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Abstract: Most 3D point cloud watermarking techniques apply Principal Component Analysis (PCA)
to protect the watermark against affine transformation attacks. Unfortunately, they fail in the case
of cropping and random point removal attacks. In this work, an alternative approach is proposed
that solves these issues efficiently. A point cloud registration technique is developed, based on a
3D convex hull. The scale and the initial rigid affine transformation between the watermarked and
the original point cloud can be estimated in this way to obtain a coarse point cloud registration.
An iterative closest point algorithm is performed after that to align the attacked watermarked point
cloud to the original one completely. The watermark can then be extracted from the watermarked
point cloud easily. The extensive experiments confirmed that the proposed approach resists the
affine transformation, cropping, random point removal, and various combinations of these attacks.
The most dangerous is an attack with noise that can be handled only to some extent. However,
this issue is common to the other state-of-the-art approaches.

Keywords: point cloud registration; multi-scale registration; point cloud alignment; point cloud
watermarking; remote sensing

1. Introduction

Presently, digital data are exchanging through the networks intensively, and are, in this way,
exposed to various attacks. A small piece of additional information, i.e., a watermark, can be
embedded within the data to identify their origin. Different approaches for watermarking of various
digital multimedia data types, including images, audio, and video, were proposed in the past [1–3].
The watermark can be embedded in the spatial (for example, changing the grey levels of some
pixels on the image) or frequency domains, where different transformations are applied, such as,
for example, the discrete cosine or discrete wavelet transformations. The obtained coefficients of
the transformed data can then be watermarked in the latest case. With the wide accessibility of 3D
scanning devices [4,5], a huge amount of discrete points (i.e.,point clouds), acquired from the surfaces
of 3D objects, are currently obtained easily. Their applicability is in various areas, such as, for example,
cultural heritage [6–8], civil engineering [9,10], architecture [11–13], mechanical engineering [14,15],
3D simulation and animation [16–18], and indoor navigation [19–21]. There is, therefore, also a need
to watermark the point cloud data. Unfortunately, the actual point cloud watermarking methods
do not address all possible watermark attacks adequately. For example, because they use Principal
Component Analysis (PCA) [22], they cannot protect the watermarked point clouds against cropping
and random removal attacks.

A novel approach for point cloud watermarking is presented in this paper. It uses a new
registration procedure, based on a 3D convex hull, applied before extraction of the watermark.
This registration method determines the proper scale and alignment between the watermarked
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(possibly cropped and/or otherwise attacked) and the original point cloud. Consequently, the Principal
Component Analysis (PCA) is not needed during the watermark process anymore.

The paper is organised as follows: Section 2 overviews related works. Section 3 introduces the
proposed approach. The experimental results are given and discussed in Section 4. The paper is
concluded in Section 5.

2. Previous and Related Works

Despite the wide applicability of point clouds, their watermarking has not been studied intensively.
Principal Component Analysis (PCA) has been applied mostly to withstand affine transformation
attacks [3,22,23]. Cotting et al. obtained surface patches by a fast hierarchical clustering algorithm and
PCA [24]. After that, the surface patches are transformed into discrete frequency bands by applying
the approximate Laplacian operator. The watermark was then embedded into their low-frequency
components. Wang et al. also applied the PCA [25]. The points in the transformed coordinate
system are then sorted for each axis to form intervals, which embed positions. The watermark was
embedded by changing the point coordinates using a secret key. Ke et al. employed an octree and
PCA to partition a 3D surface into patches [26]. Then, a patch chain was built to perform a similarity
measure between them. The watermark was embedded into the average local vector of every similar
patch. Agarwal and Prabhakaran considered these PCA-based approaches, and figured out that they
are very vulnerable to cropping attacks [27]. Thus, they developed a new approach that constructs
a cluster-tree by using the nearest neighbour heuristic. They applied an extended 3D quantization
index modulation [28] to embed a watermark inside a cluster that consisted of at least three points:
An encoding point, a head point, and a reference point. Unfortunately, their method depends on the
mutual relations and the distances between the cluster points. If any point that defines the cluster,
is removed or, for example, the point is not correctly identified as the header point, the watermark
information cannot be extracted from that cluster. Therefore, Agarwal and Prabhakaran admitted
that their method is not robust against simplification and cropping attacks. Luo et al. constructed
clusters of eight 3D points around a randomly chosen vertex [29]. The coordinates of the points in each
cluster were then used as an input to the Discrete Cosine Transformation (DCT) [30]. A watermark
was inserted in the last DCT coefficients. Modified coefficients were then transformed inversely into
coordinates in the spatial domain. Their method is vulnerable to any cluster modifications, such as
a rearrangement of the points, and a point removal attack. However, the authors did consider how
their method handles affine transformations and cropping attacks. As their method constructs the
cluster of the closest points around a randomly selected vertex, it is unlikely that the clusters can be
preserved when a random point removal and cropping attacks occur. Moreover, it is not clear how
arbitrarily chosen vertexes are selected identically at a point removal and cropping attacks. They did
not apply any registration of both point clouds. Thus, the affine transformations are not supported.
Rames et al. presented a fragile fractal scheme for watermarking of LiDAR data, which can handle a
huge number of points [31]. Their method incorporates computationally intensive operations and is
not robust to attacks. The approach applies a General-Purpose Graphics Processing Unit (GPGPU) that
was used to find similar fractal patterns. Recently, another fragile data hiding scheme was proposed
by Itier and Puech [32]. Unfortunately, it has low robustness against attacks that can change the way of
a Hamiltonian path that was constructed and used in data hiding. Table 1 summarises the level of
robustness against various attacks.
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Table 1. The watermark robustness (h—high, l—low or non-robust (marked with ×)) against
various attacks.

Approach

Attack PCA-Based Other
Our [24] [26] [25] [27] [29] [32] [31]

affine-transformation h h h h h × l l
cropping h × × × l l × ×

random removal h l l l l × × ×
local noise h † h † l h † h † l l l

global noise l l l l l l × ×
† This depends strongly on the level of locally added noise.

Alternative approaches have been considered, because the PCA-based approaches cannot handle
cropping and random removal attacks. The Iterative Closest Point algorithm (ICP) and its variants are
registration techniques that could estimate rigid transformation, such as a translation and a rotation
between the source and the target point cloud [33–35]. However, it is still a challenging task to
estimate a non-rigid transformation (the simplest among them is scaling). A comprehensive survey
on these topics can be found in [36]. Moreover, the ICP algorithms depend on a good introductory
alignment to achieve accurate convergence to the global minimum. Thus, various approaches were
proposed for the initial coarse alignment [37–41]. Unfortunately, these approaches still have difficulties
with non-rigid transformation estimation, such as scaling. Only a few recent works consider this
type of transformation. Mellado et. al. proposed a relative scale estimation and 3D registration of
multi-modal geometry using growing least square that can handle situations with 3D models with
different sampling densities, scale, and various levels of noise [42]. Their method supports both a
semi-automatic scale estimation (the user needs to specify a scale range and a pair of corresponding
points), and an automatic approach by selecting seeds and finding correspondences between them.
In the final stage, a random sample consensus (RANSAC) is applied to estimate the relative scale
and initial alignment [43]. Recently, Fan et al. proposed a registration approach that applies a 3D
convex hull [44]. They tried to find the similarity transformation by determining a translation vector,
a rotation matrix and a scaling factor. The best transformation is determined by a randomly selected
triangle from the source convex hull and a triangle on the target convex hull by applying RANSAC.
The same authors extended their work, and projected the cloud points onto the reference plane and
then performed matching [45]. None of the above methods are used in the watermarking of a 3D
point cloud. Thus, we are not convinced that they can handle different attacks properly, especially the
cropping attacks. A more robust approach is needed that can handle the point clouds damaged by
various attacks. Thus, we propose an improved registration method used in the process of watermark
extraction, which also applies a 3D convex hull to determine the initial scaling factor between the
watermarked (possibly attacked) and the original point clouds.

3. The Proposed 3D Point Registration Method

The main contribution of this paper is a new registration method for a relative scale estimation
using a 3D convex hull in the process of the watermark extraction from a point cloud [46,47]. The main
motivation was to overcome the main disadvantage of methods using the RANSAC algorithm and
its variants. Namely, RANSAC is an iterative algorithm, operating on all points from the point cloud.
The points are unstructured and, therefore, difficult for the registration. The number of geometric
entities were reduced and the structured entity (i.e., the 3D convex hull) is obtained, which is more
suitable for the registration. The proposed approach is an extension of our method for watermarking
of georeferenced airborne LiDAR data [48], which does not consider the affine transformation attacks,
because these types of attacks are meaningless for LiDAR data. On the contrary, the presented extension



Sensors 2019, 19, 3268 4 of 18

works on point clouds in general, and can handle affine transformation, cropping, and random removal
attacks. In the continuation, a brief overview of the method for watermarking georeferenced airborne
LiDAR data is given in the next subsection [48]. After that, the new registration method for watermark
extraction from the point cloud is explained in detail.

3.1. An Overview of LiDAR Data Watermarking

The watermarking methods consist of two weakly coupled tasks: Watermark embedding and
watermark extraction.

• Watermark embedding. The watermark embedding defines randomly distributed marker areas,
firstly on the XY-plane (see Figure 1). Then, the X and Y coordinates of the points within these
areas are modified slightly as follows: Each marker area is divided further into smaller circular
parts. The distances between the centroids of the points within the circular parts and the centres
of the circular parts are calculated and used as an input vector to Discrete Cosine Transformation
(DCT) [30]. The last DCT-coefficient is modified, and the Inverse Discrete Cosine Transformation
(IDCT) is performed. In this way, the modified vector of distances is obtained, and it is used for
small disturbances of the centroids. Finally, the coordinates of the LiDAR points are modified
slightly to match the new centroid positions (details of the approach are given in [48]).

Figure 1. Watermarking of LiDAR point clouds.

• Watermark extraction. The watermark extraction from the LiDAR point cloud is performed
identically to the watermarking, except for the last step [48]. The marker areas are determined
first. Then, the distances are calculated, and the vector of the DCT-coefficients is built. Finally, the
last DCT-coefficient is checked to determine the value of the embedded watermark bit. The process
continues for all marker locations to construct the whole watermark [48].

3.2. Point Cloud Watermarking

Contrary to the georeferenced LiDAR points, point clouds, consisting of points scanned from the
surfaces of 3D models, can be positioned, scaled, and oriented in many different ways. This is the
reason watermarking of such point clouds differs from the LiDAR point clouds’ watermarking. In the
continuation of the paper, the original point cloud is denoted as I, while the possibly attacked point
cloud as WA.
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Watermark Embedding

The watermark embedding process should change the coordinates of the points by the same
amount regardless of the point cloud size. The input point cloud is normalised first; it is scaled
proportionally to map its height between the values −1.0 and 1.0 (see Figure 2). The so-called
normalised point cloud IN is obtained from I in such a way. The bounding box of I is needed
only in this step. The normalization of the watermarked, and possible attacked point cloud, is not
needed in the process of the point cloud registration. The proposed registration approach is based
on the scale ratios between identified triangles of the source and target convex-hulls, as explained in
the continuation. The same watermark embedding process is then performed, as described briefly
in Section 3.1.

Figure 2. Normalization of input point cloud.

Watermark Extraction

The first step of the watermark extraction from WA is its registration. However, before the
registration, WA is cleaned of possible outliers. In our case, the statistical outlier removal algorithm
was applied from the Point Cloud Library (PCL) [49,50].

3.3. Convex Hull Point Cloud Registration

The convex hull of a set I of points in Euclidean space is the smallest convex set that contains
I [51]. There are various algorithms for constructing convex hulls. In our approach, the Quickhull [46]
has been used for I and WA. Let HW (the source convex-hull) and H I (the target convex-hull) be
convex hulls of WA and IN , correspondingly. The surface of a 3D convex hull consists of triangles
and, therefore, TW = {ti} denotes a set of triangles of HW , and T I = {tj} a set of triangles of H I .
The registration algorithm attempts to find the pairs of corresponding triangles from TW and T I ,
i.e., ti ≈ tj. If a matching pair of triangles is found, the appropriate scale factor (i.e., the needed affine
transformation) can be calculated easily. Unfortunately, various attacks can change HW considerably.
Consequently, the number of triangles in both sets can be different, i.e., |T I | 6= |TW |, and the best
matching triangles are difficult to identify. Even worse, as explained later, a triangle from TW can
have multiple matches with triangles from T I . However, if WA and IN are similar to some extent,
there should be enough corresponding triangles among T I and TW that the scale and the rigid affine
transformation can be estimated. These are then applied to WA for its alignment with IN . An Iterative
Closest Point algorithm (ICP) was applied for this task [33–35].

Relative Scale Estimation

The areas Ai and Aj of each triangle ti and tj are calculated first. The triangles of each convex hull
are then sorted separately in decreasing order of their areas, and, after that, compared by examining
the edge ratios. However, small triangles are not convenient for the comparison, because even the
slightest additive noise can change their edge ratios significantly. Thus, 40% of the smallest triangles
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from TW and 20% of the tiniest triangles from T I are discarded (these percentages were determined
experimentally). Next, the lengths of each triangle edges (d1, d2, and d3) are calculated, and arranged
in increasing order, i.e., d1 ≤ d2 ≤ d3. The edges are used to calculate the edge ratios α and β according
to Equation (1):

α = d1/d3

β = d2/d3 (1)

The similarity ratios σi,j and ρi,j are then calculated as follows:

σi,j =
αi
αj
− 1, 0 ≤ i < |TW |, 0 ≤ j < |T I | (2)

ρi,j =
βi
β j
− 1, 0 ≤ i < |TW |, 0 ≤ j < |T I |.

Triangle ti ∈ TW is considered to be similar enough to triangle tj ∈ T I , if |σi,j| < τ ∧ |ρi,j| < τ,
where τ is a given threshold. Arrays of scale factors Si are formed for each ti and matching similar
triangles candidates tk ⊆ T I by applying Equation (3):

Si,k =

√
Ai
Ak

. (3)

All arrays Si are then sorted in decreasing order. The first elements of each Si are the best matching
triangles and the candidates for the final scale factor estimation (see Figure 3). An array B = {(bi, ii, ki)}
is formed, where bi is the first element of Si (the one with the best scale factor), while ii and ki are
indices of corresponding similar triangles ti ∈ TW and tk ∈ T I , respectively. Array B is then sorted in
decreasing order according to the bi. If WA is obtained by scaling IN with some scale factor s and no
other attacks occur, then the largest triangles from HW with the similarity ratios σi,j and ρi,j match with
the largest triangles from H I with the same similarity ratios. In such cases, the scale factor s would be
equal to bi, i.e., s = bi.

Figure 3. Array of scaling factors Si binds the best candidates (bi, bi+1, and bi+2) for scale estimation.

Unfortunately, attacks cause that bi may have different values. Thus, array B is processed in
order to determine the most frequent value of the scale factor. An array H = {si, fi, Ψi} is established,
which is populated by applying Algorithm 1. The scale factor si is calculated as an average of scale
factors within the range [bi − ξ, bi + ξ] (ξ is the range threshold, defined experimentally), Ψi is an
array of matching triangle pairs, and fi is the number of scale factors bi within the considered range
(see Figure 4). If only a scale attack has occurred, or if there are no attacks at all, at most one scale
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factor si ∈ H with the highest value fi exists. On the other hand, the attacks can cause that the scale
factors are dispersed. The wrong scale factors should be isolated, and the correct scale factor should be
determined as precisely as possible. Thus, the relatively small range threshold tolerance (ξ = 0.0002) is
used. As the scale factors (bi+1, bi+2, . . .), that are within range [bi ± ξ], are already handled, the next
element for processing from B is the first scale factor that is outside the range [bi ± ξ] (the scale factor
bi+3 in Figure 4).

Figure 4. Determining scale factor si and fi; si in an average of fi = 6 scale factors in this example.

Algorithm 1 Find Most Frequent Scale.

Require: B—an array of best scale factors, ξ—the range threshold (default: ξ = 0.0002), n—the length

of the array B
1: i← 0
2: while i < n do
3: si ← B.bi
4: fi ← 1
5: Ψi ← {(B.ii, B.ki)}
6: j← i− 1
7: while (j > 0 &

∣∣B.bi − B.bj
∣∣ < ξ) do

8: si ← (si + B.bj)/2
9: fi ← fi + 1

10: Ψi ← Ψi ∪ {(B.ij, B.k j)}
11: j← j− 1
12: end while
13: j← i + 1
14: while (j < n &

∣∣B.bi − B.bj
∣∣ < ξ) do

15: si ← (si + B.bj)/2
16: fi ← fi + 1
17: Ψi ← Ψi ∪ {(B.ij, B.k j)}
18: j← j + 1
19: end while
20: i← j
21: end while

Any scale factor si with fi < φ is discarded in the continuation applying Algorithm 2. φ is an
occurrence threshold, which was set experimentally to φ = 3 (see Figure 5). The isolated wrong
scale factors are discarded in this way. Depending on the attacks, there can be more than one si with
fi ≥ φ. In such case, scale factors are joined, calculating weighted average sk (see Figure 5) with
Equation (4). This is performed only if sj < si + η (see Figure 5) (the range threshold η = 0.01 was
defined experimentally).

sk =
si fi + sj f j

fi + f j
(4)

Triangle pairs Ψi and Ψj are joined, too. Finally, H is sorted according to fi and the first si with
the highest fi is the best scale estimation.
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Figure 5. A new sk with frequency fk = fi + f j is obtained from si and sj; scaled factors marked with
red colour are discarded.

Algorithm 2 Scale Factor Discarding And Joining.

Require: H—the output from Algorithm 1, η—the range threshold (default: η = 0.01, φ—the

frequency threshold (default: φ = 3), n—is the length of the array H)
1: for i← 0 to n− 2 do
2: if H. fi > 0 then
3: s← H.si
4: f ← H. fi
5: Ψ← H.Ψi
6: for j← 0 to n− 1 do
7: if H. f j > φ & |s− H.sj| < η then
8: s← (s f + H.sj H. f j)/( f + H. f j)
9: f ← f + H. f j

10: Ψ← Ψ ∪ H.Ψj
11: H. f j ← 0
12: end if
13: end for
14: H.si ← s
15: H. fi ← f
16: H.Ψi ← Ψ
17: end if
18: end for

Rotation and Translation Estimation

The first si with the highest fi in the array H also contains an array of matching triangles Ψi.
They are used for estimation of rotation and translation. Two auxiliary point clouds are built, from the
first and the second matching pair of triangles B.ii and B.ki. The centres of the triangles are used as
the points of these clouds. The source triangles are scaled by si. Because the auxiliary cloud contains
considerably fewer points, rotation and translation is performed fast. The rigid transformation matrix
(i.e.,rotation and translation) is determined between newly created point clouds by applying the Single
Value Decomposition-based alignment estimation [52]. Because the correspondences of the points
between these point clouds have been already obtained from the scale estimation process, applying
this algorithm is the most efficient solution. The scaling and the rigid transformation are then applied
to the watermarked point cloud WA. In this way, a better initial alignment hint is assured for the ICP
algorithm. The ICP algorithm is applied at the end for the fine alignment of WA to IN . As a good
initial alignment of the source cloud is achieved, only a few iterations of the ICP are needed.
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Extraction of the Watermark Bits

The same steps are performed as in the process of watermark embedding after aligning WA

to IN (see Watermark Embedding in Section 3.2 and [48]), except for the last step. The markers are
determined; the distances are calculated, and a vector of the DCT coefficients is built. The last DCT
coefficient is checked to determine the value of the embedded watermark bit. This process is repeated
for all marker locations to reconstruct the whole watermark.

4. Experimental Results and Discussions

Stanford 3D models (http://graphics.stanford.edu/data/3Dscanrep/) were used in our
experiments (Table 2). Equation (5) was applied to estimate the marker radius rout.

rout =

√
150

P
πnp

, (5)

where P = dxdy is the projected area in plane XY (dx and dy are the sides of the bounding box)
(see Figure 1) and np is the number of points in I. Value np = 150 was used to achieve that the
number of points per marker was in range [150, 250]. This guarantees that the watermark can be
embedded successfully and sustain a certain level of the distortion caused by various attacks. The 64-bit
watermark 6368773230313716 was applied in all experiments.

Table 2. 3D point clouds used in experiments.

File 3D Model Number of Points np Number of Convex Hull Triangles rout

F1 Bunny 35,947 2064 0.073212
F2 Dragon 50,000 752 0.073595
F3 Lucy 50,002 624 0.047158
F4 Armadillo 172,974 1668 0.030441
F5 Happy Buddha 543,652 3734 0.012011

The match percentage mp between the inserted watermark w and the extracted watermark w∗

was calculated as:

mp =
nq

M
100%, (6)

where nq is the number of equal bits in both watermarks, and M is the size of the watermark in bits.
mp indicates the success of watermark extraction from the W I and WA. Various experiments were
performed to evaluate the proposed approach, and to find how the parameters of the watermarking
process affect the presented method.

4.1. Setting the Parameters for Watermark Embedding

In this subsection, a short explanation of parameter setting while inserting the watermark into the
W I is given (details are in [48]). Table 3 shows the values of the parameters, where N∗ is the number
of markers, T is the number of smaller circular areas within the circular marker (i.e.,the number of
DCT coefficients), γ is the value of modulating amplitude of the last DCT coefficient that is used to
embed a watermark bit, and dmax is the maximum allowable distance used to control displacement of
the points due to embedding of the watermark.

http://graphics.stanford.edu/data/3Dscanrep/
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Table 3. The values of parameters.

Parameter Range Default Value

N∗ - 4000
T 64–192 128
γ 0.02–0.10 0.04

dmax 0.0025–0.2000 0.0040

Figure 6 shows the results of experiments. The finest results were achieved if the number of
smaller circular areas within the marker or the size of the input vector of DCT was between 128 and
160. The best match percentages were obtained when the bit coding amplitude (the amount that the
last DCT coefficient was changed) was between 0.02 and 0.04. This parameter has an impact on the
level of the point displacement, which is controlled by the parameter dmax. It was impossible to embed
the watermark successfully if this parameter value was too small (below 0.01).
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Figure 6. Experimenting with different values of parameters.
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4.2. Evaluating the Resistance of the Method Against Different Attack Types

The resistance of the proposed method against different types of attacks is considered in the
continuation. Tables 4–7 show the average (mp

avg) and the minimum match percentage (mp
min), together

with the number of successful watermark extractions (ne) above threshold mp
th. The mp

th value is set
to 67.19% as determined in [48]. The last column of Tables 4–7 represents the average mp

avg and the
minimum mp

min match percentage of all test cases (marked with ∗), while ne is the total number of
successful watermark extractions (marked with †).

4.2.1. Affine Transformation Attacks

The main advantage of the PCA-based approaches is robustness against affine transformation
attacks (see Table 1 in Section 2). Therefore, the proposed method was faced firstly with this type
of attack. One-hundred random test cases were performed for each point cloud. The scaling factor
was chosen randomly between 0.1 and 4.0, the translation in each coordinate direction between −2.0
and 2.0, and the rotation around each axis between 0.0 and 2π radians. The results of individual and
combined affine transformation attacks are given in Table 4. The watermark was unable to extract
only in 3 out of 500 cases. Although the majority of test cases succeeded, we have checked the failed
cases. It turns out that the orientation of WA was inappropriate for the ICT algorithm in all three cases.
A slight rotation of WA remedied the problem. Figure 7a shows an example of the combined affine
transformation attacks, where WA is in the red colour. The point cloud was aligned completely with
the original one and, the match percentage mp = 100%.

Table 4. Affine transformation attacks.

File F1 F2 F3 F4 F5 Avg/Min ∗/Total †

Translate attack

mp
avg (%) 99.98 100.00 100.00 100.00 98.27 98.27

mp
min (%) 98.44 100.00 100.00 100.00 93.75 93.75 ∗

ne 100 100 100 100 100 500 †

Scale attack

mp
avg (%) 99.91 100.00 100.00 100.00 98.91 98.27

mp
min (%) 98.44 100.00 100.00 100.00 93.75 93.75 ∗

ne 100 100 100 100 100 500 †

Rotate attack

mp
avg (%) 99.38 99.91 97.27 100.00 95.85 98.48

mp
min (%) 98.44 98.44 56.25 100.00 71.88 56.25 ∗

ne 100 100 98 100 100 498 †

Combined affine transformation attacks

mp
avg (%) 99.33 99.89 97.45 100.00 91.49 98.23

mp
min (%) 98.44 98.44 62.55 100.00 78.12 62.55 ∗

ne 100 100 99 100 100 499 †
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Various examples of combined attacks: (a) Affine transformation (mp = 100%). (b) Affine
transformation and cropping (mp = 95.31%). (c) Affine transformation, cropping and random removal
(mp = 93.75%). (d) Affine transformation and local noise (mp = 96.88%). (e) Affine transformation
and cropping with slantwise cut (mp = 87.50%). (f) Affine transformation and complex cropping
(mp = 93.51%).

4.2.2. Cropping Attacks

PCA-based methods cannot handle cropping attacks because of calculating the point cloud
centroid. Even the smallest cropping may, therefore, have a huge impact on the position of a centroid.
On the contrary, the proposed method copes well with the cropping attacks. In our case, WA was
cropped from the top by various amounts as shown in Figure 8. The watermark was extracted, even
when WA was cropped to 80% of the points. A combination of affine transformations and cropping
attacks was the next experiment. The amount of croppings were changing randomly between 0% and
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50%. The majority of the cases were solved successfully, as shown in Table 5. Only 9 out of 500 test cases
failed, i.e.,the watermark was not extracted. Figure 7b shows an example where 60% of WA points was
cropped (the attacked 3D point cloud is plotted in red, the aligned model in blue, while the original
points cloud is displayed in black). Another example of a cropping attack is presented in Figure 7e,
where the bottom of WT was cropped with a slantwise cut at approximately 50%. The watermark was
extracted successfully in both cases.
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Figure 8. Cropping top attack.

Table 5. Combined affine transformation and cropping attacks.

File F1 F2 F3 F4 F5 Avg/Min ∗/Total †

mp
avg (%) 99.56 98.08 95.14 100.00 87.44 96.04

mp
min (%) 96.88 89.06 71.88 100.00 53.12 53.12 ∗

ne 100 100 100 100 91 491 †

4.2.3. Random Removal Attacks

The cluster-based approach, developed by Agarwal and Prabhakaran [27], constructs a cluster-tree
using the nearest neighbour heuristic. Thus, their method is vulnerable to random removal attacks
that have an impact on the cluster construction. Figure 9 shows that the proposed method can extract
the watermark, even up to 70% of randomly removed points.
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Figure 9. Random removal of the points.
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The combined cropping and random removal attacks were performed (Table 6) in the next
experiments. All 500 test cases succeeded. The amount of cropping and the percentage of removed
points were changed randomly between 0% and 50%. Table 6 also shows the results of the combined
affine transformation, cropping, and random removal attacks. Our method extracted the watermarks
in 488 out of the 500 test cases. Figure 7c shows an example where 50% of points were cropped, and
then 50% of the remaining points were removed randomly. The method was successful in this case.
Another example of a cropping attack is presented in Figure 7f, where even more complex cropping
was performed (large portions of the model are removed from the top, while the bottom of the model
is removed completely).

Table 6. Combined attacks with a random removal of points.

File F1 F2 F3 F4 F5 Avg/Min ∗/Total †

Combined cropping and random removal attacks

mp
avg (%) 96.52 95.31 98.34 100.00 92.17 96.47

mp
min (%) 85.94 81.25 87.50 100.00 71.88 71.88 ∗

ne 100 100 100 100 100 500 †

Combined affine trans., cropping and random removal attacks

mp
avg (%) 97.33 94.20 91.75 99.98 85.47 93.75

mp
min (%) 85.94 81.25 98.44 54.69 54.96 93.75 ∗

ne 100 100 99 100 89 488 †

4.2.4. Noise Attacks

This kind of attack is considered to be the most difficult. As the watermark is embedded by
changing the coordinates of the points, any further alteration can damage the embedded watermark
regardless of the watermarking approach. Thus, none of the existing methods can resist this kind of
attack adequately. Indeed, the watermark can be protected only to a certain extent. A local noise attack
is less vulnerable than a global noise attack. The watermark can resist a higher amount of locally, rather
than globally, added noise (see Figures 10 and 11). This can also be seen in Table 7 that summarises
the results of the combined attacks. Figure 11d shows an example where the noise between 0.00 and
0.18 (according to the height of the 3D model, normalised between −1 and 1) was added randomly in
the upper part of WA. The noise may have an impact on the convex hull. It can change the edges of
triangles in such a way that the correspondence between triangles ti and tj cannot be found.
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Figure 10. Local noise attack.
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Figure 11. Global noise attack.

Table 7. Combined attacks with noise added locally between 0.02 and 0.26 and a maximum noise
added globally between 0.0001 and 0.0002.

File F1 F2 F3 F4 F5 Avg/Min ∗/Total †

Combined affine trans., cropping, random removal and local noise attacks

mp
avg (%) 96.76 93.066 77.28 91.86 66.89 85.27

mp
min (%) 85.94 76.56 40.62 48.44 45.31 45.31 ∗

ne 100 100 70 81 41 395 †

Combined affine trans., cropping, random removal and global noise attacks

mp
avg (%) 97.33 94.09 73.86 94.06 80.59 87.99

mp
min (%) 87.50 57.81 35.94 43.75 53.12 35.94 ∗

ne 100 99 55 88 78 420 †

5. Conclusions

A new method for 3D point cloud watermarking is considered in this work. The scale estimation
and the registration of a possibly attacked point cloud with the source point cloud are done through
the use of a 3D convex hull. The method consists of the following three steps:

• Constructing the convex hulls of watermarked and original point clouds;
• Matching the triangles of both convex hulls to determine the affine transformation between them;
• Performing point cloud registration by applying the obtained affine transformation and the

Iterative Closest Point registration algorithm.

Extensive testing was done of the proposed method. It was confirmed that the method can handle
cropping attacks, which cannot be tackled by the existing PCA-based approaches. The main benefit of
these approaches is their resistance to affine transformation attacks. It was shown that the proposed
method copes with this type of attack equally well. The method is also successful with other attacks,
such as random removal attacks, affine transformation attacks, and combinations of all the mentioned
attacks. The most devastating would be an attack with noise, because it cancels out the modifications
in 3D point positions, made during the process of the watermark embedding. However, this issue is
common with all known 3D point clouds watermarking methods.
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