u
ab

i x, 1, , ,0i i i
(37)
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∑= Γ − −P I I pp N N( 1)ij
abcd

ab cd s t u
ab

s t u
cd

i j, , , , ,i i i j j j
(38)

∑= Γ − −D I I N pd( 1)x i
abcd

ab cd
ab

s t u
cd

i x, , 1,0,0 , , ,0i i i
(39)

with analogous expressions for the components y and z of di and
Di and for dx,0 defined in eq 33.
3.3. Implementation. The expression for the dispersion

coeffcients of eqs 18 and 19, with the computational details just
described, has been written in Python and interfaced with
PySCF19 and HORTON.20 The Python package is open-source
and is available on Github (https://github.com/DerkKooi/
fdm). The reduced density matrices of the monomers are
obtained from PySCF, and the multipole moment integrals are
calculated using HORTON. The monomer densities and pair
densities have been computed at three different levels of
theoryHartree−Fock, MP2, and CCSDwhere for open-
shell systems we used restricted open-shell Hartree−Fock
(ROHF). The geometries of the molecules were optimized

using the ORCA program package21 using the MP2 level of
theory with the def2-TZVPPD basis set.

3.4. Choice of Basis Set for Monomer Calculations.We
have extensively explored the dependence on the basis set used
for the monomer pair density calculations for all but the largest
molecules, finding that, in general, going beyond a def2-TZVPP
(or equivalent) quality does not particularly improve the overall
results, with few singular exceptions. The mean absolute
percentage errors (MAPEs) for dispersion coefficients of
molecules obtained with the def2-QZVPP basis set differ from
the def2-TZVPP ones by 1.5−2.2%, with Hartree−Fock being
the least and CCSD the most sensitive. When diffuse functions
are incorporated into the basis set, the MAPE difference
between def2-TZVPP and def2-TZVPPD basis sets ranges from
2.6 to 3.5%, with Hartree−Fock being the least sensitive and
MP2 the most sensitive. These differences are less than half the
MAPE with respect to the reference values. As a representative
example, in Figure 1 we show the C̅6

AA for the molecules
considered here with HF, MP2, and CCSD pair densities using
different basis sets compared with calculations done using the

Figure 1. Isotropic C̅6
AA dispersion coefficients for molecules calculated using Hartree−Fock, MP2, and CCSD pair densities with different basis sets

compared with calculations done using def2-TZVPP basis set. Coefficients calculated with the MP2 pair density are the most sensitive to the basis set
used, while Hartree−Fock and CCSDmethods produce quite robust results. The largest outlier for all the methods used is the CS2 molecule, which is
further discussed in section 3.5 and in Figure 2.

Figure 2. Isotropic C̅6
AA coefficients for CH4 (left) and CS2 (right) as a function of nmax, related to the number of dispersals used to expand the function

JR(r, r′) of eq 4, for Hartree−Fock and CCSD pair densities of the monomers in different basis sets. Reference values from DOSD measurements are
shown with a dotted line. The case of CH4 is representative for what we have observed for the vast majority of systems. CS2 is the worst case found: it is
clearly not well converged and needs diffuse functions in the basis set.
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def2-TZVPP basis set, which is our choice for all the results
presented in section 4.
We should also remark that, since Hartree−Fock pair

densities usually lead to an overestimation of C6, if one uses a
smaller double-ζ basis set the performance in this case usually
improves as the smaller basis makes the overestimation less
profound. The results obtained using a correlated pair density,
however, become worse if we go below triple-ζ quality.
All our results obtained with different basis sets are available in

the Supporting Information.
3.5. Convergence with Respect to Number nmax of

Dispersals. In all our calculations we have fixed nmax = 22, which
yields in general well-converged results for the vast majority of
cases, and it is also a value for which the multipole integrals are
numerically stable. However, we should remark that there are a
few cases in which the convergence with the number of bi has not
been satisfactorily reached. As a typical example for how the vast
majority of systems behave, we show in the left panel of Figure 2
the convergence of C̅6

AA for CH4 with respect to nmax, for bothHF
and CCSD pair densities, with and without diffuse functions in
the basis set for the monomer calculation. We see that the result
is well converged and that the addition of diffuse functions has
little effect, with CCSD underestimating the C6 coefficient.
There are however three molecules (SO2, CS2, and CO2) where
the values between nmax = 20 and nmax = 22 deviate more than
1%. The worst case is CS2, shown in the right panel of Figure 2:
we see that even at nmax = 28 the dispersion coefficient of CS2 is
not converged and that CCSD overestimates C6. The inclusion
of diffuse functions, in this case, improves both the convergence
profile and the accuracy.

4. RESULTS
Dispersion coefficients were computed for five data sets:

(1) C6
AA for 23 atoms and ions

(2) C6
AB for 253 mixed pairs consisting of atoms and ions

(3) isotropic C̅6
AA for a set of 26 molecules

(4) isotropic C̅6
AB for a set of 157 mixed molecule pairs

(5) anisotropic Γ6
AB and Δ6

AB (where applicable) for three
diatomics and interacting with noble gas atoms

In all cases we compare our results with reference values
obtained from dipole oscillator strength distribution (DOSD)
data computed22 or constructed from measurements and
theoretical constraints.18,23−37

4.1. Dispersion Coefficients for Atoms and Ions. The
results for set 1, using HF, MP2, and CCSD pair densities (def2-
TZVPP basis set, with effective core potential (ECP) for fifth
and sixth row elements) for the monomers are presented in
Table 1 and compared with accurate reference data.22 The
MAPEs for Hartree−Fock, MP2, and CCSD monomer pair
densities are 62.1, 17.7, and 16.2%, respectively. The same
results are also illustrated in Figure 3. Notice that the result for H
in Table 1 has a small residual error of 1.2% due to the basis set
used, since the results for C6

AA (as well as C8
AA and C10

AA) from our
wave function are exact when the exact hydrogenic orbital is
used.4

For test set 2, the different pairs are formed by selecting A and
B from the species listed in Table 1. The results for the
dispersion coefficients C6

AB computed using different pair
densities for the monomers, again with the def2-TZVPP basis
set, are compared to accurate reference values22 in Figure 4. The
MAPEs for Hartree−Fock, MP2, and CCSD are slightly better,

Table 1. Dispersion Coefficients C6
AA for a Set of Atoms and

Ions Computed Using Hartree−Fock, MP2, and CCSD Pair
Densities forMonomers with the def2-TZVPP Basis Set, with
Effective Core Potential (ECP) for Fifth and Sixth Row
Elementsa

species ref 22 HF MP2 CCSD

H 6.50 6.42 6.42 6.42
Li 1395.80 1024.59 1013.58 981.77
Na 1561.60 1458.17 1400.47 1211.02
K 3906.30 4636.05 3919.56 3034.83
Rb 4666.90 6493.38 5207.21 3833.89
Cs 6732.80 11244.92 7894.26 6008.81
Cu 249.56 466.54 393.98 312.73
Ag 342.29 741.72 441.06 392.27
Be+ 68.80 40.00 39.36 38.95
Mg+ 154.59 120.87 115.17 109.78
Ca+ 541.03 565.94 425.62 383.40
Sr+ 775.72 1040.23 667.53 623.11
Ba+ 1293.20 2284.40 1306.28 1348.81
Be 213.41 443.51 273.87 161.69
Mg 629.59 1257.52 750.44 523.40
Ca 2188.20 5035.02 2441.13 1809.39
Sr 3149.30 7882.73 3508.83 2750.55
Ba 5379.60 15037.42 6184.94 5892.73
He 1.46 1.62 1.43 1.43
Ne 6.38 6.79 5.91 6.19
Ar 64.30 96.28 54.60 58.57
Kr 129.56 211.12 110.30 122.45
Xe 285.87 537.65 221.15 275.55

HF MP2 CCSD

MAPE (%) 62.1 17.7 16.2
AMAX (%) 179.5 57.9 43.4

aFor each species, the dispersion coefficient closest to the reference
value is in bold font. The mean absolute percentage error (MAPE) as
well as the maximum absolute percent deviation (AMAX) for the data
set are reported.

Figure 3. Results for C6
AA for 23 atoms and ions (see Table 1). The solid

line depicts one-to-one correspondence of the model with the reference
data obtained from ref 22. The mean absolute percentage errors for
Hartree−Fock, MP2, and CCSDmonomer pair densities are 62.1, 17.7,
and 16.2%, respectively.
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being 52.3, 12.1, and 11.9%, respectively. All the values obtained
are available in the Supporting Information.

These results for atoms and ions are not extremely promising,
in particular because they do not always improve with the
accuracy of the theory used to treat the monomers. From Figure
4, it is evident that the use of the Hartree−Fock pair densities
leads to an overestimation of the dispersion coefficients.
However, for some systems (Li, Na, Be+, Mg+) the FDM
method combined with correlated pair densities considerably
underestimates the dispersion coefficient, and in those cases
Hartree−Fock pair densities yield better results than MP2 and
CCSD ones. As it should, the CCSD pair density tends to
produce a lower bound for the dispersion coefficient, but with
some exceptions (e.g., Ag, Cu, Ba+).
The picture improves considerably if we look at closed-shell

species only: if we consider the 15 noble gas pairs, the MAPEs
for HF, MP2, and CCSD pair densities are 41.9, 12.2, and 4.3%,
respectively. Also, if we consider the subset of our data set
formed by the 45 pairs of the noble gas and alkali elements used
by Becke and Johnson11 in their original paper on the exchange-
hole dipole moment (XDM) dispersion model (see their Table
1), we obtainMAPEs forMP2 and CCSD equal to 9.6 and 7.7%,
respectively, lower than the one of XDM (11.4%), while with
Hartree−Fock pair densities our MAPE is 27.3%.
Overall, these first results indicate that the constrained FDM

ansatz can work well for closed-shell species, while being less
reliable for open-shell cases. As we shall see in section 4.2, the
results for the isotropic dispersion coefficients for closed-shell
molecules are reasonably accurate and robust, confirming these
first findings.
4.2. Isotropic Dispersion Coefficients for Molecules.

Isotropic molecular dispersion coefficients C̅6
AA were computed

for 26 molecules consisting mainly of first and second row
elements. Our results are compared with reference values

calculated fromDOSD23−36 in Table 2 and are also illustrated in
Figure 5. The MAPE using Hartree−Fock pair density with

def2-TZVPP basis is 52.5%. This comes down to 13.7 and 8.6%
whenMP2 and CCSD pair densities, respectively, are used. This
is in line with the results for the noble gas atoms: there is now a
clear systematic improvement with the level of theory of the
monomer pair densities, with CCSD yielding good results with
the lowest variance.
For test set 4, we have computed isotropic dispersion

coefficients C̅6
AB for 157 mixed molecule pairs selected from

Table 2. The results are illustrated in Figure 6 where they are
compared, again, with reference values from DOSD measure-
ments23−36 and are available in the Supporting Information. The
MAPEs using Hartree−Fock, MP2, and CCSD pair densities are
57.1, 7.9, and 7.2%, respectively.
From these calculations we can confirm that, for closed-shell

molecules, the Hartree−Fock pair density leads to consistent
overestimation of the dispersion coefficients. The use of a
correlated pair density (MP2 or CCSD) improves the results
considerably, with CCSD providing better accuracy and lowest
scattering of the results. For CCSD, 11 of the 26 C̅6

AA’s deviate
from the reference value by more than 10%, compared to 16 for
MP2 and 26 for Hartree−Fock. With the exception of H2CO, all
the CCSD values are within 13% of the reference value.
Regarding the FDM results with Hartree−Fock pair densities,

we should stress that in this work we are testing the formalism as

Figure 4. Dispersion coefficients C6
AB for 253 pairs formed by selecting

A and B from the species listed in Table 1, computed using Hartree−
Fock, MP2, and CCSD pair densities for the monomers with the def2-
TZVPP basis set. The solid line depicts one-to-one correspondence of
the model with the reference data obtained from ref 22. The mean
absolute percentage errors for Hartree−Fock, MP2, and CCSD
monomer pair densities are 52.3, 12.1, and 11.9%, respectively.

Table 2. Isotropic Dispersion Coefficients C̅6
AA for a Set of

Molecules Calculated Using def2-TZVPP Basis Seta

species ref HF MP2 CCSD

H2 12.123 16.42 15.76 11.60
C2H6 381.924 542.19 411.68 346.17
C2H4 300.235 472.25 310.09 273.50
C2H2 204.129 372.13 192.44 192.34
H2O 45.323 55.57 38.88 40.55
H2S 216.828 358.57 193.01 199.08
NH3 8923 114.66 77.58 77.52
SO2 293.926 473.00 281.11 287.00
SiH4 343.933 462.54 346.18 308.09
N2 73.323 135.53 58.37 70.57
HF 1927 21.70 16.67 17.66
HCl 130.427 201.66 108.00 115.47
HBr 216.627 372.17 187.65 205.25
H2CO 165.238 207.04 135.75 135.13
CH4 129.624 183.70 128.52 120.00
CH3OH 22234 288.75 223.07 196.93
CS2 871.126 2017.72 906.90 975.32
CO 81.439 122.69 66.98 75.13
CO2 158.739 232.44 153.00 153.45
Cl2 389.230 676.48 384.86 368.85
C3H6 662.135 993.49 769.43 590.50
C3H8 768.124 1092.09 919.72 688.07
C4H8 1130.235 1699.13 1527.79 1023.72
C4H10 1268.224 1821.45 1714.29 1137.31
C5H12 1905.024 2733.69 2872.35 1695.39
C6H6 1722.729 3116.90 2148.87 1630.94

HF MP2 CCSD

MAPE (%) 52.1 13.7 8.6
AMAX (%) 131.6 50.8 18.2

aFor each species, the dispersion coefficient closest to the reference
value is in bold font.
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derived by our trial FDMwave function when we assume that an
exact description of the monomers is used.4,7 However, if we use
Hartree−Fock wave functions for the monomers, we could also
revise the formalism to take into account that, in Hartree−Fock
theory, part of the intramonomer electron−electron interaction
is described in terms of the off-diagonal elements of the one-
body reduced density matrix (1-RDM), which do change in the
FDM and are quadratic in the variational parameters, such as the
kinetic energy. This and other flavors of approximations using
Kohn−Sham orbitals and DFT exchange−correlation holes will
be extensively tested in future works.

4.3. Anisotropic Dispersion Coefficients. To test the
applicability of the method for the orientation dependence
(anisotropy) of the dispersion coefficients, we performed
calculations for the diatomics H2, N2, and CO and for these
diatomics interacting with noble gas atoms. The resulting Γ6

AB

values are listed in Table 3, and the resultingΔ6
AB values are listed

in Table 4. For both Γ6
AB and Δ6

AB CCSD (MAPE 6.9 and 7.4%,
respectively) performs better than MP2 (MAPE 40.3 and
58.9%), which in turn performs better than Hartree−Fock
(MAPE 111.1 and 210.2%). MP2 performs better for the pairs
involving H2 than for the pairs involving N2 and CO.

5. CONCLUSIONS AND PERSPECTIVES
The “fixed-diagonal matrices” (FDM) idea4,7 provides a
framework to build new approximations for the dispersion
energy in terms of the ground-state pair densities (or the
exchange−correlation holes) of the monomers, without the
need for polarizabilities. The underlying supramolecular wave
function describes a simplified physical mechanism for
dispersion, in which only the kinetic energies of the monomers
can change. While this is not what happens in the exact case,
where all the terms in the isolated monomer Hamiltonian
change with respect to their ground-state values, for one-
electron fragments the FDM still provides the exact second-
order Rayleigh−Schrödinger dispersion energy.4,7 The purpose

Figure 5. Isotropic dispersion coefficients C̅6
AA for molecules calculated

using Hartree−Fock, MP2, and CCSD pair densities and reported in
Table 2. The solid line depicts one-to-one correspondence of the model
with the reference values.

Figure 6. Isotropic dispersion coefficients C̅6
AB for 157 mixed molecule

pairs selected from Table 2 calculated using Hartree−Fock (MAPE
57.1%), MP2 (MAPE 7.9%), and CCSD (MAPE 7.2%) monomer pair
densities (def2-TZVPP basis set). The solid line depicts one-to-one
correspondence of the model with the reference values.

Table 3. Anisotropic Dispersion Coefficients Γ6
AB for

Diatomics H2, N2, and CO and for the Diatomics Interacting
with Noble Gas Atoms Calculated Using def2-TZVPP Basis
Seta

pair ref HF MP2 CCSD

H2−H2 0.100618 0.1416 0.1099 0.1021
H2−N2 0.110918 0.1350 0.1040 0.0972
N2−H2 0.096618 0.1884 0.0474 0.1251
N2−N2 0.106818 0.1809 0.0442 0.1211
H2−He 0.092418 0.1288 0.1013 0.0947
H2−Ne 0.090118 0.1240 0.0981 0.0920
H2−Ar 0.097118 0.1343 0.1046 0.0977
H2−Kr 0.098618 0.1369 0.1059 0.0990
H2−Xe 0.100518 0.1397 0.1078 0.1006
N2−He 0.102718 0.1738 0.0429 0.1192
N2−Ne 0.099918 0.1672 0.0412 0.1164
N2−Ar 0.107418 0.1800 0.0446 0.1214
N2−Kr 0.108718 0.1827 0.0452 0.1223
N2−Xe 0.110418 0.1856 0.0461 0.1234
CO−CO 0.09437 0.1013 0.0600 0.0956
CO−H2 0.094937 0.1030 0.0616 0.0970
H2−CO 0.097637 0.1350 0.1047 0.0979
CO−N2 0.093937 0.1014 0.0598 0.0954
N2−CO 0.107737 0.1808 0.0446 0.1216
CO−He 0.09337 0.0997 0.0591 0.0947
CO−Ne 0.091637 0.0975 0.0580 0.0933
CO−Ar 0.094237 0.0975 0.0600 0.0955
CO−Kr 0.094337 0.1016 0.0603 0.0958
CO−Xe 0.094437 0.1021 0.0608 0.0961

HF MP2 CCSD

MAPE (%) 111.1 40.3 6.9
AMAX (%) 213.7 67.3 23.1

aFor each species, the coefficient closest to the reference value is in
bold font. The MAPE and AMAX are calculated for the product
C6Γ6

AB.
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of this work was to investigate how accurate the FDM
description can be for systems beyond the simple H and He
cases when a good pair density of the monomers is used,
focusing on the C6 dispersion coefficients. In the present
implementation the computational cost of the step needed on
top of the monomers’ ground-state calculation is N( )4 .
We have found that for closed-shell species FDM yields rather

accurate isotropic dispersion coefficients when CCSD (or even
MP2) monomer pair densities are used, with a mean absolute
percentage error (MAPE) for CCSD for the whole closed-shell
data set (all noble gas atoms and molecule pairs, summarized in
Figure 7) of 7.1% and a maximum absolute error (AMAX)
within 18.2%. FDM on top of CCSD ground states also predicts
the anisotropy of dispersion coefficients, which on a limited set
of pairs involving diatomics and noble gas atoms yields
satisfactory results for the anisotropy Γ6

AB (MAPE 6.9%,

AMAX 23.1%) and the anisotropy Δ6
AB (MAPE 7.4%, AMAX

19.8%).
From this study it also emerged that the basis set used in the

monomer calculations has little effect on the computed
dispersion coefficients, as the results are essentially converged
at the triple-ζ level. Although not competitive with linear-
response (LR) CCSD based methods at the complete basis set
(CBS) limit, which can achieve accuracies40,41 of 1−3%, FDM
combined with CCSD pair densities seems to have similar
accuracies (for closed-shell systems) of LR CCSD based
methods when triple- or double-ζ basis sets are used for the
latter.40,42 From the data available, the FDM dispersion
coefficients calculated by using CCSD pair densities also
outperform XDM for both atoms11 and molecules.43 The
DFT-D4 dispersion model44 has a notably lower MAPE for a
test set consisting of closed-shell molecules, i.e., test sets 3 + 4,
but a higher AMAX (MAPE 4.3%, AMAX 29.1%). Other
methods such as TS45 and LRD46 have also a similar or slightly
better performance than FDM with CCSD. The TD-DFT
results for all atoms and ions reported by Gould and Bucko47 can
achieve an accuracy between 1 and 5%, and the more refined
MCLF method of Manz et al.48 has again a MAPE of 4.5% for a
set of closed-shell molecules. An advantage over methods like
DFT-D4 is that FDM also predicts the anisotropy of dispersion
coefficients and gives access not only to energetics but also to a
wave function that can be used in various frameworks, for
example, in a QM/MM setting tomodel the interaction between
the QM and MM parts.14−16 We should also remark that the
performance of our method is less satisfactory for open-shell
atoms and ions.
The main motivation for this work is to provide a solid basis

for constructing DFT and other approximations based on a
microscopic real-space mechanism for dispersion, given by a
simple competition between kinetic energy and intermonomer
interaction. Before making approximations for the monomers’
description, it was important to assess how accurate the method
can be when good pair densities are used. Considering that the
FDM is parameter-free and does not use the polarizabilities as
input, the results for closed-shell systems are satisfactory,
indicating that the simplified physical mechanism behind it,
although not exact, is a reasonable approximation. In our view,
this is also conceptually interesting, as it indicates that it is
possible to describe reasonably well the overall rise in energy of
the monomers with kinetic-energy-only effects.
In future works we will investigate possible ways to improve

the results for open-shell fragments, and we will work on
building approximations based on model exchange−correlation
holes from density functional theory but also on revisiting the
formalism in the Hartree−Fock framework by taking into
account the effects of the change in the off-diagonal elements of
the 1-RDM on the monomer’s Fock operators. We should also
stress that the choice of the basis in which to expand the density
constraint, i.e., the dispersals bi(r) of eq 4, is arbitrary and that
the current choice of eq 24 is far from optimal. For some cases,
the convergence with the number of dispersals is slow, and too-
high multipole moment integrals may become numerically
unstable. We will thus also explore more closely the
determination of an optimal choice for the dispersals as we
have preliminary indications7 that with a proper choice it is
possible to use just a few of them to obtain well-converged
results.

Table 4. Anisotropic Dispersion Coefficients Δ6
AB for the

Diatomics H2, N2, and CO Calculated Using def2-TZVPP
Basis Seta

pair ref HF MP2 CCSD

H2−H2 0.010818 0.0214 0.0128 0.0110
H2−N2 0.011418 0.0269 0.0053 0.0126
N2−N2 0.012118 0.0346 0.0021 0.0151
CO−CO 0.009037 0.0104 0.0037 0.0092
CO−H2 0.009437 0.0142 0.0066 0.0096
CO−N2 0.010337 0.0188 0.0028 0.0118

HF MP2 CCSD

MAPE (%) 210.2 58.9 7.4
AMAX (%) 427.0 85.9 19.8

aFor each species, the coefficient closest to the reference value is in
bold font. The MAPE and AMAX are calculated for the product
C6Δ6

AB.

Figure 7. Isotropic dispersion coefficients for the whole closed-shell
data sets (all molecules and noble gas atoms) calculated using Hartree−
Fock (MAPE 55.3%, AMAX 131.6%), MP2 (MAPE 8.9%, 50.78%),
and CCSD (MAPE 7.1%, AMAX 18.2%) monomer pair densities
(def2-TZVPP basis set). The solid line depicts one-to-one
correspondence of our FDM method with the reference values.
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