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Abstract 

Smartwatches have become increasingly popular in recent times because of their capacity to track different health 
indicators, including heart rate, patterns of sleep, and physical movements. This scoping review aims to explore 
the utilisation of smartwatches within the healthcare sector. According to Arksey and O’Malley’s methodology, 
an organised search was performed in PubMed/Medline, Scopus, Embase, Web of Science, ERIC and Google Scholar. 
In our search strategy, 761 articles were returned. The exclusion/inclusion criteria were applied. Finally, 35 articles 
were selected for extracting data. These included six studies on stress monitoring, six on movement disorders, 
three on sleep tracking, three on blood pressure, two on heart disease, six on covid pandemic, three on safety 
and six on validation. The use of smartwatches has been found to be effective in diagnosing the symptoms of vari-
ous diseases. In particular, smartwatches have shown promise in detecting heart diseases, movement disorders, 
and even early signs of COVID-19. Nevertheless, it should be emphasised that there is an ongoing discussion con-
cerning the reliability of smartwatch diagnoses within healthcare systems. Despite the potential advantages offered 
by utilising smartwatches for disease detection, it is imperative to approach their data interpretation with prudence. 
The discrepancies in detection between smartwatches and their algorithms have important implications for health-
care use. The accuracy and reliability of the algorithms used are crucial, as well as high accuracy in detecting changes 
in health status by the smartwatches themselves. This calls for the development of medical watches and the creation 
of AI-hospital assistants. These assistants will be designed to help with patient monitoring, appointment scheduling, 
and medication management tasks. They can educate patients and answer common questions, freeing healthcare 
providers to focus on more complex tasks.

Keywords  Smartwatches, Wearable devices, Healthcare, Monitoring, AI-assistance, Validations

*Correspondence:
Seyedeh Toktam Masoumian Hosseini
masoumiant99@gmail.com
1 Department of E‑Learning in Medical Sciences, Tehran University 
of Medical Sciences, Tehran, Iran
2 CyberPatient Research Affiliate, Interactive Health International, 
Department of the surgery, University of British Columbia, Vancouver, 
Canada
3 Department of Nursing, School of Nursing and Midwifery, Torbat 
Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
4 Professor at Department of Surgery, University of British Columbia, 
Vancouver, Canada
5 CyberPatient Research Coordinator, Interactive Health International, 
Department of Surgery, University of British Columbia, Vancouver, Canada
6 Universal Scientific Education and Research Network (USERN), Tehran, 
Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02350-w&domain=pdf


Page 2 of 26Masoumian Hosseini et al. BMC Medical Informatics and Decision Making          (2023) 23:248 

Introduction
In the mobile technology market, smartwatches are 
experiencing tremendous growth as wearables and med-
ical devices converge to monitor personal health in real-
time, including cardiovascular health measures [1, 2]. 
Consumers can now access a personalised medical data 
report through these devices, which could prove useful 
in preventing and treating diseases [3]. The rise of smart-
watches has empowered numerous patients to actively 
engage in self-care and advocate for the health of oth-
ers. With the increasing prevalence of these individuals, 
known as ’e-patients’, it is imperative for medical institu-
tions to adequately educate their students on effectively 
collaborating with and providing healthcare services 
to them. Failing to do so could potentially jeopardise 
patients’ lives [4]. Similar to the access to online tools 
that smartwatches provide for medical schools and stu-
dents, access to e-patients is also increasing. Mobile deci-
sion support tools, for example, use simple graphics to 
communicate calculator results (such as the Framingham 
Risk Score) in a way that is relevant to both the learner 
and the patient [5].

The Framingham Risk Score is an algorithm designed 
to assess the probability of developing cardiovascular 
disease over a period of 10  years [6]. Initially focused 
on coronary heart disease, it was expanded in 2008 to 
encompass cerebrovascular events, peripheral artery dis-
ease, and heart failure. Considering variables such as age, 
sex, blood pressure levels, cholesterol levels, smoking sta-
tus, and diabetes status, this risk score applies specifically 
to individuals aged between 30–79 without any previous 
history of CVD [7]. There are many apps explicitly aimed 
at patients, including simple medical calculators, e.g. 
BMI calculators, risk calculators, medication reminders, 
pharmacy finders and even diagnostic tools [8]. As many 
patients are unable to communicate their condition to 
their companions or medical staff, these smart tools will 
help caregivers be more alert and apply more appropriate 
comfort measures. The notion of comfort measures has 
gained significant attention in both nursing and medical 
literature, reflecting a systematic approach that entails 
proactive engagement as well as thoughtful restraint [9]. 
These measures can range from the simplest to more 
intricate interventions, all serving to provide support-
ive care. Importantly, they are applicable across various 
healthcare settings and warrant careful consideration 
within the clinical management of patients burdened 
with multiple chronic comorbidities [9].

The FDA has approved clinical smartwatches for 
detecting medically significant events and recording 
and processing data [10]. There are no approved directly 
addressed smartwatches in the European Union (EU). 
However, to comply with EU regulations, smartwatch 

manufacturers must navigate through various frame-
works such as the Radio Equipment Directive 2014/53/
EU and Medical Device Regulation 2017/745. These 
regulations emphasize safety standards and touch upon 
essential aspects like electromagnetic compatibility and 
efficient radio spectrum utilization [11, 12].

Smartwatches often come with advanced features like 
a heart rate monitor. These high-tech devices utilize a 
technique called photoplethysmography to accurately 
measure the user’s heart rate. By utilizing light beams 
and specialized sensors on the smartwatch, changes in 
blood volume flowing through the wrist can be precisely 
quantified. This process generates a PPG waveform that 
provides valuable data for determining an individual’s 
heart rate [13, 14]. One instance where this technology 
proves beneficial is when an epilepsy patient wears a 
smartwatch equipped with an artificial intelligence (AI) 
algorithm capable of identifying high-risk seizures and 
initiating human assistance promptly [15]. This particular 
smartwatch provides physiological data to monitor vital 
signs and issues alerts that help save lives, as attending 
a seizure is associated with a lower rate of severe injury 
and death [15]. Other wearable devices run algorithms 
that detect conditions such as atrial fibrillation or medi-
cally necessary conditions where early intervention can 
positively impact the quality of life. Researchers have 
shown that wearable biomarkers are more accurate at 
predicting blood and urine measurements than two vital 
signs in the clinic. They can provide clinicians with pre-
dictions from thousands of measurements in a fraction 
of the time it takes to measure a single vital sign [13]. It 
is important to note that these smartwatches are based 
on algorithmic interpretations of clinical outcomes, and 
their predictive power ultimately depends on the support 
and strength of their algorithms [16, 17]. In this review, 
we discuss the applications of these wearable devices to 
patient health and HealthWorks’ educational initiatives. 
This article seeks to answer several questions, including 
whether smartwatches can be trusted for clinical meas-
urements and what might facilitate the development of 
trust in these devices.

Method
Reason for scoping review
A scoping review was conducted since AI and machine 
learning algorithms are emerging technologies applied to 
smartwatches. Additionally, scoping reviews are helpful 
when attempting to evaluate the effectiveness of large-
scale or emerging research [18].

Scoping reviews aim to identify and map relevant evi-
dence on a topic, field, context or question that meets 
predetermined inclusion criteria [19, 20]. They provide 
important insights into the characteristics of a body of 
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evidence and can highlight knowledge gaps for subse-
quent syntheses. Unlike traditional systematic reviews, 
scoping reviews have broader questions and may include 
multiple types of evidence. Scoping reviews are useful 
for obtaining a comprehensive overview of the evidence 
and identifying gaps in the existing literature without 
the need for methodological judgement or risk of bias 
assessment [21]. They differ from evidence maps, which 
present the results of a systematic search in searchable 
databases to identify knowledge gaps and future research 
needs. Scoping reviews also differ from other forms of 
evidence synthesis. Scoping reviews do not make rec-
ommendations for clinical practise and often do not 
assess methodological quality or risk of bias in studies. 
The PRISMA ScR is a new approach to reporting scop-
ing reviews based on the popular PRISMA statement and 
checklist [22].

A scoping review can collect different types of evi-
dence from different areas, including both empirical and 
non-empirical sources [23]. This type of review is suit-
able for investigating, identifying, presenting, reporting, 
or discussing features or concepts across a wide range of 
evidence sources [24]. Scoping reviews are particularly 
useful when comparing measures is neither practical nor 
feasible due to cost or time constraints. Although they 
often involve reviews of numerous sources, these reviews 
do not expect or allow for statistical pooling, formal risk 
assessment, or quality assessment [25].

Search strategy
This study’s methodology was based on the scoping 
review methodology that was developed by Arksey and 
O’Malley [20] and used the methodological enhancement 
suggested by Levac et al. (2010) [26]. As outlined in this 
framework, scoping reviews have six stages: (1) identify-
ing a research question; (2) identifying relevant studies; 
(3) selecting studies; (4) charting the data; (5) collating, 
summarizing and reporting the results and (6) consulting 
with stakeholders.

Stage 1: Identifying the research question
In consultation with the research team and key stake-
holders, the overall main research question developed 
is: ‘Whether all smartwatches can be trusted for clinical 
measurements and what might facilitate the develop-
ment of trust in these devices?’.

Stage 2: Identifying relevant studies
Search strategy and information sources
First step in identifying articles related to this topic 
was to conduct a limited search of PubMed/Medline, 
SCOPUS, Embase, Web of Sciences, and ERIC. For the 
development of a comprehensive search strategy, the 
text words contained in the titles of relevant articles, as 
well as the index terms utilized to describe the articles, 
were analyzed (see Table  1). Depending on the data-
base and/or information source involved, the search 
strategy was tailored to include all keywords and index 
terms identified. Additional studies were screened 
from the reference list of all included sources of evi-
dence. We also searched a variety of grey literature 
sources in order to ensure that all relevant information 
was obtained. The review team searched relevant grey 
literature databases (such as Grey Literature Report, 
Google Scholar, OpenGrey, and Web of Science Confer-
ence Proceedings) for studies, reports, and conference 
abstracts of interest to the topic. A Research librarian 
developed the search strategy and revised it following 
input from stakeholders. In order to prevent bias, the 
research team blinded the stakeholders to the original 
search strategy that was developed. The search papers 
focused only on English-language studies. Considering 
that smartwatch medical applications have only been 
introduced to the market recently, the search period 
was restricted to the period following 2017. After con-
ducting the search, all citations identified were gath-
ered into an EndNote 8 database and duplicates were 
removed.

Table 1  Database search strategy

This table presents the search strategy for specific keywords in different databases. This column provides an overview of the steps and techniques used to retrieve 
relevant information from each database based on the keywords organised

Search strategy and queries

(smartwatch* OR wristband* OR “fitness-bound” OR “wireless watch*” OR “Wearable movement sensors”) AND (healthcare OR “health medicine” OR tele-
medicine OR medical OR clinical OR medicine OR health OR fitness OR healthiness OR wellness OR soundness OR validat* OR assessment* OR reliabl*)

Database PubMed Medline Scopus Embase Web Of Science ERIC Google 
scholar

Article 107 28 196 191 132 56 34

English 105 28 191 191 129 56 34

Total 734
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Stage 3: Study selection
Inclusion/exclusion criteria

•	 Types of research: any type of study design, in addi-
tion to randomized controlled trials (RCT and CT), 
controlled clinical trials, case studies, correlational 
studies, longitudinal studies, experimental stud-
ies, and quasi-experimental studies. There were no 
limitations regarding the study design or geographic 
location.

•	 Types of Participants: All Participants that deal with 
the healthcare system

•	 Types of interventions: The study focused on smart-
watches, wristband, fitness-bound, wireless watch, 
Wearable movement sensors

•	 The studies included focused on any of the following 
areas: (a) development; (b) implementation; (c) eval-
uation; or (d) comparative validation of such meas-
ures.

•	 Types of outcomes: satisfaction, knowledge, skills, 
attitudes, and behaviours were the outcomes of inter-
est.

Two screening stages took place in the review process: 
a review of the title and abstract, followed by an assess-
ment of the complete text. The initial phase involved 
M.M.H and T.M.H, who independently scrutinized all 
obtained citations to determine if they met a set of mini-
mum inclusion criteria. In order to ensure that the cri-
teria were robust enough to capture any articles relating 
to smartwatches, a sample of abstracts was tested prior 
to undertaking the abstract review. The full-text review 
included any articles that either or both reviewers con-
sidered to be relevant. The full-text articles were then 
independently assessed by both investigators to deter-
mine if they fulfilled the inclusion and exclusion criteria. 
A Cohen’s κ coefficient of the agreement was calculated 
both at the title and abstract review phase and at the full 
article review phase in order to determine the inter-rater 
agreement. In case of disagreements regarding study 
eligibility at the full-text review stage, any further disa-
greements were resolved through discussion with a third 
investigator until consensus was achieved. In the final 
scoping review, the search results and the inclusion pro-
cess were comprehensively reported along with a flow 
diagram reflecting Preferred Reporting Items for System-
atic Reviews and Meta-analyses extension for scoping 
reviews (PRISMA-ScR) (Fig. 1).

Stage 4: Data collection
Data extraction was performed using the PRISMA-ScR 
Checklist, which consists of 22 items developed by IBJ 

[27]. To ensure that the form captured the information 
accurately, the form was reviewed by the research team 
and pretested by all reviewers before implementation. 
Studies characteristics that were extracted included to 
publication year, publication type (eg, original research 
or review type), study design, country, participants’ 
population characteristics, intervention setting, descrip-
tion of quality indicators including definition, numerator, 
dominator, psychometrics of the indicators (face validity, 
reliability, construct validity, risk adjustment). The data 
abstraction process was conducted in duplicate by two 
reviewers who independently extracted the data from all 
included studies.

Stage 5: Data summary and synthesis of results
Quality assessment is not an integral part of scoping 
reviews, but in this review, the quality checklist devel-
oped in BEME guide 11 was used to assess quality [28]. 
Based on the provided checklist, excellent quality stud-
ies met eight or more of the established criteria. Studies 
deemed moderate quality fulfilled six or seven indicators, 
while studies with low quality met five or fewer criteria. 
Each study was assigned either a 0 or 1 for each index 
measurement. Studies that met the index received a posi-
tive score, whereas studies that did not meet the index or 
were vaguely described received a zero score. Using the 
IBJ checklist as a guide, selected articles were analyzed 
and themes were extracted.

Stage 6: Consultation
There is a suggestion by Levac et  al. that the consulta-
tion stage provides opportunities for stakeholder involve-
ment, which may provide insights beyond those that have 
been described in the literature. An integral part of the 
study’s healthcare-centred approach was the involvement 
of stakeholders, including a patient partner who served 
as both a consultant and knowledge user throughout the 
study.

Result
Descriptive
Following the articles’ quality assessment, 32 studies 
were analysed for data extraction. The majority of stud-
ies were conducted in the United State America (USA) 
(N = 10), three in China, three in Taiwan, three in United 
Kingdom (UK), in countries including Finland, Germany, 
Norway and Spain, each one two studies, and one study 
in the rest (Greece, Switzerland, Slovenia, Canada, Aus-
tralia, Belgium, Brazil and France). Thirteen of the stud-
ies were experimental, four were cohort studies, and one 
study of each of the designs (longitudinal cohort study 
design, longitudinal observational study, multicenter 
observational study, randomized controlled trial (RCT), 
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randomized, accelerometer data, combined method, 
feasibility study, observational study, prospective, non-
randomized, and adjudicator-blinded study, Prospective, 
single-arm, cross-sectional study, prospective compara-
tive and prospective study). Three studies did not have 
a specific design due to the nature of the research, and 
one study was a systematic review (Table  2). As shown 
in Table  2, the geographical distribution of the stud-
ies, the purpose, the outcome and the (Table 2) number 
of participants are listed with a description of the type 
of study. In this review, the text was categorised accord-
ing to the themes addressed in the studies, e.g. method-
ology, results and impact. We also identified the main 
themes and patterns that emerged from the analysis. This 
helped researchers understand the study’s impact. These 
included six studies on stress monitoring, six on move-
ment disorders, three on sleep tracking, three on blood 
pressure, two on heart disease, six on covid pandemic, 
three on safety and six on Validations. Figure  2 shows 
the distribution of these studies graphically. An analy-
sis of the keywords used in these studies indicates that 
most were related to smartwatches, Covid-19, and digital 

health. A visual representation of their distribution can 
be found in Fig. 3.

Stress level
As one of the leading branches of human–computer 
interaction, affective computing uses technology to 
detect a person’s emotional state [29]. A stress detec-
tion system can be used for various purposes, such as 
monitoring the stress of drivers, detecting and alleviat-
ing the stress of passengers, monitoring the stress levels 
of employees, and assisting psychologists with online 
therapy sessions [30]. Stress detection occurs in various 
environments, including laboratories, hospitals, clin-
ics, offices, schools, cars and everyday situations. When 
the brain receives sensory signals from the eye, nose and 
ear, it triggers a stress response. As a result of the stress 
response, heart rate increases, muscles tense, blood pres-
sure rises, frequency of inhalation increases, blood sugar 
levels rise, and senses become heightened. Perceived 
stress is the way a person interprets and analyses stress-
ful situations [31]. It can be assessed through regular 
self-reporting by individuals. Self-reported perceptions 

Fig. 1  An overview of the article selection process according to ScR-PRISMA
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of stress can misrepresent stressful episodes, and peo-
ple tend to forget stressful events, contributing to dis-
crepancies between physiological and perceived stress 
levels [32]. Instruments to measure stress should be 
unobtrusive and non-invasive to collect data accurately. 
The latest technologies provide us with non-invasive and 
completely transparent devices to monitor stress. Heart 
rate variability (HRV) is one of the best-known signals for 
stress detection. Several features have been used in the 
literature to distinguish between stress and relaxation, 
including mean RR, mean heart rate, normalised low fre-
quency, sympathovagal balance index (SVI) and morpho-
logical variability (MV) [33]. Combining features from 
smartphones and wearable devices (EDA, HR sensors) 
would be necessary to develop a successful stress detec-
tion system. Collecting contextual information (activity, 
social interaction, GPS and ambient light) about a user 
will also help researchers to anticipate their condition 
[34, 35].

Photoplethysmography (PPG) is a low-cost optical 
technique for measuring blood volume pulse by light 
absorption by blood. BVP features can be used directly 
or to extract heart rate variability or IBI features. A wear-
able physiological measurement device must provide 
high-quality data that is complete, relevant, timely, suf-
ficiently detailed, appropriately presented and contains 
enough contextual information to facilitate decision-
making and provide accurate results. Muhammad Ali 
Fauzi’s study [36] compared three learning strategies for 
stress detection tasks. All three strategies used logis-
tic regression (LR) as a machine learning model. Unlike 
individual learning, this learning strategy is based on a 

central server that combines the data and trains the inte-
grated model. The user devices only need to perform 
the task of detecting stress and inferring its cause, while 
the server performs the tasks of feature extraction and 
training the model. In this study, a comparison is made 
between individual, centralised and federated learning 
for smartwatch-based stress detection. Individual learn-
ing provides higher accuracy and privacy than central-
ised and federated learning. The results of this study 
show that federated learning performs relatively medio-
cre in stress detection. The average accuracy was 0.8575, 
the average precision was 0.9892, the average recall was 
0.5208, and the average F1 -measure was 0.6339. In his 
study, Fauzi proposed an application that could monitor 
the physiological signals of health professionals to detect 
occupational stress. The smartwatches would collect data 
from individual sensors, such as heart rate and skin tem-
perature, to detect changes in physiological signals. The 
data would then be used to create individual classifiers 
and sets of classifiers to detect stress levels. In addition, 
the experiment found that these classifiers could be used 
in real-time to monitor the stress levels of hospital staff 
effectively.

In one interesting review study, a wearable platform 
on the wrist was used to detect and analyse cortisol from 
small amounts of sweat to study stress [35]. In some 
studies, the Empatica E4 wristband includes biomark-
ers that measure skin temperature, movement-based 
activity (accelerometer), electrodermal fluctuation and 
blood volume pulse [37–40]. Studies have used various 
wearable technologies, including Microsoft Band (10%), 
Cortiwatch (10%), ARM -Cortex4 smart wristband with 

Fig. 2  A graphical representation of the distribution and classification of studies based on the use of smartwatches
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DSP functionality (10%) and Empatica E4 (10%), which 
detects and analyses cortisol in small amounts of sweat 
on the wrist to detect stress [41]. A wearable device, such 
as a smartwatch sensor, and machine learning techniques 
can be used to detect stress in hospitals. However, some 
wearable devices are not user-friendly and uncomfort-
able to wear at work (e.g. devices worn on the chest, GSR 
sensors positioned with the finger, etc.). A study by Fauzi 
proposed a method for detecting continuous stress using 
single classifiers and classifier ensembles. This study used 
seven machine learning methods for stress detection, 
including Naive Bayes, Support Vector Machines, Neural 
Networks and an ensemble approach. It was found that 
single classifiers had the best accuracy, LR had the best 
precision, and NN had the best recall for stress detection. 
In addition, the ensemble approach performed better 
than all individual classifiers [37].

Movement disorders
Several studies have shown that smartphones can track 
symptoms of various diseases over the long term, includ-
ing chronic pain, rheumatoid arthritis, heart failure and 
COVID-19. It allows researchers to understand better 
how symptoms change over time, which can help inform 
treatment and management plans. The study by Syed 
Mustafa Ali [42] examined the longitudinal engagement 
of users of a smartwatch app in people living with MLTC-
M, stratifying engagement patterns by age, gender, num-
ber of disease domains and question type. In the ’Watch 
Your Steps’ study, people living with MLTC-M were 

asked to complete several daily and weekly questions and 
active tasks over 90 days. The Google Fit Research team 
developed the "Watch Your Steps" study app, which asked 
participants to complete three types of tasks: Core symp-
tom questions, organ-specific questions and active tasks, 
including a sit-stand test, a walk test and a tap test. Fossil 
Sport smartwatches were preloaded with the study app 
and loaned to the participants. They were instructed to 
dock their watch every night for charging, and contact 
details for support in case of problems were included in 
the instruction manual. The engagement was recorded 
over time using longitudinal charts of daily completion 
rates. Fifty-three individuals with MLTC-M participated 
in the study. The majority were white, and the aver-
age completion rate was 45%. Most participants did not 
find the data collection tasks distracting, and almost all 
reported that the smartwatch did not interfere with their 
normal daily activities. They showed that using a smart-
watch to collect health data is feasible and acceptable for 
people with MLTC-M over 90 days. This study suggests 
that people living with MLTC-M can use smartwatches 
to report multiple symptoms per day and that this data 
could be integrated into electronic health records to sup-
port clinical care.

Autism is a disorder with three characteristic symp-
toms: social development, communication and repetitive 
behaviours. These behaviours occur when a child tries to 
regulate sensory input from their environment. The study 
by Amiri et  al. (2017) [43] developed an Internet-of-
Things (IoT) framework called WearSense that uses the 

Fig. 3  Keyword analysis of studies
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sensory capabilities of modern smartwatches to detect 
stereotypic behaviours in children with autism. They 
recruited 12 healthy subjects aged 23 to 33  years, from 
whom 165 samples were collected. They also recruited 
two subjects aged 15 and 16 who had been diagnosed 
with autism and recorded sensor data from them as they 
went about their regular daily routines. The subjects were 
asked to perform three tasks: hitting their hand in front 
of their face, drawing on a piece of paper and bumping 
their head. Participants wore a Moto360 SmartWatch 
protected by a 3D-printed shield that sent and stored 
data to a smartphone via Bluetooth. The study employed 
the built-in accelerometer of a smartwatch to accurately 
detect three distinct behaviors commonly observed in 
children with autism: hand flapping, painting, and sob-
bing. The processing component extracted 34 distinct 
features in each dimension of the tri-axis accelerometer, 
yielding a total of 102 discernible characteristics. Subse-
quently, several classification techniques were evaluated 
and compared for efficacy; ultimately demonstrating 
that an ensemble comprising 40 decision trees K-fold 
cross-validation rendered the highest level of accuracy 
at approximately 94.6%. This impressive degree of accu-
racy effectively underscores both the high caliber data 
captured from the smartwatch as well as commendable 
feature extraction methodologies implemented through-
out this inquiry. Furthermore, employing a smartwatch 
for identifying these targeted behaviors holds significant 
promise in facilitating ongoing monitoring efforts per-
taining to individuals who manifest autistic tendencies—
thereby enabling comprehensive analysis and informed 
decision-making amongst parents, caregivers, and clini-
cians alike.

The system had an accuracy of 96.7% in detecting three 
autistic actions. Juan C. Torrado’s [44] study focused on 
using smartwatches to help people with autism spectrum 
disorders with emotion regulation problems. It also pre-
sents and evaluates a smartwatch and smartphone system 
designed to accomplish these tasks. The smartwatch in 
this system detects anger outbursts and displays self-reg-
ulation activities previously obtained from the caregiver 
(smartphone). The detection is done through the smart-
watch’s sensor technology and involves a process of data 
collection, training, and evaluation. Smartwatches have a 
small screen and a tactile surface, so interaction is mainly 
through touch and sliding. There are some recent studies 
on text input approaches, but they limit ourselves to the 
simplest known interaction options: short touches and 
horizontal sliding. The smartwatch authoring tool has 
been implemented on the Android platform to make it as 
easy as possible for family members, caregivers, or others 
who are responsible for the person to use it. They used 
LG Watch Urbane smartwatches, a Nexus 5 smartphone, 

and an Android Wear interface to experiment with self-
regulation strategies. They designed a simple assistance 
system that included linear sequences of "screens" with 
images, text, animations (GIFs), and positive reinforce-
ment at the end with personalized content and a ques-
tion format. They showed the results for each day and 
each user and enumerated the events when the self-reg-
ulation strategies were triggered. The results showed that 
the smartwatch helped users regain a state of calm. They 
found that the smartwatch can help individuals with alex-
ithymia and emotional dysregulation control their stress 
episodes triggered by various stimuli, except for the 
learning phase of the experiment.

Clinicians and researchers rely on patient self-reports 
to understand the mechanisms of falls, but objective, 
real-world fall data are lacking. Providing clinically use-
ful, objective measures of adherence to assistive devices 
could help reduce fall risk. Advances in machine learn-
ing have enabled activity recognition systems to moni-
tor mobility in the elderly. Such systems work best when 
the information contains patterns that differ significantly 
between activities. In the study by Stephen A et al. (2019) 
[45], they tested whether a smartphone or smartwatch 
could detect whether an older adult was walking with 
or without an assistive device. They hypothesized that 
smartwatches would perform better than smartphones. 
They recruited 20 older adults from an adult day centre in 
Evanston, IL. They completed the Berg Balance Scale and 
Mini-Mental State Exam and provided written consent 
witnessed by a third person. They collected sensor data 
from participants who walked with and without assistive 
devices while completing the six-minute walk test, the 
10-m walk test, and the standing and walking time tests. 
A physical therapist monitored participants’ vital signs 
and provided on-call assistance to prevent falls. Partici-
pants wore an Android smartphone with a custom app 
that recorded triaxial accelerometer and gyroscope data 
at a frequency of approximately 50 Hz. Participants wore 
a phone and watched with a triaxial accelerometer, and 
data were collected throughout the session, including 
rest breaks. They collected enough data to train our clas-
sifiers with hundreds of samples and compared the classi-
fication accuracy of the smartphone with the smartwatch 
for all types of cross-validation. Fourteen older adults 
conducted a study in which they wore a smartphone and 
a smartwatch. Using accelerometer data, they trained 
machine learning classifiers that could predict whether 
a participant walked with or without an assistive device. 
They found that smartwatches provided much higher 
quality data for detecting walkers and canes compared 
to smartphones and that a second sensor on the hip was 
required for the user-generated classifiers to make the 
most accurate predictions.
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Aggressive behavior is a prevalent issue among indi-
viduals diagnosed with dementia. Although caregivers 
have traditionally relied on direct observation to identify 
such behavior, this approach has limitations. However, 
advancements in technology present promising opportu-
nities for addressing this challenge. Specifically, computer 
vision and human activity recognition technology, cou-
pled with wrist-mounted inertial measurement units like 
smartwatches, holds great potential in accurately detect-
ing aggressive events within healthcare and elderly-care 
facilities. To explore these possibilities further, F Tch-
uente et al. (2020) [46] conducted a study involving wear-
able smartwatch technology combined with machine 
learning techniques to classify human aggressive behav-
ior. The research team collected data from accelerometer 
and gyroscope sensors embedded within Microsoft Band 
2 devices. These recordings were subsequently analyzed 
using the Waikato environment for knowledge analysis, 
leveraging six distinct machine-learning classifiers along 
with three feature selectors. The selection process for 
classification models and feature selectors was based on 
various performance metrics, including accuracy, sen-
sitivity, specificity, F-score, and Matthews correlation 
coefficient—an established measure used to evaluate pre-
dictive models’ quality across imbalanced data sets. The 
study analyzed various classification methods and found 
that the k-nearest neighbors algorithm combined with 
the ReliefF feature selector exhibited exceptional effec-
tiveness in differentiating aggressive and non-aggressive 
actions, boasting a remarkable accuracy rate of 99.6%. 
Additionally, this method demonstrated high sensitiv-
ity (98.4%), specificity (99.8%), precision (98.9%), F-score 
(0.987), and Matthews correlation coefficient (0.984). 
Conversely, models utilizing naïve Bayes or support 
vector machines performed poorly in this context. Fur-
thermore, their findings revealed that wearing a smart-
watch on the dominant wrist was the optimal approach 
for single-watch classification. This research successfully 
showcased how accelerometer and gyroscope data from 
smartwatches can be harnessed to identify aggressive 
movements with great precision effectively.

Sleep tracking
Sleep apnoea  is a sleep disorder in which breathing is 
interrupted and is associated with various health prob-
lems. The current diagnostic system for this disorder is 
costly, resulting in limited accessibility. Several meth-
ods have been proposed to detect sleep apnoea, but 
none focus on smartwatch technology. ApneaDetec-
tor is a smartwatch-based system developed by CHEN 
et  al. (2021) [47] that uses built-in sensors to detect 
sleep apnoea. The system processes raw accelerometer 
data using signal denoising and calibration techniques 

to detect breathing cycles and possible apnoea events. 
According to their clinical study, 92% of OSA and 70% of 
hypopnoea events produce signal spikes that the system 
can detect. By removing linear trends in the accelerom-
eter data for apnoea events using the first-order differ-
entiation technique, spikes in normal sleep can also be 
identified from the calibrated data. A clinical sleep study 
was then conducted at Penn State Milton S. Hershey 
Medical Centre with 20 subjects using the ApneaDetec-
tor smartwatch to collect sensor data and evaluate differ-
ent classification algorithms for sleep events. The study 
found that while the ApneaDetector accurately classified 
normal and sleep apnoea events, it had problems with 
more specific categorisations such as OSA, CSA and 
hypopnoea. However, the estimated total sleep time is 
acceptable for calculating the AHI value for diagnosing 
sleep apnoea. This work used the sensor data to calculate 
AHI, a standard metric for diagnosing sleep apnoea.

A pilot study used a smartwatch with seven sensors 
to screen for OSA by generating respiratory waveforms 
and detecting sleep–wake states using PPG signals. A 
machine learning algorithm established an initial screen-
ing model, evaluated the risk of sleep apnea, and utilized 
acceleration signal from the wrist for effective signal 
screening and abnormal scene discrimination. Partici-
pants were recruited from the Outpatient Department of 
Chinese PLA General Hospital. Physicians conducted a 
full examination on patients before testing for sleep mon-
itoring. A detailed assessment of their sleep habits, physi-
cal condition, symptoms and complications was carried 
out. The study used polysomnography to compare the 
smartwatch against medical devices in diagnosing OSA 
among 20 patients. Results showed that the screen-
ing algorithm from the smartwatch is consistent with 
those from medical tests and had similar predictive abil-
ity compared to HSAT or PSG. In summary, PPG-based 
smartwatches were more effective than simultaneous 
in-lab PSG or HSAT devices when screening suspected 
cases of OSA [48].

Consumer wearables like activity trackers, smart-
watches and rings can accurately measure sleep param-
eters with valid data collection and analysis. A study 
compared the Oura ring’s sleep data to a medically 
approved actigraphy device in 45 healthy individu-
als aged between 18–55 years old who wore Gear Sport 
smartwatch, ActiGraph wristband, and Oura ring for 
a week. The Oura ring uses various sensors to estimate 
heart rate variability, respiratory rate, physical activ-
ity intensity along with acceleration and gyroscope data 
while wGT3X-BT by ActiGraph measures wrist accel-
eration in three orthogonal axes at 80 Hz for estimating 
sleep parameters. The study examined 4 sleep attributes 
using the Cole-Kripke algorithm and Troiano wear time 
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validation. Results revealed that the Oura ring was more 
accurate in detecting these attributes than Samsung Gear 
Sport smartwatch [49].

Blood pressures
Hypertension is a leading risk factor for heart disease, 
and unvalidated devices cannot be used in clinical prac-
tice. To increase the reliability of smartwatch-based BP 
measurements, more research is needed on both nor-
motensive and hypertensive subjects. In Falter’s study 
[50], consecutive patients scheduled for 24-h ambula-
tory blood pressure monitoring were recruited from the 
cardiology outpatient clinic. Measurements were taken 
using validated devices including an automatic cuff-based 
upper-arm sphygmomanometer and a Samsung Gal-
axy Watch Active 2 smartwatch calibrated at inclusion. 
Patients performed multiple measurements with both 
conventional BP monitors and smartwatches over a mini-
mum of 24  h to ensure accuracy. A total of 40 patients 
participated in the study, The smartwatch overestimates 
BP up to 140  mmHg, after which it underestimates BP, 
illustrating the presence of proportional and differential 
bias. The precision of the smartwatch measurements is 
higher at higher BP values, while the precision of the gold 
standard method is higher at lower BP values. Daytime 
smartwatch measures were accurate for measuring blood 
pressure at 135/85 mmHg. The sensitivity and specificity 
were 84.6 and 88.9%, respectively. Blood pressure vari-
ability was higher in the ABPM measurements as com-
pared to the smartwatch measurements, and the CV was 
significantly lower in the smartwatch measurements. The 
results of this study indicate that the smartwatch cur-
rently suffers from an anchoring point that is set when 
calibrating the device, resulting in an overestimation of 
lower BPs and an underestimation of higher BPs. The 
Samsung Galaxy Watch Active 2 shows a systematic bias 
toward a calibration point, overestimating low BPs and 
underestimating high BPs, and is not ready for clinical 
usage.

The study by Mark Tsou [51] evaluated the applicability 
of smartwatches in PM2.5 health assessment by evaluat-
ing whether smartwatches are good complements to cer-
tified medical devices for PM2.5 health studies, especially 
for developing countries. A total of 49 subjects were 
recruited. Each subject carried a small low-cost sensing 
device for personal PM2.5 and temperature monitoring 
for 7 consecutive days. The smartwatch employs opti-
cal HR measurement technology, and the data can be 
downloaded from Garmin Connect. During the same 
monitoring period, subjects wore smartwatches and ECG 
monitor devices (RootiRx, Rooti Labs Ltd.,Taipei, Tai-
wan) for 2 consecutive days. The activities recorded were 
categorized as follows: resting, commuting, working, 

cooking, worshipping, shopping, exercising, eating, bath-
ing/showering, sedentary activities, and other activities. 
PM2.5 levels were significantly associated with heart rate 
(HR) in males and females aged 40 to 64 years and 65 to 
75 years, respectively. The effects of PM2.5 on HR were 
presented as percentage changes per interquartile range 
(IQR) increase, and 95% confidence intervals (CI) were 
included. Heart rate was associated with personal PM2.5 
exposure in models adjusted for subject, age, gender, 
body mass index, temperature, activity, and time of day. 
The results indicated that the elevated PM2.5 concen-
tration was significantly associated with G-HR for low-
intensity activities and marginally associated with G-HR 
for moderate- to high-intensity activities.

Commercial smartwatches offer a potential strat-
egy for healthy behaviour modifications through 24-h 
BP, dynamic BP variability and heart rate monitoring. 
However, there is currently insufficient evidence to sup-
port their use in improving hypertension management. 
Yen [52] conducted a single-blinded, two-arm study 
to test the effectiveness of a commercial smartwatch 
with BP-monitoring feature. The study included adults 
aged 20–65 living in Taipei City and had an experimen-
tal group (wearing ASUS VivoWatch BP) and control 
group (using Mi Smart Band 3 without BP monitoring). 
Both groups had similar characteristics at baseline, but 
the experimental group showed significant improve-
ments in DBP, SBP, resting HR, body weight, BMI, body 
fat, and skeletal muscle index compared to the control 
group. Participants’ blood pressure and resting heart 
rate improved after 3 months of using a smartwatch with 
BP-monitoring feature. Their body weight, BMI, body 
fat and skeletal muscle index also decreased. The smart-
watch increased awareness of high BP and helped modify 
related risk factors. However, only DBP had a significant 
correlation between the data from the smartwatch and 
sphygmomanometer.

Heart disease
The Kardia Band is an Apple Watch accessory that can 
diagnose atrial fibrillation (AF) through an automatic 
algorithm. In a non-randomized study [53], patients with 
AF wore the KB before and after scheduled elective CV 
procedures. The accuracy of the KB automated algorithm 
was evaluated by comparing its results to physician inter-
preted KB rhythm strips and simultaneous ECGs. The 
study found that KB automated interpretation had high 
sensitivity and specificity in diagnosing AF compared to 
physician interpreted 12-lead ECG and KB rhythm strip. 
The algorithm correctly diagnosed AF with 93% sensitiv-
ity, 84% specificity, and a K coefficient of 0.77 when com-
pared to electrophysiologist-interpreted ECGs. Physician 
interpretation showed similar results with 99% sensitivity, 
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83% specificity, and a K coefficient of 0.83 for assessing 
the quality of KB tracings produced by smartwatches.

PPG technology is utilized for passive and continuous 
monitoring of AF detection algorithms through modern 
wearable devices. The algorithm should have low compu-
tational cost and memory requirements to ensure supe-
rior diagnosis. A study evaluated the accuracy of the AF 
detection algorithm by obtaining ECG waveforms and 
PPG signals from patients undergoing AF catheter abla-
tion while considering other arrhythmias’ impact on it. 
The study included 116 patients with paroxysmal AF and 
40 patients with persistent AF. Various PPG features were 
analyzed, including time domain and frequency domain 
analyses of PPI, peak height analysis of PPG, and ACF 
features of PPI. The majority of these features showed sig-
nificant differences between the AF and SR signals in uni-
variate analysis. Results suggest that using a longer length 
(25-beat) for analyzing PPG data leads to higher accuracy 
in discriminating AF from SR compared to using only 10 
beats. Additionally, frequent PVCs/PACs can reduce the 
accuracy of the algorithm used for detecting AF [54].

Covid pandemic
A recent study conducted at Scripps Research Trans-
lational Institute explored the potential of using wear-
able sensor data to forecast the transmission patterns 
of Coronavirus disease in 2019. The research team ana-
lyzed a dataset consisting of information from 333 par-
ticipants who actively used the DETECT smartphone 
application. This application allowed individuals to 
input their symptoms and test results while simultane-
ously collecting additional biometric data such as heart 
rate and sleep patterns through commercially available 
wearable devices. By incorporating symptom-based 
indicators and sensor-generated data into their ana-
lytical model, researchers achieved significantly higher 
accuracy levels in distinguishing between positive and 
negative cases compared to models solely relying on 
symptoms alone [55].

Technology has enabled continuous monitoring of per-
sonal health parameters, such as stress, physical activ-
ity, and sleep, during pregnancy. In order to address 
issues of this nature, the use of an Internet of Things 
(IoT)-based system and smartwatch technology for the 
monitoring of pregnant women was investigated in a 
longitudinal cohort study design. The study involved 
participants wearing smartwatches continuously from 
early pregnancy through three months after the birth 
of the child. Participation in the study was restricted to 
Finnish-speaking women carrying singletons during the 
12th—15th week of pregnancy. A total of 38 pregnant 
women were monitored during the COVID-19 out-
break in Finland for a period of eight weeks. Monitoring 

system based on IoT was developed to collect signals 
from Samsung Gear Sport smartwatches every two hours 
for 12 min. PPG signals were used to extract parameters 
related to heart rate and heart rate variability. During the 
study, the Samsung watch was used to measure physi-
cal activity and sleep, and TST and WASO were calcu-
lated for each night. To analyze the data, the Statsmodel 
Python package was used, and the dependent variables 
were measurements of HRV, physical activity, and sleep. 
The findings of this study showed that the pandemic-
related restrictions were associated with increased heart 
rate variability, stress levels, decreased physical activity, 
and decreased sleep duration. Pregnant women can ben-
efit from the use of Internet of Things (IoT) technologies 
in monitoring their daily patterns of well-being [56].

The occurrence of lung damage and potential post-
treatment injuries is a significant concern in the context 
of the widespread covid-19 outbreak. Consequently, both 
patients affected by this disease and medical person-
nel involved in their care may benefit from monitoring 
potential complications even after recovery. A valuable 
instrument that can assist with such surveillance is the 
utilization of smartwatches. In the study conducted by 
Hunter [57], Fitbit Charge 3 watches were given to each 
participant along with their anonymized study reference 
ID numbers. The data from a smartwatch was extracted, 
including the daily step count and the daily resting heart 
rate. They defined smartwatch use as wearing the watch 
for a minimum of one month. Participants were recruited 
across sites in South East England, with a mean age of 
57 years, 74% being White, and 54% having at least one 
comorbid condition. Within three months of discharge, 
the mean step count of the entire cohort increased by 
37%. At 3 months and 12 months following discharge, the 
participants’ mean heart rates were reduced by approxi-
mately 7% and 13%, respectively. While a considerable 
number of participants did not use smartwatches on a 
regular basis, this study demonstrated that smartwatches 
are capable of monitoring physical activity remotely.

Early detection of infectious diseases is crucial in order 
to reduce disease spread by enhancing self-isolation and 
enabling early treatment. Despite this, current diagnos-
tic methods involve sampling and nucleic acid-based 
tests require a substantial amount of time and money. 
Testing methods currently available are unlikely to 
identify presymptomatic carriers. Therefore, real-time 
detection of cases is imperative. It is possible to detect 
COVID-19 infection well before symptoms appear, using 
smartwatches and other wearable devices. In order to 
accomplish this, a real-time heart rate monitoring algo-
rithm was developed to detect early stages of infection. In 
this study, they explored whether wearable devices could 
detect COVID-19 at an early, pre-symptomatic stage. In 
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this manner, a method for potentially detecting the onset 
of illness in real time, in the early stages, was developed. 
In this study, two methods were developed with the 
objective of detecting aberrant physiology in humans: 
the RHR difference method (RHR-Diff) and the heart 
rate over steps anomaly detection method (HROS-AD). 
The study enrolled 5,262 participants who responded to 
surveys regarding their illness, diagnosis and symptom 
dates, illness severity, and type of symptoms. Among 
these, 4,642 reported wearing a smartwatch, of which 
3,325 wore Fitbits, 984 wore Apple watches, 428 wore 
Garmin devices, and the remaining wore other devices. 
Upon enrollment on REDCap, participants were directed 
to download the MyPHD app, which collects wearable 
device data in a de-identified and encrypted manner. 
The data collected by wearable devices included heart 
rate, steps, and sleep. The data were retrieved at inter-
vals of 15 s, 1 min, and sleep stage. Metadata and symp-
tom surveys were downloaded from the participants and 
processed using a custom-written R and Python script. 
Accordingly, 88% and 100% of individuals with symptom 
onset or diagnosis dates showed elevated signals prior to 
or at the time of onset or diagnosis, respectively. It was 
determined that the increased RHR signal had a specific 
relationship to COVID-19 by analyzing 15 cases of non-
COVID-19 illness. According to the findings, elevated 
heart rates that occur before illness can be used as a 
general indicator of respiratory illness. Infection with 
COVID-19 alters sleep and activity patterns, which can 
be monitored using a wearable device. The duration of 
sleep and the number of steps decrease at the onset of the 
outlying RHR-Diff signal that is associated with COVID-
19 illness. With this prototype, 63% of COVID-19 infec-
tions were detectable with an alarming frequency of 0.66 
per month in healthy individuals. It was determined that 
abnormal physiological events, such as elevated resting 
heart rate and increased heart rate relative to number of 
steps, can be detected using a smartwatch at or near the 
time of infection [58].

Three vaccines are currently authorized and distributed 
in the United States to prevent the spread of COVID-19. 
Although there is substantial variability in individuals’ 
immune response to vaccines, the CDC V-safe program 
found that the majority of individuals reported some sys-
temic side effects after the second dose. A recent study 
found a relationship between reactogenicity symptoms 
after vaccination and a humoral immune response. In the 
study conducted by Quer et al. (2022) [59] collected daily 
wearable sensor data from 7298 volunteers who received 
at least one dose of the COVID-19 vaccine. They hypoth-
esized that there are digital, objective biomarkers of 
reactogenicity that could be identified by detecting sub-
tle deviations from an individual’s normal resting heart 

rate. In the DETECT study, 7,298 participants received at 
least one mRNA vaccination. Of these, 5674 (78%) par-
ticipants contributed adequate data to evaluate changes 
in activity and sleep, respectively. They observed that the 
average RHR increased the day following vaccination, 
reaching a peak on day 2 and not returning to baseline 
until day 4 and 6, respectively. The majority of partici-
pants experienced an increase from their normal RHR. 
They explored several participant and vaccine character-
istics that could impact immune response, and found that 
women experienced higher RHR changes with respect to 
baseline in the 5 days following vaccination after the first 
dose only. In contrast, RHR responses vary by age, with 
individuals age 40 having the greatest increase in RHR. 
Although a direct comparison is not possible, changes 
comparable to the ones observed after the second dose 
of the Johnson & Johnson vaccine were detected in their 
cohort. After adjusting for potential confounding factors, 
prior COVID-19 infection was independently associ-
ated with a higher RHR increase after the first dose, and 
female sex was independently associated with a higher 
RHR increase after the first dose. After adjusting for age, 
device, vaccine type, and prior COVID-19 infection, 
they observed higher RHR increases from Apple devices 
on average, but not after the first dose. The first dose of 
the vaccine had minimal effect on activity and sleep, but 
the second dose caused a significant decrease in activ-
ity and an increase in sleep, which returned to baseline 
by day 2. They demonstrated that it is possible to detect 
physiologic manifestations of reactogenicity to COVID-
19 vaccination through individual changes in RHR. This 
provides a potential novel mechanism to identify indi-
viduals with either a suboptimal or exaggerated immune 
response to a vaccine. Similarly, a study using the Garmin 
Vivosmart 4 smartwatch to measure heart rate and heart 
rate variability showed that smartwatches are more accu-
rate than patients’ self-reports in predicting post-vacci-
nation physiological conditions [60].

Safety
The safety of wearable technologies in clinical settings is 
a critical factor influencing the advancement and growth 
of these tools. The integrity and accuracy of patient clini-
cal measurements obtained through these devices must 
be established to avoid any potential risks that could 
compromise the health conditions of individuals under 
medical care. Since smartwatches are primarily designed 
for commercial purposes, examining the safety consid-
erations associated with utilizing such wearable tools for 
patients becomes an essential aspect explored within this 
study.

High-frequency electromagnetic fields are produced by 
mobile phones and smartwatches. As such, these devices 
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have the potential to affect human health, although the 
issue is still under debate. Hence, in order to examine the 
safety of these devices, a prospective observational study 
was conducted in order to evaluate the potential for elec-
tromagnetic interference with CIEDs. It was conducted 
using a popular smartphone and smartwatch, which pro-
vided real-time monitoring and printing of intracardiac 
electrograms, marker channels and a 3-lead electrocar-
diogram. In total, 1,352 testing procedures were con-
ducted on 148 patients for cardiac implantable electronic 
devices, which included 51 pacemakers, 5 cardiac resyn-
chronization therapy pacemakers, 46 inverter defibrilla-
tors, 43 cardiac resynchronization therapy defibrillators, 
and 3 implantable loop recorders. EMIs were observed 
between the iPhone and an implanted dual-chamber 
pacemaker in 1 patient, but not between the Apple Watch 
and the CIED. In connecting mode, an iPhone placed 
directly over the generator was observed to cause EMI, 
which resulted in marker channel assignment being lost, 
as well as EGM loss and noise in the ventricular marker 
channels. Moreover, this study shows that there is no risk 
of EMIs between the iPhone and CIEDs, but relatively 
frequent telemetry interferences do occur between the 
iPhone and the CIEDs [61].

There is the potential for electromagnetic interference 
to adversely affect cardiac implantable electronic devices 
(CIEDs), such as pacemakers, implantable cardioverter-
defibrillators, cardioversion-defibrillators, and cardiac 
resynchronization therapy pacemakers and defibrilla-
tors. Considering their inductive charging functionality, 
smartwatches could be a significant source of electro-
magnetic interference (EMI) due to their ability to trans-
fer power wirelessly over distances up to four centimeters 
(QiTM). The magnetic components in smartwatches 
emit electromagnetic fields that can interfere with patient 
monitoring systems and defibrillators. A prospective, 
multicenter study was conducted to investigate whether 
the use of the latest generation smartwatches might 
interfere with the proper functioning of the CIED. The 
study participants were 171 patients who received CIEDs 
and presented to two centers in Athens, Greece, for rou-
tine follow-up between March and November 2019. 
Their tests were conducted on two smartwatches of the 
latest generation for potential EMI as well as on their 
magnetic chargers. The ECG recording was meticulously 
analyzed to identify atrial and ventricular pacing inhibi-
tion, asynchronous ventricular pacing, rapid ventricular 
pacing, and asynchronous pacing. The emission levels 
of the tested smartwatches and their magnetic charg-
ers were evaluated by measuring low-frequency mag-
netic fields between 110 and 400 kHz. Each smartwatch 
was activated and measured separately, first directly in 

contact with the probe, then at a distance of 10 cm and 
20 cm [62].

Hearing loss is caused by repeated exposure to loud 
noises, as well as metabolic disorders, hypertension, 
abnormal sleep patterns, occupational accidents, tinni-
tus, and a reduction in cognitive abilities. In  situations 
in which noise levels are high, people should move away 
from the source or wear hearing protection. However, 
noise-induced hearing loss (NIHL) may occur slowly 
and remain undetected for a considerable period of 
time. Smartphones can be used to measure noise levels, 
but there are several limitations. Wearable devices such 
as smartwatches can overcome smartphone limitations 
because they are worn on the wrist. In the study con-
ducted by Fischer [63], a popular smartwatch was evalu-
ated for its ability to accurately monitor noise levels in 
13 occupational and recreational settings. The results 
showed that the smartwatch and a sound level meter 
used as a reference were in excellent agreement. It was 
found that the music club (52% of the measurement) 
emitted the most hazardous noise levels, followed by 
construction sites (24%), housekeeping (20%), and streets 
(4%). The sound level meter and smartwatch measure-
ments are offset by an average of 0.5 dBA (SD of 1.8 
dBA), which indicates the smartwatch underestimates 
the sound level. This study compared noise levels meas-
ured by a smartwatch and sound level meter. Smartwatch 
accuracy was lower in settings with rapid acoustic fluc-
tuations, but comparable to the sound level meter across 
different pressure levels based on SD of LAeq differences 
and ICC results.

Validation or evaluation
Despite the fact that smartwatches’ health metrics 
have generally demonstrated high levels of moderate-
to-strong validity, limitations in the current literature 
exist, including that EE and HR data validity of smart-
watches has been found to be less valid in free-living 
PA assessments, and that most previous validation 
studies have utilized various Fitbit or Jawbone mod-
els. Accordingly, Pope’s [64] study examined the valid-
ity, measurement bias, and precision of four popular 
smartwatches in assessing EE, average HR, and peak 
HR during active play. The participants for this study 
were 21 healthy college students from a large metro-
politan Midwest U.S. university. They were ages 18 to 
35, had a body mass index of 18.5 and performed high-
intensity exercise that elicited EE > 300 kcalories for 
each session. ActiGraph GT3X + -BT accelerometers 
were used in conjunction with an ActiGraph HR strap 
attached to the chest for the measurement. For EE data 
collection, a 1-s epoch was employed, with the follow-
ing empirically derived cut-points (in counts/minute): 
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light PA: 0—2690; moderate PA: 2691—6166; vigor-
ous PA: 6167—9642; and very VPA: q9643. ActiGraph 
HR straps mounted on the chest were moistened with 
water 2  cm below the nipple, and smartwatches were 
preprogrammed for a 20-min exercise session. They 
downloaded EE and HR data from the ActiGraph using 
ActiLife 6.13, and identical data was collected for each 
smartwatch. Smartwatches demonstrated moderate-
to-good precision for average HR and peak HR meas-
urements with approximately the same accuracy as an 
ActiGraph. EE assessment with the ActiGraph GT3X 
was found to be valid in comparison to doubly labelled 
water. However, this tool is not considered the gold 
standard for EE assessment. In spite of the fact that 
smartwatches can provide moderate validity when 
assessing average and peak HR, smartwatch EE assess-
ments are less reliable. Hence, this study suggested that 
smartwatches should not be used as part of a systems 
medicine approach to health care.

There has been a growing trend for fitness toward the 
use of wearable technology over the past few years. A 
variation in EE estimation accuracy may occur depend-
ing on the type and intensity of activities, and algorithms 
may not take into account the type and intensity of physi-
cal activity or the posture of the body. Validating EE esti-
mations requires consideration of the intended use of 
the device, as well as an assessment of the accuracy of EE 
estimations made by young adults while walking and run-
ning outdoors. Accordingly, Shenglong et al. (2022) [65] 
recruited twenty healthy Chinese participants from the 
campus of the local university for their study. They meas-
ured individual VE, VO2 and VCO2 using the Cosmed 
K5 system for a wide range of metabolic rates. EE was 
calculated using the ratio between inhaled oxygen and 
exhaled carbon dioxide. Three smartwatches were exam-
ined for validity: Apple Watch Series 6, Garmin Fenix 
6, and Huawei GT 2e. Photoplethysmography was used 
to determine heart rate and GPS was used to determine 
distance and speed while walking or running outdoors. 
Data for this study was collected during one visit. Sub-
jects had not consumed food, coffee, tea, or other stim-
ulants, did any vigorous physical activity, or consumed 
alcohol during 24  h prior to measurements. EE data 
were taken from the K5 breath-by-breath and summed 
for each exercise session separately. The EE estimates 
were obtained directly from the watches. The validity 
of the smartwatches was determined by several statisti-
cal tests, including paired sample t-tests, mean absolute 
percentage errors (MAPE), and Intraclass Correlation 
Coefficient (ICC). Excellent, good, moderate, and low 
agreement thresholds were defined as ICC values of ont, 
goo). The Apple Watch Series 6 had the highest energy 
expenditure, followed by the Garmin FENIX 6, and the 

Huawei Watch GT 2e. GF could likely provide better EE 
estimates for the outdoor walking than running, and EE 
tends to be overestimated at lower pace and underesti-
mated at higher pace. Smartwatch EE overestimated EE 
versus the K5 during outdoor walking and running, and 
the energy cost of running was overestimated by 24.4% 
and 21.8%, respectively. This may result in the ineffective-
ness of a weight loss program. The findings of this study 
indicate that smartwatches may have moderate validity in 
estimating energy expenditure for outdoor walking and 
running.

Physiological parameters such as heart rate and heart 
rate variability provide insight into cardiovascular and 
autonomic nervous system dysfunction as well as men-
tal, physiological, and sleep-related stress. Noninvasive 
methods for HR and HRV monitoring include Electro-
cardiography (ECG) and Photoplethysmography (PPG). 
Studies evaluated the accuracy of HRV parameters 
extracted from wristbands and smart-watches including 
Apple Watch, Empatica E4, Microsoft band 2, and the 
Wavelet wristband against medical-grade ECG devices. 
They showed that motion artifacts highly affect the reli-
ability of HRV parameters. In the study conducted by 
Sarhaddi et  al. (2022) [66] evaluated the validity of the 
Samsung Gear Sport smartwatch in terms of HR and 
HRV parameters compared with a medical-grade chest 
ECG monitor in a 24-h continuous free-live setting 
monitoring. The study included 28 healthy individuals. 
They collected data using two wearable devices and self-
report and background questionnaires. The participants 
wore a Samsung Gear Sport smartwatch and a Shimmer3 
ECG device, and logged their sleep and non-wear time. 
The Shimmer3 ECG device was used to measure ECG 
as the gold standard method in their assessment. Also, 
they developed a customized data collection applica-
tion for the Samsung Gear Sport watch to collect 16 min 
of PPG signals every 30  min continuously. They used a 
deep-learning-based method for PPG peak detection, 
which is enabled by a dilated Convolutional Neural Net-
works (CNN) architecture. Also, they developed a two-
round peak detection algorithm to locate peaks in ECG 
signals that obtains higher accuracy in comparison with 
Pan-Tompkins and Hamilton algorithms. The correlation 
between the HR and HRV parameters of the smartwatch 
and Shimmer3 was high (positive), and the LF/HF ratio 
value showed a moderately positive relationship. The 
regression analysis was used to compare the accuracy of 
the extracted parameters from the Samsung smartwatch 
against the reference ECG. The HR, AVNN, and pNN50 
parameters showed good agreement with the ideal lines, 
but the other HRV parameters showed relatively diverg-
ing lines. The Samsung smartwatch underestimates 
AVNN values, but overestimates other parameters. The 
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Samsung smartwatch and reference ECG showed a high 
positive correlation between the AVNN and HR values, 
a moderate positive correlation between the HR and the 
other HRV parameters, and low positive correlations 
between the LF, HF, and LF/HF ratio. The results indicate 
that the accuracy is highest when the watch’s parameters 
are equal to the golden standard values. They validated 
the accuracy of HR and HRV parameters extracted from 
PPG signals collected by the Samsung smartwatch during 
sleep and awake time using short-term HRV analysis. The 
Samsung smartwatch underestimates HR, SDNN, LF, and 
LF/HF ratio but overestimates AVNN during sleep time 
and awake time. Moreover, the watch underestimates 
RMSSD, pNN50, and HF during sleep time, although it 
overestimates these parameters during awake time. In 
concluded this smartwatch can accurately measure HR 
and HRV parameters during sleep and awake time, and 
provide acceptable RMSSD, SDNN, LF, and HF.

Falling occurs more frequently with age, and staying 
on the floor for a prolonged period of time after a fall 
can have serious consequences, such as hospitalization, 
a decline in activities of daily living, or a placement in a 
long-term care facility. There is an increasing availability 
of assistive technologies, such as call alarm systems and 
personal emergency response systems. However, con-
sumers are not always able to use these technologies due 
to difficulties activating these systems. Fall detection can 
be performed using an app on a smartwatch. The study 
conducted by Brew B et al. (2022) [17] aimed to address 
these issues. This study used a threshold-based algorithm 
programmed for different smartwatches to automatically 
detect a fall on 22 volunteer participants. 12 participants 
were wearing two smartwatches, model A and B, and 10 
participants were wearing only one smartwatch, model 
C, on one wrist. In three phases, the algorithm col-
lected acceleration data and the time of the fall: "prefall", 
"induced fall" (8 falls around five minutes), and "postfall" 
(walking back from the crash mat to the area to remove 
the smartwatches). This study found that an algorithm 
programmed in commercially available smartwatches 
to detect induced falls had an overall sensitivity of 77% 
and specificity of 99%. The fall detection performance 
depends on the algorithm used, and the sensitivity ranges 
from 70 to 100% and the specificity from 80 to 100% 
depending on the type of fall. In addition, they showed 
the performance of a fall detection algorithm could be 
strongly dependent on the smartwatch model [17].

Sensors that measure movement in the body have the 
potential to revolutionize how clinical status and well-
being are measured in daily healthcare. Physical dis-
abilities can be described, quantified, and monitored in 
these instruments, deteriorations can be detected, and 
treatment responses can be monitored. In a research or 

clinical setting, consumer smartwatches cannot be used 
due to their unknown data quality. A smartwatch IMU’s 
accuracy and precision can be evaluated by measuring 
both absolute errors and correlations with ground truth 
values. In the study conducted by Auepanwiriyakul [67], 
raw IMU sensor data quality was evaluated, followed by a 
trial of the feasibility of wearable health devices in a clini-
cal environment. Using the Apple Watch Series 3 and 5 
IMUs, they compared the inertial accuracy of the con-
sumer smartwatches with two well-known research- and 
clinical-grade IMU sensors and a gold-standard test for 
human movement assessment utilizing optical motion 
tracking. The researchers recruited 15 healthy volunteers 
and developed a WatchOS App that collected triaxial 
acceleration and triaxial angular velocity data in real time 
on Apple Watches at a frequency of 100 Hz in order to 
record and extract inertial data from Apple Watches. As 
the base for the experiment, they used an Apple Watch 
Series 3 and adhered the OptiTrack markers pad to the 
base with the aid of double-sided tape. Apple Watches 
demonstrated weak to moderate R2 agreement with 
OptiTrack. Apple Watch Series 3 and 5 had strong R2 
agreement with each other for acceleration and angu-
lar velocity. They also had strong agreement with Xsens 
MTw Awinda. In this study the consumer smartwatches 
(Apple Watch Series 3 and 5) and research-grade IMU 
Xsens achieved cleaner linear acceleration signals and 
lower errors than Axivity, perhaps due to the additional 
magnetometer and strap down integration (SDI) technol-
ogy. According to their study on the acceptability of wear-
able IMU technology by hospital patients and healthcare 
professionals, this technology is viewed favourably.

Consumer wearables equipped with multisensor tech-
nology are an effective means of monitoring objective 
movement patterns. Various systems have potential for 
diagnosing PD by analyzing voice, hand movements, gait, 
facial expressions, eye movements and balance. However, 
caution should be exercised when interpreting reported 
accuracies as the models were trained on low sample 
sizes (n < 100) regarding PD. Varghese et  al. (2021) [68] 
conducted a prospective study from 2018 to the end of 
2021, in which they recruited and measured hand move-
ments of 400 participants using Apple smartwatches and 
smartphones. The aim was to distinguish PD from other 
movement disorders and healthy individuals. They com-
pared acceleration amplitudes and tremor frequencies 
utilizing a seismometer and high-precision shaker with 
different machine learning models trained for classifi-
cation performance assessment. Participants wore two 
smartwatches during a 15-min neurological examina-
tion, designed by movement disorder experts. A Trillium 
Compact seismometer measured ground velocity as part 
of the study. A shaker table experiment was conducted 
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to validate the method using two Apple watches and 
a Trillium Compact seismometer. The z-axis accuracy 
of the method was tested with tremor-typical frequen-
cies and amplitudes, resulting in 43 measurements per-
formed on different days. The watches were connected to 
iPhones via Bluetooth while data from the seismometer 
were collected on a digitizer that it was attached to. Each 
measurement lasted for 20 s for the watches, which were 
mounted on the shaker table along with a decoupled 
platform for placing the seismometer. The study utilized 
various models including SVM, CatBoost, MLP and DL 
to extract features from acceleration data using Keras and 
Tensorflow. Results showed that smartwatches had high 
agreement with seismological sensor validation in meas-
uring movement subtleties or hand-tremor amplitudes 
and frequencies more accurately than clinical documen-
tation or human vision.

Discussion
The fast-paced advancements in technology have given 
rise to a new category of patients called e-patients. 
These individuals rely on various technological tools 
to monitor and track the progression of their diseases 
[4]. Scholarly works, such as those by Asad et al. (2019) 
[69], Masters et al. (2017) [4], Loda et al. (2019) [70], and 
Herrmann-Werner et  al. (2019) [71] highlight the need 
for medical curriculum integration that enhances com-
munication skills and resolves the challenges associated 
with engaging e-patients. The studies suggest training 
medical students on utilizing e-patient knowledge in 
healthcare delivery, advising patients regarding cred-
ible online sources, assessing website credibility strate-
gies, and employing blended-learning teaching methods 
to improve students’ competence when dealing with this 
unique patient population. Therefore, it becomes cru-
cial for clinical students to possess the necessary skills 
required for effective engagement with these techno-
logically-savvy individuals. This can only be achieved 
through comprehensive training provided by educational 
institutions. Wearable technologies like smartwatches are 
increasingly popular in healthcare due to their potential 
to optimize practices and promote healthier habits [72]. 
However, integrating these devices presents challenges 
like seamless integration with clinical workflows and effi-
cient data management [73, 74]. Medical students, who 
use smartwatches, serve as role models for patients, mak-
ing it crucial for future healthcare professionals to pos-
sess technical proficiency and a thorough understanding 
of these technologies.

Thanks to technological advancements, smartwatches 
and wearable technology are rising in the diagnosis and 
symptom reporting field [67, 75]. Researchers have con-
ducted studies to assess these technologies’ effectiveness, 

with encouraging outcomes. An investigation revealed 
that smartwatches and wearables are accurate when 
identifying initial signs of health issues like irregulari-
ties in heart rate [64]. Moreover, users can receive valu-
able feedback through this technology. Additionally, 
researchers discovered that such devices play a crucial 
role in detecting potential health hazards at an early 
stage before they escalate into critical conditions [52]. 
Another study examined how wearables can monitor 
patients with chronic conditions. The study discovered 
that these devices have the capability to perceive varia-
tions in essential indicators such as pulse rate and blood 
pressure, notifying medical professionals of possible 
issues [64]. This could prove especially advantageous for 
individuals unable to communicate effectively with their 
healthcare providers or are susceptible to abrupt fluctua-
tions in health.

Recent studies have shown that smartwatches can be 
incredibly useful for various purposes, including motion 
sickness, heart health, work stress and timely diagno-
sis of COVID-19 [55, 57]. The watch has the capabil-
ity to assess respiratory rate, levels of oxygen saturation, 
and body temperature. This functionality provides the 
potential to detect the virus early on [55]. However, it 
should be noted that this method does not possess the 
ability to differentiate between infections caused spe-
cifically by SARS-COV-2 versus other viruses. Never-
theless, its use could lead to identifying diseases arising 
from diverse infectious agents and potentially forecast-
ing disease severity as well as symptom manifestation 
[76]. Disease detection using wearable devices offers 
many advantages over traditional testing methods, such 
as no testing infrastructure, materials or personnel, pas-
sive testing and high-resolution continuous screening 
to allow follow-up testing and self-isolation. Although 
smartwatches are increasing and digital technology was 
widespread during the COVID-19 pandemic, few studies 
have used smartwatches for rehabilitation, empowerment 
or patient engagement in rehabilitation [57, 77]. Moreo-
ver, the smartwatch can track heart rate and identify any 
abnormalities, which could serve as an initial indication 
of potential cardiovascular issues [10, 66]. Additionally, 
employers can utilise smartwatches to monitor employee 
stress levels in work settings and access valuable infor-
mation that aids in providing necessary support for their 
workforce.

Pairing the smartwatches utilized by the patient with 
additional smart wearable devices that can be employed 
by both the patient’s companions and even healthcare 
professionals in the intensive care unit holds immense 
potential to transform it into an invaluable information 
tool. This confluence of technological advancements 
plays a pivotal role in diligently monitoring and tracking 
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crucial symptoms exhibited by the patient [75]. Smart-
watches incorporate advanced technology to deliver pre-
cise and up-to-date data, enabling medical professionals 
to comprehend their patients’ health conditions. Signifi-
cantly, individuals have the convenience of monitoring 
their vital signs and other pertinent health information. 
They can securely send this information to their car-
egivers or healthcare professionals to improve the effec-
tiveness of monitoring their state [75]. This ultimately 
improves the quality of patient care and enhances under-
standing of the patient’s overall wellness. Furthermore, 
secure transmission of this data helps expedite diagnosis 
and treatment processes by reducing time requirements 
[78, 79]. Consequently, patients receive faster and more 
efficient treatment as a result. Additionally, these smart-
watches serve as reminders for patients to take medica-
tion promptly, ensuring an added level of comfort and 
safety in managing their health conditions. It is important 
to note that smartwatches’ functionality heavily relies on 
their algorithmic operations and program design along-
side the specific type utilized in healthcare settings [53].

Examining the viability of smartwatches as dependable 
tools necessitates thoroughly considering safety. Previous 
studies, such as Elvis, have emphasized the significance 
of user safety in determining the sustained intention to 
utilize smartwatch applications [80]. In line with this, 
Lee has developed an effective tool to assess smartwatch 
quality from users’ perspectives by evaluating factors like 
usability, functionality, and, most notably, safety concerns 
[81]. Moreover, Hong’s research in 2022 reveals the posi-
tive impact that both safety and convenience can have on 
individuals’ motivation to incorporate smartwatches into 
their lifestyles [82]. Alongside assessing their ability to 
measure clinical data accurately, this research also delves 
into the Safety concerns surrounding patients’ usage of 
these devices. The findings from multiple studies high-
light that smartwatches demonstrate satisfactory levels of 
safety when used by individuals [61–63].

The world of smartwatches has significantly advanced 
in recent years. However, most of these watches have 
been developed for convenience rather than to help 
with medical diagnosis [75]. Recent studies indicate that 
smartwatches’ potential in detecting medical symptoms 
may be limited due to issues with precision and accuracy. 
The study conducted by Varghese revealed that although 
smartwatches were capable of capturing subtle tremor 
signs in Parkinson’s disease, there were noticeable differ-
ences in amplitude and frequency when compared to a 
seismometer [68]. Similarly, the research carried out by 
Falter showcased insufficient accuracy in smartwatch-
based blood pressure measurements, showing a system-
atic bias towards a calibration point [50]. Antognoli, on 
the other hand, emphasized the necessity of metrological 

validation for wearable devices and determined that 
while commercial smartwatches offered certain precision 
and accuracy for heart rate and blood pressure measure-
ments, some degree of bias was present [83]. Moreover, 
Poli’s investigation from 2022 also examined the precise 
nature of blood pressure tracking using smartwatches; 
however, it suggested lower data quality as compared to 
medical-grade instruments despite achieving acceptable 
levels of precision and accuracy [84]. Hence, the research 
indicates that currently available smartwatches may not 
meet the necessary standards for precise and accurate 
detection of medical symptoms. These findings raise con-
cerns about the effectiveness of smartwatches in accu-
rately monitoring and detecting health conditions.

The trustworthiness of smartwatches is a subject of 
concern due to the opaqueness surrounding the algo-
rithms used for detecting and analyzing users’ health 
information. These algorithms are kept from the general 
public, which introduces a level of uncertainty regarding 
their accuracy and reliability [79]. Furthermore, research 
studies have pointed out that different brands of smart-
watches yield varying results when diagnosing clinical 
symptoms, sometimes even diverging from those pro-
vided by traditional medical devices [84–86]. Recent 
studies have examined the accuracy and precision of 
various smartwatch models compared to medical-grade 
pulse oximeters. Windisch discovered that although 
the Apple Watch Series 6 generally demonstrated good 
agreement with medical-grade devices, outliers were 
still reported, reaching up to a 15% difference [86]. Jiang, 
on the other hand, conducted a comparative analysis of 
different smartwatches and found that the Apple Watch 
Series 7 performed closest to the reference standard 
while the Garmin Venu 2 s deviated furthest from it [85]. 
These findings suggest that while some smartwatches 
showcase favorable alignment with medical-grade pulse 
oximeters regarding accuracy assessments, occasional 
outliers as well as discrepancies remain present due to 
variations among different models and contexts consid-
ered during evaluations.

Given the crucial nature of healthcare decisions, rely-
ing entirely on these watches’ information becomes 
increasingly challenging. This could pose a notable chal-
lenge in certain situations where precise diagnosis and 
treatment are crucial. This study underscores both the 
significance and pressing need for incorporating smart-
watch technologies into health services. It is essential to 
acknowledge that although smartwatches can serve as 
valuable tools for monitoring health and overall wellness, 
they should not be solely relied upon for diagnosing ill-
nesses in most instances [87]. Hence, we recommend that 
leading companies in healthcare technology venture into 
this domain, ensuring that they provide smartwatches 



Page 24 of 26Masoumian Hosseini et al. BMC Medical Informatics and Decision Making          (2023) 23:248 

equipped with dependable and efficient mechanisms 
for monitoring individuals’ well-being. This calls for the 
development of medical watches and the creation of AI-
hospital assistants.

Smartwatches have the potential to revolutionise 
healthcare by providing patients with easier access to 
their health data. They also increase the acceptance 
of long-term home monitoring [88]. However, smart-
watches in healthcare also raise problems. One problem 
is that smartwatches focus on aggregating biomedical 
data and do not take a holistic view of the patient [78]. 
The over-reliance on smartwatches and the fewer face-
to-face doctor visits lead to a violation of the principle of 
non-maleficence [78].

With the increasing availability of 6G technology, 
AI and medical data, the potential of predictive analyt-
ics is becoming more real. This opportunity allows us 
to develop algorithms that have incredibly high diag-
nostic power. Using these datasets, we can identify pat-
terns and trends that can be used to predict future health 
conditions and make informed medical decisions [79]. 
Smartwatches has a broad reach and can be significantly 
improved, but its security and credit ratio still needs to 
be assessed. This review has attempted to highlight the 
strengths and weaknesses of some smartwatches in the 
context of diagnosis and validation; however, further 
research is needed.

Conclusion
Advancements in technology have led to the rise of 
e-patients who rely on technology to monitor and track 
their diseases. Medical curriculum integration is crucial 
for enhancing communication skills and addressing chal-
lenges associated with engaging e-patients. Wearable 
technologies like smartwatches are increasingly popular 
in healthcare, but integrating them presents challenges. 
The review highlights the relationship between smart-
watches and their efficiency in health systems. Smart-
watches can be effective in diagnosing and reporting 
symptoms, detecting potential health hazards early, and 
monitoring patients with chronic conditions. However, 
safety concerns need to be considered, as most smart-
watches have been developed for convenience rather than 
medical diagnosis. The trustworthiness of smartwatches 
in healthcare is also a concern due to the opaqueness of 
their algorithms and varying results in diagnosing clini-
cal symptoms. Instead, there is an increasing demand 
for a clinical assistant that relies on AI within the health 
network. This type of assistant would be able to offer 
more precise and dependable data while also being bet-
ter equipped to handle the intricacies involved in health-
care. Given these findings, additional investigation will be 

imperative to fully comprehend and exploit the potential 
of smartwatches in healthcare and develop more sophis-
ticated and efficient clinical assistants that utilise AI 
technology.
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