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Abstract

Smartwatches have become increasingly popular in recent times because of their capacity to track different health
indicators, including heart rate, patterns of sleep, and physical movements. This scoping review aims to explore

the utilisation of smartwatches within the healthcare sector. According to Arksey and O'Malley’s methodology,

an organised search was performed in PubMed/Medline, Scopus, Embase, Web of Science, ERIC and Google Scholar.
In our search strategy, 761 articles were returned. The exclusion/inclusion criteria were applied. Finally, 35 articles
were selected for extracting data. These included six studies on stress monitoring, six on movement disorders,

three on sleep tracking, three on blood pressure, two on heart disease, six on covid pandemic, three on safety

and six on validation. The use of smartwatches has been found to be effective in diagnosing the symptoms of vari-
ous diseases. In particular, smartwatches have shown promise in detecting heart diseases, movement disorders,

and even early signs of COVID-19. Nevertheless, it should be emphasised that there is an ongoing discussion con-
cerning the reliability of smartwatch diagnoses within healthcare systems. Despite the potential advantages offered
by utilising smartwatches for disease detection, it is imperative to approach their data interpretation with prudence.
The discrepancies in detection between smartwatches and their algorithms have important implications for health-
care use. The accuracy and reliability of the algorithms used are crucial, as well as high accuracy in detecting changes
in health status by the smartwatches themselves. This calls for the development of medical watches and the creation
of Al-hospital assistants. These assistants will be designed to help with patient monitoring, appointment scheduling,
and medication management tasks. They can educate patients and answer common questions, freeing healthcare
providers to focus on more complex tasks.
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Introduction

In the mobile technology market, smartwatches are
experiencing tremendous growth as wearables and med-
ical devices converge to monitor personal health in real-
time, including cardiovascular health measures [1, 2].
Consumers can now access a personalised medical data
report through these devices, which could prove useful
in preventing and treating diseases [3]. The rise of smart-
watches has empowered numerous patients to actively
engage in self-care and advocate for the health of oth-
ers. With the increasing prevalence of these individuals,
known as e-patients; it is imperative for medical institu-
tions to adequately educate their students on effectively
collaborating with and providing healthcare services
to them. Failing to do so could potentially jeopardise
patients’ lives [4]. Similar to the access to online tools
that smartwatches provide for medical schools and stu-
dents, access to e-patients is also increasing. Mobile deci-
sion support tools, for example, use simple graphics to
communicate calculator results (such as the Framingham
Risk Score) in a way that is relevant to both the learner
and the patient [5].

The Framingham Risk Score is an algorithm designed
to assess the probability of developing cardiovascular
disease over a period of 10 years [6]. Initially focused
on coronary heart disease, it was expanded in 2008 to
encompass cerebrovascular events, peripheral artery dis-
ease, and heart failure. Considering variables such as age,
sex, blood pressure levels, cholesterol levels, smoking sta-
tus, and diabetes status, this risk score applies specifically
to individuals aged between 30-79 without any previous
history of CVD [7]. There are many apps explicitly aimed
at patients, including simple medical calculators, e.g.
BMI calculators, risk calculators, medication reminders,
pharmacy finders and even diagnostic tools [8]. As many
patients are unable to communicate their condition to
their companions or medical staff, these smart tools will
help caregivers be more alert and apply more appropriate
comfort measures. The notion of comfort measures has
gained significant attention in both nursing and medical
literature, reflecting a systematic approach that entails
proactive engagement as well as thoughtful restraint [9].
These measures can range from the simplest to more
intricate interventions, all serving to provide support-
ive care. Importantly, they are applicable across various
healthcare settings and warrant careful consideration
within the clinical management of patients burdened
with multiple chronic comorbidities [9].

The FDA has approved clinical smartwatches for
detecting medically significant events and recording
and processing data [10]. There are no approved directly
addressed smartwatches in the European Union (EU).
However, to comply with EU regulations, smartwatch
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manufacturers must navigate through various frame-
works such as the Radio Equipment Directive 2014/53/
EU and Medical Device Regulation 2017/745. These
regulations emphasize safety standards and touch upon
essential aspects like electromagnetic compatibility and
efficient radio spectrum utilization [11, 12].

Smartwatches often come with advanced features like
a heart rate monitor. These high-tech devices utilize a
technique called photoplethysmography to accurately
measure the user’s heart rate. By utilizing light beams
and specialized sensors on the smartwatch, changes in
blood volume flowing through the wrist can be precisely
quantified. This process generates a PPG waveform that
provides valuable data for determining an individual’s
heart rate [13, 14]. One instance where this technology
proves beneficial is when an epilepsy patient wears a
smartwatch equipped with an artificial intelligence (Al)
algorithm capable of identifying high-risk seizures and
initiating human assistance promptly [15]. This particular
smartwatch provides physiological data to monitor vital
signs and issues alerts that help save lives, as attending
a seizure is associated with a lower rate of severe injury
and death [15]. Other wearable devices run algorithms
that detect conditions such as atrial fibrillation or medi-
cally necessary conditions where early intervention can
positively impact the quality of life. Researchers have
shown that wearable biomarkers are more accurate at
predicting blood and urine measurements than two vital
signs in the clinic. They can provide clinicians with pre-
dictions from thousands of measurements in a fraction
of the time it takes to measure a single vital sign [13]. It
is important to note that these smartwatches are based
on algorithmic interpretations of clinical outcomes, and
their predictive power ultimately depends on the support
and strength of their algorithms [16, 17]. In this review,
we discuss the applications of these wearable devices to
patient health and HealthWorks’ educational initiatives.
This article seeks to answer several questions, including
whether smartwatches can be trusted for clinical meas-
urements and what might facilitate the development of
trust in these devices.

Method

Reason for scoping review

A scoping review was conducted since Al and machine
learning algorithms are emerging technologies applied to
smartwatches. Additionally, scoping reviews are helpful
when attempting to evaluate the effectiveness of large-
scale or emerging research [18].

Scoping reviews aim to identify and map relevant evi-
dence on a topic, field, context or question that meets
predetermined inclusion criteria [19, 20]. They provide
important insights into the characteristics of a body of



Masoumian Hosseini et al. BMC Medical Informatics and Decision Making

evidence and can highlight knowledge gaps for subse-
quent syntheses. Unlike traditional systematic reviews,
scoping reviews have broader questions and may include
multiple types of evidence. Scoping reviews are useful
for obtaining a comprehensive overview of the evidence
and identifying gaps in the existing literature without
the need for methodological judgement or risk of bias
assessment [21]. They differ from evidence maps, which
present the results of a systematic search in searchable
databases to identify knowledge gaps and future research
needs. Scoping reviews also differ from other forms of
evidence synthesis. Scoping reviews do not make rec-
ommendations for clinical practise and often do not
assess methodological quality or risk of bias in studies.
The PRISMA ScR is a new approach to reporting scop-
ing reviews based on the popular PRISMA statement and
checklist [22].

A scoping review can collect different types of evi-
dence from different areas, including both empirical and
non-empirical sources [23]. This type of review is suit-
able for investigating, identifying, presenting, reporting,
or discussing features or concepts across a wide range of
evidence sources [24]. Scoping reviews are particularly
useful when comparing measures is neither practical nor
feasible due to cost or time constraints. Although they
often involve reviews of numerous sources, these reviews
do not expect or allow for statistical pooling, formal risk
assessment, or quality assessment [25].

Search strategy

This study’s methodology was based on the scoping
review methodology that was developed by Arksey and
O’Malley [20] and used the methodological enhancement
suggested by Levac et al. (2010) [26]. As outlined in this
framework, scoping reviews have six stages: (1) identify-
ing a research question; (2) identifying relevant studies;
(3) selecting studies; (4) charting the data; (5) collating,
summarizing and reporting the results and (6) consulting
with stakeholders.

Table 1 Database search strategy
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Stage 1: Identifying the research question

In consultation with the research team and key stake-
holders, the overall main research question developed
is: “Whether all smartwatches can be trusted for clinical
measurements and what might facilitate the develop-
ment of trust in these devices?.

Stage 2: Identifying relevant studies

Search strategy and information sources

First step in identifying articles related to this topic
was to conduct a limited search of PubMed/Medline,
SCOPUS, Embase, Web of Sciences, and ERIC. For the
development of a comprehensive search strategy, the
text words contained in the titles of relevant articles, as
well as the index terms utilized to describe the articles,
were analyzed (see Table 1). Depending on the data-
base and/or information source involved, the search
strategy was tailored to include all keywords and index
terms identified. Additional studies were screened
from the reference list of all included sources of evi-
dence. We also searched a variety of grey literature
sources in order to ensure that all relevant information
was obtained. The review team searched relevant grey
literature databases (such as Grey Literature Report,
Google Scholar, OpenGrey, and Web of Science Confer-
ence Proceedings) for studies, reports, and conference
abstracts of interest to the topic. A Research librarian
developed the search strategy and revised it following
input from stakeholders. In order to prevent bias, the
research team blinded the stakeholders to the original
search strategy that was developed. The search papers
focused only on English-language studies. Considering
that smartwatch medical applications have only been
introduced to the market recently, the search period
was restricted to the period following 2017. After con-
ducting the search, all citations identified were gath-
ered into an EndNote 8 database and duplicates were
removed.

Search strategy and queries

(smartwatch” OR wristband” OR “fitness-bound” OR “wireless watch ™ OR “Wearable movement sensors”) AND (healthcare OR “health medicine” OR tele-
medicine OR medical OR clinical OR medicine OR health OR fitness OR healthiness OR wellness OR soundness OR validat” OR assessment OR reliabl*)

Database PubMed Medline Scopus
Article 107 28 196
English 105 28 191
Total 734

Embase Web Of Science ERIC Google
scholar

191 132 56 34

191 129 56 34

This table presents the search strategy for specific keywords in different databases. This column provides an overview of the steps and techniques used to retrieve

relevant information from each database based on the keywords organised
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Stage 3: Study selection
Inclusion/exclusion criteria

+ Types of research: any type of study design, in addi-
tion to randomized controlled trials (RCT and CT),
controlled clinical trials, case studies, correlational
studies, longitudinal studies, experimental stud-
ies, and quasi-experimental studies. There were no
limitations regarding the study design or geographic
location.

+ Types of Participants: All Participants that deal with
the healthcare system

+ Types of interventions: The study focused on smart-
watches, wristband, fitness-bound, wireless watch,
Wearable movement sensors

+ The studies included focused on any of the following
areas: (a) development; (b) implementation; (c) eval-
uation; or (d) comparative validation of such meas-
ures.

+ Types of outcomes: satisfaction, knowledge, skills,
attitudes, and behaviours were the outcomes of inter-
est.

Two screening stages took place in the review process:
a review of the title and abstract, followed by an assess-
ment of the complete text. The initial phase involved
M.M.H and T.M.H, who independently scrutinized all
obtained citations to determine if they met a set of mini-
mum inclusion criteria. In order to ensure that the cri-
teria were robust enough to capture any articles relating
to smartwatches, a sample of abstracts was tested prior
to undertaking the abstract review. The full-text review
included any articles that either or both reviewers con-
sidered to be relevant. The full-text articles were then
independently assessed by both investigators to deter-
mine if they fulfilled the inclusion and exclusion criteria.
A Cohen’s k coefficient of the agreement was calculated
both at the title and abstract review phase and at the full
article review phase in order to determine the inter-rater
agreement. In case of disagreements regarding study
eligibility at the full-text review stage, any further disa-
greements were resolved through discussion with a third
investigator until consensus was achieved. In the final
scoping review, the search results and the inclusion pro-
cess were comprehensively reported along with a flow
diagram reflecting Preferred Reporting Items for System-
atic Reviews and Meta-analyses extension for scoping
reviews (PRISMA-ScR) (Fig. 1).

Stage 4: Data collection
Data extraction was performed using the PRISMA-ScR
Checklist, which consists of 22 items developed by IB]
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[27]. To ensure that the form captured the information
accurately, the form was reviewed by the research team
and pretested by all reviewers before implementation.
Studies characteristics that were extracted included to
publication year, publication type (eg, original research
or review type), study design, country, participants’
population characteristics, intervention setting, descrip-
tion of quality indicators including definition, numerator,
dominator, psychometrics of the indicators (face validity,
reliability, construct validity, risk adjustment). The data
abstraction process was conducted in duplicate by two
reviewers who independently extracted the data from all
included studies.

Stage 5: Data summary and synthesis of results

Quality assessment is not an integral part of scoping
reviews, but in this review, the quality checklist devel-
oped in BEME guide 11 was used to assess quality [28].
Based on the provided checklist, excellent quality stud-
ies met eight or more of the established criteria. Studies
deemed moderate quality fulfilled six or seven indicators,
while studies with low quality met five or fewer criteria.
Each study was assigned either a 0 or 1 for each index
measurement. Studies that met the index received a posi-
tive score, whereas studies that did not meet the index or
were vaguely described received a zero score. Using the
IB] checklist as a guide, selected articles were analyzed
and themes were extracted.

Stage 6: Consultation

There is a suggestion by Levac et al. that the consulta-
tion stage provides opportunities for stakeholder involve-
ment, which may provide insights beyond those that have
been described in the literature. An integral part of the
study’s healthcare-centred approach was the involvement
of stakeholders, including a patient partner who served
as both a consultant and knowledge user throughout the
study.

Result

Descriptive

Following the articles’ quality assessment, 32 studies
were analysed for data extraction. The majority of stud-
ies were conducted in the United State America (USA)
(N=10), three in China, three in Taiwan, three in United
Kingdom (UK), in countries including Finland, Germany,
Norway and Spain, each one two studies, and one study
in the rest (Greece, Switzerland, Slovenia, Canada, Aus-
tralia, Belgium, Brazil and France). Thirteen of the stud-
ies were experimental, four were cohort studies, and one
study of each of the designs (longitudinal cohort study
design, longitudinal observational study, multicenter
observational study, randomized controlled trial (RCT),
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Fig. 1 An overview of the article selection process according to SCR-PRISMA

randomized, accelerometer data, combined method,
feasibility study, observational study, prospective, non-
randomized, and adjudicator-blinded study, Prospective,
single-arm, cross-sectional study, prospective compara-
tive and prospective study). Three studies did not have
a specific design due to the nature of the research, and
one study was a systematic review (Table 2). As shown
in Table 2, the geographical distribution of the stud-
ies, the purpose, the outcome and the (Table 2) number
of participants are listed with a description of the type
of study. In this review, the text was categorised accord-
ing to the themes addressed in the studies, e.g. method-
ology, results and impact. We also identified the main
themes and patterns that emerged from the analysis. This
helped researchers understand the study’s impact. These
included six studies on stress monitoring, six on move-
ment disorders, three on sleep tracking, three on blood
pressure, two on heart disease, six on covid pandemic,
three on safety and six on Validations. Figure 2 shows
the distribution of these studies graphically. An analy-
sis of the keywords used in these studies indicates that
most were related to smartwatches, Covid-19, and digital

health. A visual representation of their distribution can
be found in Fig. 3.

Stress level

As one of the leading branches of human—computer
interaction, affective computing uses technology to
detect a person’s emotional state [29]. A stress detec-
tion system can be used for various purposes, such as
monitoring the stress of drivers, detecting and alleviat-
ing the stress of passengers, monitoring the stress levels
of employees, and assisting psychologists with online
therapy sessions [30]. Stress detection occurs in various
environments, including laboratories, hospitals, clin-
ics, offices, schools, cars and everyday situations. When
the brain receives sensory signals from the eye, nose and
ear, it triggers a stress response. As a result of the stress
response, heart rate increases, muscles tense, blood pres-
sure rises, frequency of inhalation increases, blood sugar
levels rise, and senses become heightened. Perceived
stress is the way a person interprets and analyses stress-
ful situations [31]. It can be assessed through regular
self-reporting by individuals. Self-reported perceptions
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Covid pandemic
@ The distinction between positive and negative cases.
OAnalysand symptoms and sensor data in Aspects of Stress level
0 pandemic-related. 8 Monitor the stress levels of hospital staff in real-time.
Monitoring of pregnant women. Monitoring stress.in thte _c[assroom while the student
9 Follow up on complications after the recovered disease. smartwatChes performs academic activities.

Monitor physical activity remotely.

Detect COVID-19 at an early, pre-symptomatic stage.
@ Detect physiologic manifestations of reactogenicity to
@ COVID-19 vaccination.

@ Predicting post-vaccination physiological conditions.

Heart disease

V] Interpret KB rhythm strips with simultaneous ECGs.
Oobtaining ECG waveforms and PPG signals.

Safety

0 Monitor noise levels.
@ Potential for evaluating electromagnetic.
@ Potential health effects.

Validations or evaluation

o Smartwatches should not be part of a systems
medicine approach to health care.

@ Smartwatches may have moderate validity in
estimating energy expenditure for outdoor walking
and running.

@ Smartwatches can accurately measure HR and HRV
parameters during sleep and awake time
Smartwatches to detect a fall

Q Smartwatches had high agreement with seismological
sensor validation in measuring movement subtleties or
hand-tremor amplitudes and frequencies.

{

*~ applicationin
healthcare

. \
.\\ ] Q\\ /- v

Q Single classifiers are the best accuracy, LR is the best
precision, and NN is the best recall for stress detection

‘ Movement disorders

/ Qldentify trends in symptoms, monitor for exacerbations,
/ \\ and detect changes in the patient's condition.
e < ~a ¢ Detect and monitor autistic behavioural activities.
8Controls individuals with autism spectrum disorders with
stress episodes triggered by various stimuli.
Provided high-quality data for detecting walkers and canes.
Examined the relationship between academic performance
and students' daily activities.

Sleep tracking

@ To detect sleep apnoea.
@) Screening for Obstructive Sleep Apnea (OSA) with PPG.

Blood pressures

@ Ambulatory blood pressure monitoring

@ Applicability of smartwatches in PM2.5 health
assessment.
BP-monitoring feature.

Fig. 2 A graphical representation of the distribution and classification of studies based on the use of smartwatches

of stress can misrepresent stressful episodes, and peo-
ple tend to forget stressful events, contributing to dis-
crepancies between physiological and perceived stress
levels [32]. Instruments to measure stress should be
unobtrusive and non-invasive to collect data accurately.
The latest technologies provide us with non-invasive and
completely transparent devices to monitor stress. Heart
rate variability (HRV) is one of the best-known signals for
stress detection. Several features have been used in the
literature to distinguish between stress and relaxation,
including mean RR, mean heart rate, normalised low fre-
quency, sympathovagal balance index (SVI) and morpho-
logical variability (MV) [33]. Combining features from
smartphones and wearable devices (EDA, HR sensors)
would be necessary to develop a successful stress detec-
tion system. Collecting contextual information (activity,
social interaction, GPS and ambient light) about a user
will also help researchers to anticipate their condition
[34, 35].

Photoplethysmography (PPG) is a low-cost optical
technique for measuring blood volume pulse by light
absorption by blood. BVP features can be used directly
or to extract heart rate variability or IBI features. A wear-
able physiological measurement device must provide
high-quality data that is complete, relevant, timely, suf-
ficiently detailed, appropriately presented and contains
enough contextual information to facilitate decision-
making and provide accurate results. Muhammad Ali
Fauzi’s study [36] compared three learning strategies for
stress detection tasks. All three strategies used logis-
tic regression (LR) as a machine learning model. Unlike
individual learning, this learning strategy is based on a

central server that combines the data and trains the inte-
grated model. The user devices only need to perform
the task of detecting stress and inferring its cause, while
the server performs the tasks of feature extraction and
training the model. In this study, a comparison is made
between individual, centralised and federated learning
for smartwatch-based stress detection. Individual learn-
ing provides higher accuracy and privacy than central-
ised and federated learning. The results of this study
show that federated learning performs relatively medio-
cre in stress detection. The average accuracy was 0.8575,
the average precision was 0.9892, the average recall was
0.5208, and the average F1 -measure was 0.6339. In his
study, Fauzi proposed an application that could monitor
the physiological signals of health professionals to detect
occupational stress. The smartwatches would collect data
from individual sensors, such as heart rate and skin tem-
perature, to detect changes in physiological signals. The
data would then be used to create individual classifiers
and sets of classifiers to detect stress levels. In addition,
the experiment found that these classifiers could be used
in real-time to monitor the stress levels of hospital staff
effectively.

In one interesting review study, a wearable platform
on the wrist was used to detect and analyse cortisol from
small amounts of sweat to study stress [35]. In some
studies, the Empatica E4 wristband includes biomark-
ers that measure skin temperature, movement-based
activity (accelerometer), electrodermal fluctuation and
blood volume pulse [37-40]. Studies have used various
wearable technologies, including Microsoft Band (10%),
Cortiwatch (10%), ARM -Cortex4 smart wristband with
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Fig. 3 Keyword analysis of studies

DSP functionality (10%) and Empatica E4 (10%), which
detects and analyses cortisol in small amounts of sweat
on the wrist to detect stress [41]. A wearable device, such
as a smartwatch sensor, and machine learning techniques
can be used to detect stress in hospitals. However, some
wearable devices are not user-friendly and uncomfort-
able to wear at work (e.g. devices worn on the chest, GSR
sensors positioned with the finger, etc.). A study by Fauzi
proposed a method for detecting continuous stress using
single classifiers and classifier ensembles. This study used
seven machine learning methods for stress detection,
including Naive Bayes, Support Vector Machines, Neural
Networks and an ensemble approach. It was found that
single classifiers had the best accuracy, LR had the best
precision, and NN had the best recall for stress detection.
In addition, the ensemble approach performed better
than all individual classifiers [37].

Movement disorders

Several studies have shown that smartphones can track
symptoms of various diseases over the long term, includ-
ing chronic pain, rheumatoid arthritis, heart failure and
COVID-19. It allows researchers to understand better
how symptoms change over time, which can help inform
treatment and management plans. The study by Syed
Mustafa Ali [42] examined the longitudinal engagement
of users of a smartwatch app in people living with MLTC-
M, stratifying engagement patterns by age, gender, num-
ber of disease domains and question type. In the "Watch
Your Steps’ study, people living with MLTC-M were

asked to complete several daily and weekly questions and
active tasks over 90 days. The Google Fit Research team
developed the "Watch Your Steps" study app, which asked
participants to complete three types of tasks: Core symp-
tom questions, organ-specific questions and active tasks,
including a sit-stand test, a walk test and a tap test. Fossil
Sport smartwatches were preloaded with the study app
and loaned to the participants. They were instructed to
dock their watch every night for charging, and contact
details for support in case of problems were included in
the instruction manual. The engagement was recorded
over time using longitudinal charts of daily completion
rates. Fifty-three individuals with MLTC-M participated
in the study. The majority were white, and the aver-
age completion rate was 45%. Most participants did not
find the data collection tasks distracting, and almost all
reported that the smartwatch did not interfere with their
normal daily activities. They showed that using a smart-
watch to collect health data is feasible and acceptable for
people with MLTC-M over 90 days. This study suggests
that people living with MLTC-M can use smartwatches
to report multiple symptoms per day and that this data
could be integrated into electronic health records to sup-
port clinical care.

Autism is a disorder with three characteristic symp-
toms: social development, communication and repetitive
behaviours. These behaviours occur when a child tries to
regulate sensory input from their environment. The study
by Amiri et al. (2017) [43] developed an Internet-of-
Things (IoT) framework called WearSense that uses the
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sensory capabilities of modern smartwatches to detect
stereotypic behaviours in children with autism. They
recruited 12 healthy subjects aged 23 to 33 years, from
whom 165 samples were collected. They also recruited
two subjects aged 15 and 16 who had been diagnosed
with autism and recorded sensor data from them as they
went about their regular daily routines. The subjects were
asked to perform three tasks: hitting their hand in front
of their face, drawing on a piece of paper and bumping
their head. Participants wore a Moto360 SmartWatch
protected by a 3D-printed shield that sent and stored
data to a smartphone via Bluetooth. The study employed
the built-in accelerometer of a smartwatch to accurately
detect three distinct behaviors commonly observed in
children with autism: hand flapping, painting, and sob-
bing. The processing component extracted 34 distinct
features in each dimension of the tri-axis accelerometer,
yielding a total of 102 discernible characteristics. Subse-
quently, several classification techniques were evaluated
and compared for efficacy; ultimately demonstrating
that an ensemble comprising 40 decision trees K-fold
cross-validation rendered the highest level of accuracy
at approximately 94.6%. This impressive degree of accu-
racy effectively underscores both the high caliber data
captured from the smartwatch as well as commendable
feature extraction methodologies implemented through-
out this inquiry. Furthermore, employing a smartwatch
for identifying these targeted behaviors holds significant
promise in facilitating ongoing monitoring efforts per-
taining to individuals who manifest autistic tendencies—
thereby enabling comprehensive analysis and informed
decision-making amongst parents, caregivers, and clini-
cians alike.

The system had an accuracy of 96.7% in detecting three
autistic actions. Juan C. Torrado’s [44] study focused on
using smartwatches to help people with autism spectrum
disorders with emotion regulation problems. It also pre-
sents and evaluates a smartwatch and smartphone system
designed to accomplish these tasks. The smartwatch in
this system detects anger outbursts and displays self-reg-
ulation activities previously obtained from the caregiver
(smartphone). The detection is done through the smart-
watch’s sensor technology and involves a process of data
collection, training, and evaluation. Smartwatches have a
small screen and a tactile surface, so interaction is mainly
through touch and sliding. There are some recent studies
on text input approaches, but they limit ourselves to the
simplest known interaction options: short touches and
horizontal sliding. The smartwatch authoring tool has
been implemented on the Android platform to make it as
easy as possible for family members, caregivers, or others
who are responsible for the person to use it. They used
LG Watch Urbane smartwatches, a Nexus 5 smartphone,
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and an Android Wear interface to experiment with self-
regulation strategies. They designed a simple assistance
system that included linear sequences of "screens" with
images, text, animations (GIFs), and positive reinforce-
ment at the end with personalized content and a ques-
tion format. They showed the results for each day and
each user and enumerated the events when the self-reg-
ulation strategies were triggered. The results showed that
the smartwatch helped users regain a state of calm. They
found that the smartwatch can help individuals with alex-
ithymia and emotional dysregulation control their stress
episodes triggered by various stimuli, except for the
learning phase of the experiment.

Clinicians and researchers rely on patient self-reports
to understand the mechanisms of falls, but objective,
real-world fall data are lacking. Providing clinically use-
ful, objective measures of adherence to assistive devices
could help reduce fall risk. Advances in machine learn-
ing have enabled activity recognition systems to moni-
tor mobility in the elderly. Such systems work best when
the information contains patterns that differ significantly
between activities. In the study by Stephen A et al. (2019)
[45], they tested whether a smartphone or smartwatch
could detect whether an older adult was walking with
or without an assistive device. They hypothesized that
smartwatches would perform better than smartphones.
They recruited 20 older adults from an adult day centre in
Evanston, IL. They completed the Berg Balance Scale and
Mini-Mental State Exam and provided written consent
witnessed by a third person. They collected sensor data
from participants who walked with and without assistive
devices while completing the six-minute walk test, the
10-m walk test, and the standing and walking time tests.
A physical therapist monitored participants’ vital signs
and provided on-call assistance to prevent falls. Partici-
pants wore an Android smartphone with a custom app
that recorded triaxial accelerometer and gyroscope data
at a frequency of approximately 50 Hz. Participants wore
a phone and watched with a triaxial accelerometer, and
data were collected throughout the session, including
rest breaks. They collected enough data to train our clas-
sifiers with hundreds of samples and compared the classi-
fication accuracy of the smartphone with the smartwatch
for all types of cross-validation. Fourteen older adults
conducted a study in which they wore a smartphone and
a smartwatch. Using accelerometer data, they trained
machine learning classifiers that could predict whether
a participant walked with or without an assistive device.
They found that smartwatches provided much higher
quality data for detecting walkers and canes compared
to smartphones and that a second sensor on the hip was
required for the user-generated classifiers to make the
most accurate predictions.
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Aggressive behavior is a prevalent issue among indi-
viduals diagnosed with dementia. Although caregivers
have traditionally relied on direct observation to identify
such behavior, this approach has limitations. However,
advancements in technology present promising opportu-
nities for addressing this challenge. Specifically, computer
vision and human activity recognition technology, cou-
pled with wrist-mounted inertial measurement units like
smartwatches, holds great potential in accurately detect-
ing aggressive events within healthcare and elderly-care
facilities. To explore these possibilities further, F Tch-
uente et al. (2020) [46] conducted a study involving wear-
able smartwatch technology combined with machine
learning techniques to classify human aggressive behav-
ior. The research team collected data from accelerometer
and gyroscope sensors embedded within Microsoft Band
2 devices. These recordings were subsequently analyzed
using the Waikato environment for knowledge analysis,
leveraging six distinct machine-learning classifiers along
with three feature selectors. The selection process for
classification models and feature selectors was based on
various performance metrics, including accuracy, sen-
sitivity, specificity, F-score, and Matthews correlation
coefficient—an established measure used to evaluate pre-
dictive models’ quality across imbalanced data sets. The
study analyzed various classification methods and found
that the k-nearest neighbors algorithm combined with
the ReliefF feature selector exhibited exceptional effec-
tiveness in differentiating aggressive and non-aggressive
actions, boasting a remarkable accuracy rate of 99.6%.
Additionally, this method demonstrated high sensitiv-
ity (98.4%), specificity (99.8%), precision (98.9%), F-score
(0.987), and Matthews correlation coefficient (0.984).
Conversely, models utilizing naive Bayes or support
vector machines performed poorly in this context. Fur-
thermore, their findings revealed that wearing a smart-
watch on the dominant wrist was the optimal approach
for single-watch classification. This research successfully
showcased how accelerometer and gyroscope data from
smartwatches can be harnessed to identify aggressive
movements with great precision effectively.

Sleep tracking

Sleep apnoea is a sleep disorder in which breathing is
interrupted and is associated with various health prob-
lems. The current diagnostic system for this disorder is
costly, resulting in limited accessibility. Several meth-
ods have been proposed to detect sleep apnoea, but
none focus on smartwatch technology. ApneaDetec-
tor is a smartwatch-based system developed by CHEN
et al. (2021) [47] that uses built-in sensors to detect
sleep apnoea. The system processes raw accelerometer
data using signal denoising and calibration techniques
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to detect breathing cycles and possible apnoea events.
According to their clinical study, 92% of OSA and 70% of
hypopnoea events produce signal spikes that the system
can detect. By removing linear trends in the accelerom-
eter data for apnoea events using the first-order differ-
entiation technique, spikes in normal sleep can also be
identified from the calibrated data. A clinical sleep study
was then conducted at Penn State Milton S. Hershey
Medical Centre with 20 subjects using the ApneaDetec-
tor smartwatch to collect sensor data and evaluate differ-
ent classification algorithms for sleep events. The study
found that while the ApneaDetector accurately classified
normal and sleep apnoea events, it had problems with
more specific categorisations such as OSA, CSA and
hypopnoea. However, the estimated total sleep time is
acceptable for calculating the AHI value for diagnosing
sleep apnoea. This work used the sensor data to calculate
AHI, a standard metric for diagnosing sleep apnoea.

A pilot study used a smartwatch with seven sensors
to screen for OSA by generating respiratory waveforms
and detecting sleep—wake states using PPG signals. A
machine learning algorithm established an initial screen-
ing model, evaluated the risk of sleep apnea, and utilized
acceleration signal from the wrist for effective signal
screening and abnormal scene discrimination. Partici-
pants were recruited from the Outpatient Department of
Chinese PLA General Hospital. Physicians conducted a
full examination on patients before testing for sleep mon-
itoring. A detailed assessment of their sleep habits, physi-
cal condition, symptoms and complications was carried
out. The study used polysomnography to compare the
smartwatch against medical devices in diagnosing OSA
among 20 patients. Results showed that the screen-
ing algorithm from the smartwatch is consistent with
those from medical tests and had similar predictive abil-
ity compared to HSAT or PSG. In summary, PPG-based
smartwatches were more effective than simultaneous
in-lab PSG or HSAT devices when screening suspected
cases of OSA [48].

Consumer wearables like activity trackers, smart-
watches and rings can accurately measure sleep param-
eters with valid data collection and analysis. A study
compared the Oura ring’s sleep data to a medically
approved actigraphy device in 45 healthy individu-
als aged between 18-55 years old who wore Gear Sport
smartwatch, ActiGraph wristband, and Oura ring for
a week. The Oura ring uses various sensors to estimate
heart rate variability, respiratory rate, physical activ-
ity intensity along with acceleration and gyroscope data
while wGT3X-BT by ActiGraph measures wrist accel-
eration in three orthogonal axes at 80 Hz for estimating
sleep parameters. The study examined 4 sleep attributes
using the Cole-Kripke algorithm and Troiano wear time
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validation. Results revealed that the Oura ring was more
accurate in detecting these attributes than Samsung Gear
Sport smartwatch [49].

Blood pressures

Hypertension is a leading risk factor for heart disease,
and unvalidated devices cannot be used in clinical prac-
tice. To increase the reliability of smartwatch-based BP
measurements, more research is needed on both nor-
motensive and hypertensive subjects. In Falter’s study
[50], consecutive patients scheduled for 24-h ambula-
tory blood pressure monitoring were recruited from the
cardiology outpatient clinic. Measurements were taken
using validated devices including an automatic cuft-based
upper-arm sphygmomanometer and a Samsung Gal-
axy Watch Active 2 smartwatch calibrated at inclusion.
Patients performed multiple measurements with both
conventional BP monitors and smartwatches over a mini-
mum of 24 h to ensure accuracy. A total of 40 patients
participated in the study, The smartwatch overestimates
BP up to 140 mmHg, after which it underestimates BP,
illustrating the presence of proportional and differential
bias. The precision of the smartwatch measurements is
higher at higher BP values, while the precision of the gold
standard method is higher at lower BP values. Daytime
smartwatch measures were accurate for measuring blood
pressure at 135/85 mmHg. The sensitivity and specificity
were 84.6 and 88.9%, respectively. Blood pressure vari-
ability was higher in the ABPM measurements as com-
pared to the smartwatch measurements, and the CV was
significantly lower in the smartwatch measurements. The
results of this study indicate that the smartwatch cur-
rently suffers from an anchoring point that is set when
calibrating the device, resulting in an overestimation of
lower BPs and an underestimation of higher BPs. The
Samsung Galaxy Watch Active 2 shows a systematic bias
toward a calibration point, overestimating low BPs and
underestimating high BPs, and is not ready for clinical
usage.

The study by Mark Tsou [51] evaluated the applicability
of smartwatches in PM2.5 health assessment by evaluat-
ing whether smartwatches are good complements to cer-
tified medical devices for PM2.5 health studies, especially
for developing countries. A total of 49 subjects were
recruited. Each subject carried a small low-cost sensing
device for personal PM2.5 and temperature monitoring
for 7 consecutive days. The smartwatch employs opti-
cal HR measurement technology, and the data can be
downloaded from Garmin Connect. During the same
monitoring period, subjects wore smartwatches and ECG
monitor devices (RootiRx, Rooti Labs Ltd.,Taipei, Tai-
wan) for 2 consecutive days. The activities recorded were
categorized as follows: resting, commuting, working,
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cooking, worshipping, shopping, exercising, eating, bath-
ing/showering, sedentary activities, and other activities.
PM2.5 levels were significantly associated with heart rate
(HR) in males and females aged 40 to 64 years and 65 to
75 years, respectively. The effects of PM2.5 on HR were
presented as percentage changes per interquartile range
(IQR) increase, and 95% confidence intervals (CI) were
included. Heart rate was associated with personal PM2.5
exposure in models adjusted for subject, age, gender,
body mass index, temperature, activity, and time of day.
The results indicated that the elevated PM2.5 concen-
tration was significantly associated with G-HR for low-
intensity activities and marginally associated with G-HR
for moderate- to high-intensity activities.

Commercial smartwatches offer a potential strat-
egy for healthy behaviour modifications through 24-h
BP, dynamic BP variability and heart rate monitoring.
However, there is currently insufficient evidence to sup-
port their use in improving hypertension management.
Yen [52] conducted a single-blinded, two-arm study
to test the effectiveness of a commercial smartwatch
with BP-monitoring feature. The study included adults
aged 20-65 living in Taipei City and had an experimen-
tal group (wearing ASUS VivoWatch BP) and control
group (using Mi Smart Band 3 without BP monitoring).
Both groups had similar characteristics at baseline, but
the experimental group showed significant improve-
ments in DBP, SBP, resting HR, body weight, BMI, body
fat, and skeletal muscle index compared to the control
group. Participants’ blood pressure and resting heart
rate improved after 3 months of using a smartwatch with
BP-monitoring feature. Their body weight, BMI, body
fat and skeletal muscle index also decreased. The smart-
watch increased awareness of high BP and helped modify
related risk factors. However, only DBP had a significant
correlation between the data from the smartwatch and
sphygmomanometer.

Heart disease

The Kardia Band is an Apple Watch accessory that can
diagnose atrial fibrillation (AF) through an automatic
algorithm. In a non-randomized study [53], patients with
AF wore the KB before and after scheduled elective CV
procedures. The accuracy of the KB automated algorithm
was evaluated by comparing its results to physician inter-
preted KB rhythm strips and simultaneous ECGs. The
study found that KB automated interpretation had high
sensitivity and specificity in diagnosing AF compared to
physician interpreted 12-lead ECG and KB rhythm strip.
The algorithm correctly diagnosed AF with 93% sensitiv-
ity, 84% specificity, and a K coefficient of 0.77 when com-
pared to electrophysiologist-interpreted ECGs. Physician
interpretation showed similar results with 99% sensitivity,
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83% specificity, and a K coefficient of 0.83 for assessing
the quality of KB tracings produced by smartwatches.
PPG technology is utilized for passive and continuous
monitoring of AF detection algorithms through modern
wearable devices. The algorithm should have low compu-
tational cost and memory requirements to ensure supe-
rior diagnosis. A study evaluated the accuracy of the AF
detection algorithm by obtaining ECG waveforms and
PPG signals from patients undergoing AF catheter abla-
tion while considering other arrhythmias’ impact on it.
The study included 116 patients with paroxysmal AF and
40 patients with persistent AF. Various PPG features were
analyzed, including time domain and frequency domain
analyses of PPI, peak height analysis of PPG, and ACF
features of PPI. The majority of these features showed sig-
nificant differences between the AF and SR signals in uni-
variate analysis. Results suggest that using a longer length
(25-beat) for analyzing PPG data leads to higher accuracy
in discriminating AF from SR compared to using only 10
beats. Additionally, frequent PVCs/PACs can reduce the
accuracy of the algorithm used for detecting AF [54].

Covid pandemic

A recent study conducted at Scripps Research Trans-
lational Institute explored the potential of using wear-
able sensor data to forecast the transmission patterns
of Coronavirus disease in 2019. The research team ana-
lyzed a dataset consisting of information from 333 par-
ticipants who actively used the DETECT smartphone
application. This application allowed individuals to
input their symptoms and test results while simultane-
ously collecting additional biometric data such as heart
rate and sleep patterns through commercially available
wearable devices. By incorporating symptom-based
indicators and sensor-generated data into their ana-
lytical model, researchers achieved significantly higher
accuracy levels in distinguishing between positive and
negative cases compared to models solely relying on
symptoms alone [55].

Technology has enabled continuous monitoring of per-
sonal health parameters, such as stress, physical activ-
ity, and sleep, during pregnancy. In order to address
issues of this nature, the use of an Internet of Things
(IoT)-based system and smartwatch technology for the
monitoring of pregnant women was investigated in a
longitudinal cohort study design. The study involved
participants wearing smartwatches continuously from
early pregnancy through three months after the birth
of the child. Participation in the study was restricted to
Finnish-speaking women carrying singletons during the
12th—15th week of pregnancy. A total of 38 pregnant
women were monitored during the COVID-19 out-
break in Finland for a period of eight weeks. Monitoring

(2023) 23:248 Page 17 of 26

system based on IoT was developed to collect signals
from Samsung Gear Sport smartwatches every two hours
for 12 min. PPG signals were used to extract parameters
related to heart rate and heart rate variability. During the
study, the Samsung watch was used to measure physi-
cal activity and sleep, and TST and WASO were calcu-
lated for each night. To analyze the data, the Statsmodel
Python package was used, and the dependent variables
were measurements of HRV, physical activity, and sleep.
The findings of this study showed that the pandemic-
related restrictions were associated with increased heart
rate variability, stress levels, decreased physical activity,
and decreased sleep duration. Pregnant women can ben-
efit from the use of Internet of Things (I0T) technologies
in monitoring their daily patterns of well-being [56].

The occurrence of lung damage and potential post-
treatment injuries is a significant concern in the context
of the widespread covid-19 outbreak. Consequently, both
patients affected by this disease and medical person-
nel involved in their care may benefit from monitoring
potential complications even after recovery. A valuable
instrument that can assist with such surveillance is the
utilization of smartwatches. In the study conducted by
Hunter [57], Fitbit Charge 3 watches were given to each
participant along with their anonymized study reference
ID numbers. The data from a smartwatch was extracted,
including the daily step count and the daily resting heart
rate. They defined smartwatch use as wearing the watch
for a minimum of one month. Participants were recruited
across sites in South East England, with a mean age of
57 years, 74% being White, and 54% having at least one
comorbid condition. Within three months of discharge,
the mean step count of the entire cohort increased by
37%. At 3 months and 12 months following discharge, the
participants’ mean heart rates were reduced by approxi-
mately 7% and 13%, respectively. While a considerable
number of participants did not use smartwatches on a
regular basis, this study demonstrated that smartwatches
are capable of monitoring physical activity remotely.

Early detection of infectious diseases is crucial in order
to reduce disease spread by enhancing self-isolation and
enabling early treatment. Despite this, current diagnos-
tic methods involve sampling and nucleic acid-based
tests require a substantial amount of time and money.
Testing methods currently available are unlikely to
identify presymptomatic carriers. Therefore, real-time
detection of cases is imperative. It is possible to detect
COVID-19 infection well before symptoms appear, using
smartwatches and other wearable devices. In order to
accomplish this, a real-time heart rate monitoring algo-
rithm was developed to detect early stages of infection. In
this study, they explored whether wearable devices could
detect COVID-19 at an early, pre-symptomatic stage. In
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this manner, a method for potentially detecting the onset
of illness in real time, in the early stages, was developed.
In this study, two methods were developed with the
objective of detecting aberrant physiology in humans:
the RHR difference method (RHR-Diff) and the heart
rate over steps anomaly detection method (HROS-AD).
The study enrolled 5,262 participants who responded to
surveys regarding their illness, diagnosis and symptom
dates, illness severity, and type of symptoms. Among
these, 4,642 reported wearing a smartwatch, of which
3,325 wore Fitbits, 984 wore Apple watches, 428 wore
Garmin devices, and the remaining wore other devices.
Upon enrollment on REDCap, participants were directed
to download the MyPHD app, which collects wearable
device data in a de-identified and encrypted manner.
The data collected by wearable devices included heart
rate, steps, and sleep. The data were retrieved at inter-
vals of 15 s, 1 min, and sleep stage. Metadata and symp-
tom surveys were downloaded from the participants and
processed using a custom-written R and Python script.
Accordingly, 88% and 100% of individuals with symptom
onset or diagnosis dates showed elevated signals prior to
or at the time of onset or diagnosis, respectively. It was
determined that the increased RHR signal had a specific
relationship to COVID-19 by analyzing 15 cases of non-
COVID-19 illness. According to the findings, elevated
heart rates that occur before illness can be used as a
general indicator of respiratory illness. Infection with
COVID-19 alters sleep and activity patterns, which can
be monitored using a wearable device. The duration of
sleep and the number of steps decrease at the onset of the
outlying RHR-Diff signal that is associated with COVID-
19 illness. With this prototype, 63% of COVID-19 infec-
tions were detectable with an alarming frequency of 0.66
per month in healthy individuals. It was determined that
abnormal physiological events, such as elevated resting
heart rate and increased heart rate relative to number of
steps, can be detected using a smartwatch at or near the
time of infection [58].

Three vaccines are currently authorized and distributed
in the United States to prevent the spread of COVID-19.
Although there is substantial variability in individuals’
immune response to vaccines, the CDC V-safe program
found that the majority of individuals reported some sys-
temic side effects after the second dose. A recent study
found a relationship between reactogenicity symptoms
after vaccination and a humoral immune response. In the
study conducted by Quer et al. (2022) [59] collected daily
wearable sensor data from 7298 volunteers who received
at least one dose of the COVID-19 vaccine. They hypoth-
esized that there are digital, objective biomarkers of
reactogenicity that could be identified by detecting sub-
tle deviations from an individual’s normal resting heart

(2023) 23:248 Page 18 of 26

rate. In the DETECT study, 7,298 participants received at
least one mRNA vaccination. Of these, 5674 (78%) par-
ticipants contributed adequate data to evaluate changes
in activity and sleep, respectively. They observed that the
average RHR increased the day following vaccination,
reaching a peak on day 2 and not returning to baseline
until day 4 and 6, respectively. The majority of partici-
pants experienced an increase from their normal RHR.
They explored several participant and vaccine character-
istics that could impact immune response, and found that
women experienced higher RHR changes with respect to
baseline in the 5 days following vaccination after the first
dose only. In contrast, RHR responses vary by age, with
individuals age 40 having the greatest increase in RHR.
Although a direct comparison is not possible, changes
comparable to the ones observed after the second dose
of the Johnson & Johnson vaccine were detected in their
cohort. After adjusting for potential confounding factors,
prior COVID-19 infection was independently associ-
ated with a higher RHR increase after the first dose, and
female sex was independently associated with a higher
RHR increase after the first dose. After adjusting for age,
device, vaccine type, and prior COVID-19 infection,
they observed higher RHR increases from Apple devices
on average, but not after the first dose. The first dose of
the vaccine had minimal effect on activity and sleep, but
the second dose caused a significant decrease in activ-
ity and an increase in sleep, which returned to baseline
by day 2. They demonstrated that it is possible to detect
physiologic manifestations of reactogenicity to COVID-
19 vaccination through individual changes in RHR. This
provides a potential novel mechanism to identify indi-
viduals with either a suboptimal or exaggerated immune
response to a vaccine. Similarly, a study using the Garmin
Vivosmart 4 smartwatch to measure heart rate and heart
rate variability showed that smartwatches are more accu-
rate than patients’ self-reports in predicting post-vacci-
nation physiological conditions [60].

Safety
The safety of wearable technologies in clinical settings is
a critical factor influencing the advancement and growth
of these tools. The integrity and accuracy of patient clini-
cal measurements obtained through these devices must
be established to avoid any potential risks that could
compromise the health conditions of individuals under
medical care. Since smartwatches are primarily designed
for commercial purposes, examining the safety consid-
erations associated with utilizing such wearable tools for
patients becomes an essential aspect explored within this
study.

High-frequency electromagnetic fields are produced by
mobile phones and smartwatches. As such, these devices
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have the potential to affect human health, although the
issue is still under debate. Hence, in order to examine the
safety of these devices, a prospective observational study
was conducted in order to evaluate the potential for elec-
tromagnetic interference with CIEDs. It was conducted
using a popular smartphone and smartwatch, which pro-
vided real-time monitoring and printing of intracardiac
electrograms, marker channels and a 3-lead electrocar-
diogram. In total, 1,352 testing procedures were con-
ducted on 148 patients for cardiac implantable electronic
devices, which included 51 pacemakers, 5 cardiac resyn-
chronization therapy pacemakers, 46 inverter defibrilla-
tors, 43 cardiac resynchronization therapy defibrillators,
and 3 implantable loop recorders. EMIs were observed
between the iPhone and an implanted dual-chamber
pacemaker in 1 patient, but not between the Apple Watch
and the CIED. In connecting mode, an iPhone placed
directly over the generator was observed to cause EMI,
which resulted in marker channel assignment being lost,
as well as EGM loss and noise in the ventricular marker
channels. Moreover, this study shows that there is no risk
of EMIs between the iPhone and CIEDs, but relatively
frequent telemetry interferences do occur between the
iPhone and the CIEDs [61].

There is the potential for electromagnetic interference
to adversely affect cardiac implantable electronic devices
(CIEDs), such as pacemakers, implantable cardioverter-
defibrillators, cardioversion-defibrillators, and cardiac
resynchronization therapy pacemakers and defibrilla-
tors. Considering their inductive charging functionality,
smartwatches could be a significant source of electro-
magnetic interference (EMI) due to their ability to trans-
fer power wirelessly over distances up to four centimeters
(QiTM). The magnetic components in smartwatches
emit electromagnetic fields that can interfere with patient
monitoring systems and defibrillators. A prospective,
multicenter study was conducted to investigate whether
the use of the latest generation smartwatches might
interfere with the proper functioning of the CIED. The
study participants were 171 patients who received CIEDs
and presented to two centers in Athens, Greece, for rou-
tine follow-up between March and November 2019.
Their tests were conducted on two smartwatches of the
latest generation for potential EMI as well as on their
magnetic chargers. The ECG recording was meticulously
analyzed to identify atrial and ventricular pacing inhibi-
tion, asynchronous ventricular pacing, rapid ventricular
pacing, and asynchronous pacing. The emission levels
of the tested smartwatches and their magnetic charg-
ers were evaluated by measuring low-frequency mag-
netic fields between 110 and 400 kHz. Each smartwatch
was activated and measured separately, first directly in
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contact with the probe, then at a distance of 10 cm and
20 cm [62].

Hearing loss is caused by repeated exposure to loud
noises, as well as metabolic disorders, hypertension,
abnormal sleep patterns, occupational accidents, tinni-
tus, and a reduction in cognitive abilities. In situations
in which noise levels are high, people should move away
from the source or wear hearing protection. However,
noise-induced hearing loss (NIHL) may occur slowly
and remain undetected for a considerable period of
time. Smartphones can be used to measure noise levels,
but there are several limitations. Wearable devices such
as smartwatches can overcome smartphone limitations
because they are worn on the wrist. In the study con-
ducted by Fischer [63], a popular smartwatch was evalu-
ated for its ability to accurately monitor noise levels in
13 occupational and recreational settings. The results
showed that the smartwatch and a sound level meter
used as a reference were in excellent agreement. It was
found that the music club (52% of the measurement)
emitted the most hazardous noise levels, followed by
construction sites (24%), housekeeping (20%), and streets
(4%). The sound level meter and smartwatch measure-
ments are offset by an average of 0.5 dBA (SD of 1.8
dBA), which indicates the smartwatch underestimates
the sound level. This study compared noise levels meas-
ured by a smartwatch and sound level meter. Smartwatch
accuracy was lower in settings with rapid acoustic fluc-
tuations, but comparable to the sound level meter across
different pressure levels based on SD of LAeq differences
and ICC results.

Validation or evaluation

Despite the fact that smartwatches’ health metrics
have generally demonstrated high levels of moderate-
to-strong validity, limitations in the current literature
exist, including that EE and HR data validity of smart-
watches has been found to be less valid in free-living
PA assessments, and that most previous validation
studies have utilized various Fitbit or Jawbone mod-
els. Accordingly, Pope’s [64] study examined the valid-
ity, measurement bias, and precision of four popular
smartwatches in assessing EE, average HR, and peak
HR during active play. The participants for this study
were 21 healthy college students from a large metro-
politan Midwest U.S. university. They were ages 18 to
35, had a body mass index of 18.5 and performed high-
intensity exercise that elicited EE>300 kcalories for
each session. ActiGraph GT3X+-BT accelerometers
were used in conjunction with an ActiGraph HR strap
attached to the chest for the measurement. For EE data
collection, a 1-s epoch was employed, with the follow-
ing empirically derived cut-points (in counts/minute):
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light PA: 0—2690; moderate PA: 2691—6166; vigor-
ous PA: 6167—9642; and very VPA: q9643. ActiGraph
HR straps mounted on the chest were moistened with
water 2 cm below the nipple, and smartwatches were
preprogrammed for a 20-min exercise session. They
downloaded EE and HR data from the ActiGraph using
ActiLife 6.13, and identical data was collected for each
smartwatch. Smartwatches demonstrated moderate-
to-good precision for average HR and peak HR meas-
urements with approximately the same accuracy as an
ActiGraph. EE assessment with the ActiGraph GT3X
was found to be valid in comparison to doubly labelled
water. However, this tool is not considered the gold
standard for EE assessment. In spite of the fact that
smartwatches can provide moderate validity when
assessing average and peak HR, smartwatch EE assess-
ments are less reliable. Hence, this study suggested that
smartwatches should not be used as part of a systems
medicine approach to health care.

There has been a growing trend for fitness toward the
use of wearable technology over the past few years. A
variation in EE estimation accuracy may occur depend-
ing on the type and intensity of activities, and algorithms
may not take into account the type and intensity of physi-
cal activity or the posture of the body. Validating EE esti-
mations requires consideration of the intended use of
the device, as well as an assessment of the accuracy of EE
estimations made by young adults while walking and run-
ning outdoors. Accordingly, Shenglong et al. (2022) [65]
recruited twenty healthy Chinese participants from the
campus of the local university for their study. They meas-
ured individual VE, VO2 and VCO?2 using the Cosmed
K5 system for a wide range of metabolic rates. EE was
calculated using the ratio between inhaled oxygen and
exhaled carbon dioxide. Three smartwatches were exam-
ined for validity: Apple Watch Series 6, Garmin Fenix
6, and Huawei GT 2e. Photoplethysmography was used
to determine heart rate and GPS was used to determine
distance and speed while walking or running outdoors.
Data for this study was collected during one visit. Sub-
jects had not consumed food, coffee, tea, or other stim-
ulants, did any vigorous physical activity, or consumed
alcohol during 24 h prior to measurements. EE data
were taken from the K5 breath-by-breath and summed
for each exercise session separately. The EE estimates
were obtained directly from the watches. The validity
of the smartwatches was determined by several statisti-
cal tests, including paired sample t-tests, mean absolute
percentage errors (MAPE), and Intraclass Correlation
Coefficient (ICC). Excellent, good, moderate, and low
agreement thresholds were defined as ICC values of ont,
goo). The Apple Watch Series 6 had the highest energy
expenditure, followed by the Garmin FENIX 6, and the
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Huawei Watch GT 2e. GF could likely provide better EE
estimates for the outdoor walking than running, and EE
tends to be overestimated at lower pace and underesti-
mated at higher pace. Smartwatch EE overestimated EE
versus the K5 during outdoor walking and running, and
the energy cost of running was overestimated by 24.4%
and 21.8%, respectively. This may result in the ineffective-
ness of a weight loss program. The findings of this study
indicate that smartwatches may have moderate validity in
estimating energy expenditure for outdoor walking and
running.

Physiological parameters such as heart rate and heart
rate variability provide insight into cardiovascular and
autonomic nervous system dysfunction as well as men-
tal, physiological, and sleep-related stress. Noninvasive
methods for HR and HRV monitoring include Electro-
cardiography (ECG) and Photoplethysmography (PPG).
Studies evaluated the accuracy of HRV parameters
extracted from wristbands and smart-watches including
Apple Watch, Empatica E4, Microsoft band 2, and the
Wavelet wristband against medical-grade ECG devices.
They showed that motion artifacts highly affect the reli-
ability of HRV parameters. In the study conducted by
Sarhaddi et al. (2022) [66] evaluated the validity of the
Samsung Gear Sport smartwatch in terms of HR and
HRYV parameters compared with a medical-grade chest
ECG monitor in a 24-h continuous free-live setting
monitoring. The study included 28 healthy individuals.
They collected data using two wearable devices and self-
report and background questionnaires. The participants
wore a Samsung Gear Sport smartwatch and a Shimmer3
ECG device, and logged their sleep and non-wear time.
The Shimmer3 ECG device was used to measure ECG
as the gold standard method in their assessment. Also,
they developed a customized data collection applica-
tion for the Samsung Gear Sport watch to collect 16 min
of PPG signals every 30 min continuously. They used a
deep-learning-based method for PPG peak detection,
which is enabled by a dilated Convolutional Neural Net-
works (CNN) architecture. Also, they developed a two-
round peak detection algorithm to locate peaks in ECG
signals that obtains higher accuracy in comparison with
Pan-Tompkins and Hamilton algorithms. The correlation
between the HR and HRV parameters of the smartwatch
and Shimmer3 was high (positive), and the LF/HF ratio
value showed a moderately positive relationship. The
regression analysis was used to compare the accuracy of
the extracted parameters from the Samsung smartwatch
against the reference ECG. The HR, AVNN, and pNN50
parameters showed good agreement with the ideal lines,
but the other HRV parameters showed relatively diverg-
ing lines. The Samsung smartwatch underestimates
AVNN values, but overestimates other parameters. The
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Samsung smartwatch and reference ECG showed a high
positive correlation between the AVNN and HR values,
a moderate positive correlation between the HR and the
other HRV parameters, and low positive correlations
between the LF, HF, and LF/HF ratio. The results indicate
that the accuracy is highest when the watch’s parameters
are equal to the golden standard values. They validated
the accuracy of HR and HRV parameters extracted from
PPG signals collected by the Samsung smartwatch during
sleep and awake time using short-term HRV analysis. The
Samsung smartwatch underestimates HR, SDNN, LF, and
LE/HF ratio but overestimates AVNN during sleep time
and awake time. Moreover, the watch underestimates
RMSSD, pNN50, and HF during sleep time, although it
overestimates these parameters during awake time. In
concluded this smartwatch can accurately measure HR
and HRV parameters during sleep and awake time, and
provide acceptable RMSSD, SDNN, LF, and HF.

Falling occurs more frequently with age, and staying
on the floor for a prolonged period of time after a fall
can have serious consequences, such as hospitalization,
a decline in activities of daily living, or a placement in a
long-term care facility. There is an increasing availability
of assistive technologies, such as call alarm systems and
personal emergency response systems. However, con-
sumers are not always able to use these technologies due
to difficulties activating these systems. Fall detection can
be performed using an app on a smartwatch. The study
conducted by Brew B et al. (2022) [17] aimed to address
these issues. This study used a threshold-based algorithm
programmed for different smartwatches to automatically
detect a fall on 22 volunteer participants. 12 participants
were wearing two smartwatches, model A and B, and 10
participants were wearing only one smartwatch, model
C, on one wrist. In three phases, the algorithm col-
lected acceleration data and the time of the fall: "prefall”,
"induced fall" (8 falls around five minutes), and "postfall”
(walking back from the crash mat to the area to remove
the smartwatches). This study found that an algorithm
programmed in commercially available smartwatches
to detect induced falls had an overall sensitivity of 77%
and specificity of 99%. The fall detection performance
depends on the algorithm used, and the sensitivity ranges
from 70 to 100% and the specificity from 80 to 100%
depending on the type of fall. In addition, they showed
the performance of a fall detection algorithm could be
strongly dependent on the smartwatch model [17].

Sensors that measure movement in the body have the
potential to revolutionize how clinical status and well-
being are measured in daily healthcare. Physical dis-
abilities can be described, quantified, and monitored in
these instruments, deteriorations can be detected, and
treatment responses can be monitored. In a research or
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clinical setting, consumer smartwatches cannot be used
due to their unknown data quality. A smartwatch IMU’s
accuracy and precision can be evaluated by measuring
both absolute errors and correlations with ground truth
values. In the study conducted by Auepanwiriyakul [67],
raw IMU sensor data quality was evaluated, followed by a
trial of the feasibility of wearable health devices in a clini-
cal environment. Using the Apple Watch Series 3 and 5
IMUs, they compared the inertial accuracy of the con-
sumer smartwatches with two well-known research- and
clinical-grade IMU sensors and a gold-standard test for
human movement assessment utilizing optical motion
tracking. The researchers recruited 15 healthy volunteers
and developed a WatchOS App that collected triaxial
acceleration and triaxial angular velocity data in real time
on Apple Watches at a frequency of 100 Hz in order to
record and extract inertial data from Apple Watches. As
the base for the experiment, they used an Apple Watch
Series 3 and adhered the OptiTrack markers pad to the
base with the aid of double-sided tape. Apple Watches
demonstrated weak to moderate R2 agreement with
OptiTrack. Apple Watch Series 3 and 5 had strong R2
agreement with each other for acceleration and angu-
lar velocity. They also had strong agreement with Xsens
MTw Awinda. In this study the consumer smartwatches
(Apple Watch Series 3 and 5) and research-grade IMU
Xsens achieved cleaner linear acceleration signals and
lower errors than Axivity, perhaps due to the additional
magnetometer and strap down integration (SDI) technol-
ogy. According to their study on the acceptability of wear-
able IMU technology by hospital patients and healthcare
professionals, this technology is viewed favourably.
Consumer wearables equipped with multisensor tech-
nology are an effective means of monitoring objective
movement patterns. Various systems have potential for
diagnosing PD by analyzing voice, hand movements, gait,
facial expressions, eye movements and balance. However,
caution should be exercised when interpreting reported
accuracies as the models were trained on low sample
sizes (n<100) regarding PD. Varghese et al. (2021) [68]
conducted a prospective study from 2018 to the end of
2021, in which they recruited and measured hand move-
ments of 400 participants using Apple smartwatches and
smartphones. The aim was to distinguish PD from other
movement disorders and healthy individuals. They com-
pared acceleration amplitudes and tremor frequencies
utilizing a seismometer and high-precision shaker with
different machine learning models trained for classifi-
cation performance assessment. Participants wore two
smartwatches during a 15-min neurological examina-
tion, designed by movement disorder experts. A Trillium
Compact seismometer measured ground velocity as part
of the study. A shaker table experiment was conducted
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to validate the method using two Apple watches and
a Trillium Compact seismometer. The z-axis accuracy
of the method was tested with tremor-typical frequen-
cies and amplitudes, resulting in 43 measurements per-
formed on different days. The watches were connected to
iPhones via Bluetooth while data from the seismometer
were collected on a digitizer that it was attached to. Each
measurement lasted for 20 s for the watches, which were
mounted on the shaker table along with a decoupled
platform for placing the seismometer. The study utilized
various models including SVM, CatBoost, MLP and DL
to extract features from acceleration data using Keras and
Tensorflow. Results showed that smartwatches had high
agreement with seismological sensor validation in meas-
uring movement subtleties or hand-tremor amplitudes
and frequencies more accurately than clinical documen-
tation or human vision.

Discussion

The fast-paced advancements in technology have given
rise to a new category of patients called e-patients.
These individuals rely on various technological tools
to monitor and track the progression of their diseases
[4]. Scholarly works, such as those by Asad et al. (2019)
[69], Masters et al. (2017) [4], Loda et al. (2019) [70], and
Herrmann-Werner et al. (2019) [71] highlight the need
for medical curriculum integration that enhances com-
munication skills and resolves the challenges associated
with engaging e-patients. The studies suggest training
medical students on utilizing e-patient knowledge in
healthcare delivery, advising patients regarding cred-
ible online sources, assessing website credibility strate-
gies, and employing blended-learning teaching methods
to improve students’ competence when dealing with this
unique patient population. Therefore, it becomes cru-
cial for clinical students to possess the necessary skills
required for effective engagement with these techno-
logically-savvy individuals. This can only be achieved
through comprehensive training provided by educational
institutions. Wearable technologies like smartwatches are
increasingly popular in healthcare due to their potential
to optimize practices and promote healthier habits [72].
However, integrating these devices presents challenges
like seamless integration with clinical workflows and effi-
cient data management [73, 74]. Medical students, who
use smartwatches, serve as role models for patients, mak-
ing it crucial for future healthcare professionals to pos-
sess technical proficiency and a thorough understanding
of these technologies.

Thanks to technological advancements, smartwatches
and wearable technology are rising in the diagnosis and
symptom reporting field [67, 75]. Researchers have con-
ducted studies to assess these technologies’ effectiveness,
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with encouraging outcomes. An investigation revealed
that smartwatches and wearables are accurate when
identifying initial signs of health issues like irregulari-
ties in heart rate [64]. Moreover, users can receive valu-
able feedback through this technology. Additionally,
researchers discovered that such devices play a crucial
role in detecting potential health hazards at an early
stage before they escalate into critical conditions [52].
Another study examined how wearables can monitor
patients with chronic conditions. The study discovered
that these devices have the capability to perceive varia-
tions in essential indicators such as pulse rate and blood
pressure, notifying medical professionals of possible
issues [64]. This could prove especially advantageous for
individuals unable to communicate effectively with their
healthcare providers or are susceptible to abrupt fluctua-
tions in health.

Recent studies have shown that smartwatches can be
incredibly useful for various purposes, including motion
sickness, heart health, work stress and timely diagno-
sis of COVID-19 [55, 57]. The watch has the capabil-
ity to assess respiratory rate, levels of oxygen saturation,
and body temperature. This functionality provides the
potential to detect the virus early on [55]. However, it
should be noted that this method does not possess the
ability to differentiate between infections caused spe-
cifically by SARS-COV-2 versus other viruses. Never-
theless, its use could lead to identifying diseases arising
from diverse infectious agents and potentially forecast-
ing disease severity as well as symptom manifestation
[76]. Disease detection using wearable devices offers
many advantages over traditional testing methods, such
as no testing infrastructure, materials or personnel, pas-
sive testing and high-resolution continuous screening
to allow follow-up testing and self-isolation. Although
smartwatches are increasing and digital technology was
widespread during the COVID-19 pandemic, few studies
have used smartwatches for rehabilitation, empowerment
or patient engagement in rehabilitation [57, 77]. Moreo-
ver, the smartwatch can track heart rate and identify any
abnormalities, which could serve as an initial indication
of potential cardiovascular issues [10, 66]. Additionally,
employers can utilise smartwatches to monitor employee
stress levels in work settings and access valuable infor-
mation that aids in providing necessary support for their
workforce.

Pairing the smartwatches utilized by the patient with
additional smart wearable devices that can be employed
by both the patient’s companions and even healthcare
professionals in the intensive care unit holds immense
potential to transform it into an invaluable information
tool. This confluence of technological advancements
plays a pivotal role in diligently monitoring and tracking
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crucial symptoms exhibited by the patient [75]. Smart-
watches incorporate advanced technology to deliver pre-
cise and up-to-date data, enabling medical professionals
to comprehend their patients’ health conditions. Signifi-
cantly, individuals have the convenience of monitoring
their vital signs and other pertinent health information.
They can securely send this information to their car-
egivers or healthcare professionals to improve the effec-
tiveness of monitoring their state [75]. This ultimately
improves the quality of patient care and enhances under-
standing of the patient’s overall wellness. Furthermore,
secure transmission of this data helps expedite diagnosis
and treatment processes by reducing time requirements
[78, 79]. Consequently, patients receive faster and more
efficient treatment as a result. Additionally, these smart-
watches serve as reminders for patients to take medica-
tion promptly, ensuring an added level of comfort and
safety in managing their health conditions. It is important
to note that smartwatches’ functionality heavily relies on
their algorithmic operations and program design along-
side the specific type utilized in healthcare settings [53].

Examining the viability of smartwatches as dependable
tools necessitates thoroughly considering safety. Previous
studies, such as Elvis, have emphasized the significance
of user safety in determining the sustained intention to
utilize smartwatch applications [80]. In line with this,
Lee has developed an effective tool to assess smartwatch
quality from users’ perspectives by evaluating factors like
usability, functionality, and, most notably, safety concerns
[81]. Moreover, Hong’s research in 2022 reveals the posi-
tive impact that both safety and convenience can have on
individuals’ motivation to incorporate smartwatches into
their lifestyles [82]. Alongside assessing their ability to
measure clinical data accurately, this research also delves
into the Safety concerns surrounding patients’ usage of
these devices. The findings from multiple studies high-
light that smartwatches demonstrate satisfactory levels of
safety when used by individuals [61-63].

The world of smartwatches has significantly advanced
in recent years. However, most of these watches have
been developed for convenience rather than to help
with medical diagnosis [75]. Recent studies indicate that
smartwatches’ potential in detecting medical symptoms
may be limited due to issues with precision and accuracy.
The study conducted by Varghese revealed that although
smartwatches were capable of capturing subtle tremor
signs in Parkinson’s disease, there were noticeable differ-
ences in amplitude and frequency when compared to a
seismometer [68]. Similarly, the research carried out by
Falter showcased insufficient accuracy in smartwatch-
based blood pressure measurements, showing a system-
atic bias towards a calibration point [50]. Antognoli, on
the other hand, emphasized the necessity of metrological
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validation for wearable devices and determined that
while commercial smartwatches offered certain precision
and accuracy for heart rate and blood pressure measure-
ments, some degree of bias was present [83]. Moreover,
Poli’s investigation from 2022 also examined the precise
nature of blood pressure tracking using smartwatches;
however, it suggested lower data quality as compared to
medical-grade instruments despite achieving acceptable
levels of precision and accuracy [84]. Hence, the research
indicates that currently available smartwatches may not
meet the necessary standards for precise and accurate
detection of medical symptoms. These findings raise con-
cerns about the effectiveness of smartwatches in accu-
rately monitoring and detecting health conditions.

The trustworthiness of smartwatches is a subject of
concern due to the opaqueness surrounding the algo-
rithms used for detecting and analyzing users’ health
information. These algorithms are kept from the general
public, which introduces a level of uncertainty regarding
their accuracy and reliability [79]. Furthermore, research
studies have pointed out that different brands of smart-
watches yield varying results when diagnosing clinical
symptoms, sometimes even diverging from those pro-
vided by traditional medical devices [84—86]. Recent
studies have examined the accuracy and precision of
various smartwatch models compared to medical-grade
pulse oximeters. Windisch discovered that although
the Apple Watch Series 6 generally demonstrated good
agreement with medical-grade devices, outliers were
still reported, reaching up to a 15% difference [86]. Jiang,
on the other hand, conducted a comparative analysis of
different smartwatches and found that the Apple Watch
Series 7 performed closest to the reference standard
while the Garmin Venu 2 s deviated furthest from it [85].
These findings suggest that while some smartwatches
showcase favorable alignment with medical-grade pulse
oximeters regarding accuracy assessments, occasional
outliers as well as discrepancies remain present due to
variations among different models and contexts consid-
ered during evaluations.

Given the crucial nature of healthcare decisions, rely-
ing entirely on these watches’ information becomes
increasingly challenging. This could pose a notable chal-
lenge in certain situations where precise diagnosis and
treatment are crucial. This study underscores both the
significance and pressing need for incorporating smart-
watch technologies into health services. It is essential to
acknowledge that although smartwatches can serve as
valuable tools for monitoring health and overall wellness,
they should not be solely relied upon for diagnosing ill-
nesses in most instances [87]. Hence, we recommend that
leading companies in healthcare technology venture into
this domain, ensuring that they provide smartwatches
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equipped with dependable and efficient mechanisms
for monitoring individuals’ well-being. This calls for the
development of medical watches and the creation of Al-
hospital assistants.

Smartwatches have the potential to revolutionise
healthcare by providing patients with easier access to
their health data. They also increase the acceptance
of long-term home monitoring [88]. However, smart-
watches in healthcare also raise problems. One problem
is that smartwatches focus on aggregating biomedical
data and do not take a holistic view of the patient [78].
The over-reliance on smartwatches and the fewer face-
to-face doctor visits lead to a violation of the principle of
non-maleficence [78].

With the increasing availability of 6G technology,
AI and medical data, the potential of predictive analyt-
ics is becoming more real. This opportunity allows us
to develop algorithms that have incredibly high diag-
nostic power. Using these datasets, we can identify pat-
terns and trends that can be used to predict future health
conditions and make informed medical decisions [79].
Smartwatches has a broad reach and can be significantly
improved, but its security and credit ratio still needs to
be assessed. This review has attempted to highlight the
strengths and weaknesses of some smartwatches in the
context of diagnosis and validation; however, further
research is needed.

Conclusion

Advancements in technology have led to the rise of
e-patients who rely on technology to monitor and track
their diseases. Medical curriculum integration is crucial
for enhancing communication skills and addressing chal-
lenges associated with engaging e-patients. Wearable
technologies like smartwatches are increasingly popular
in healthcare, but integrating them presents challenges.
The review highlights the relationship between smart-
watches and their efficiency in health systems. Smart-
watches can be effective in diagnosing and reporting
symptoms, detecting potential health hazards early, and
monitoring patients with chronic conditions. However,
safety concerns need to be considered, as most smart-
watches have been developed for convenience rather than
medical diagnosis. The trustworthiness of smartwatches
in healthcare is also a concern due to the opaqueness of
their algorithms and varying results in diagnosing clini-
cal symptoms. Instead, there is an increasing demand
for a clinical assistant that relies on AI within the health
network. This type of assistant would be able to offer
more precise and dependable data while also being bet-
ter equipped to handle the intricacies involved in health-
care. Given these findings, additional investigation will be
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imperative to fully comprehend and exploit the potential
of smartwatches in healthcare and develop more sophis-
ticated and efficient clinical assistants that utilise Al
technology.
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