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Abstract: Auxins mediate various processes that are involved in plant growth and development in
response to specific environmental conditions. Its proper spatio-temporal distribution that is driven
by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological
effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin
distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide
an updated list of valuable techniques used for monitoring auxins in plants, with their utilities
and limitations. Because the spatial and temporal resolutions of the presented approaches are
different, their combination may provide a comprehensive outcome of auxin distribution in diverse
developmental processes.
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1. Introduction

Auxin, which was the first-identified plant hormone, plays a fundamental role in plant growth
and development (e.g., inducing vascular tissue differentiation, tropic responses, and promoting
root development). Indole-3-acetic acid (IAA) is the main natural auxin, but some plants contain
other compounds that display weak auxin activity (e.g., phenylacetic acid). Several synthetic auxins
(e.g., 1-naphthaleneacetic acid, 1-NAA) are often used in commercial applications [1]. The functionality
of all components of auxin signalling and homeostasis is essential for proper plant development.

The cellular presence of an endogenous or exogenous (e.g., synthetic) auxin is perceived by the
TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) signalling pathway,
and triggers the expression of the target genes, which induce biological responses to the received
stimulus. The auxin signalling TIR1/AFB pathway comprises three major families of proteins: (i) auxin
nuclear receptor TIR1/AFB F-box proteins; (ii) AUXIN RESPONSE FACTOR (ARF) transcription
factors; and, (iii) AUXIN/INDOLE 3-ACETIC ACID INDUCIBLE (Aux/IAA) repressor proteins [2].
In the absence of auxin, Aux/IAAs bind ARF transcription factors disabling their function. Auxin
binding to TIR1/AFB induces the proteasomal-dependent degradation of Aux/IAA by targeting the
domain II for ubiquitination, and thus releases ARFs from repression enabling auxin response.

While the TIR1/AFB signalling pathway is fully explained at the molecular level [3], the function
of other factors playing a role in response to auxin stimuli has not yet been fully understood [4].
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These factors include, for example, (i) the S-PHASE KINASE-ASSOCIATED PROTEIN 2A (SKP2A)
protein that could bind auxins in order to regulate cell division; (ii) SMALL AUXIN UP RNA (SAUR)
proteins that are likely involved in cell elongation; (iii) INDOLE 3-BUTYRIC ACID RESPONSE 5
(IBR5); and, (iv) AUXIN BINDING PROTEIN 1 (ABP1), which is the oldest known putative auxin
receptor [5,6]; however, these latest findings were put into question when ABP1 was found to have
little, if none, prominent role in Arabidopsis development [7].

The differential and dynamic distribution of auxins within individual plant tissues depends on
auxin homeostasis (metabolism and transport). Free auxin levels are maintained by its metabolism
(biosynthesis, conjugation, and degradation), which occur predominantly in rapidly growing
meristematic areas or organs, such as a shoot tip, a root tip, or emerging leaves [8]. The IAA is de novo
synthesised through two biosynthetic pathways: (i) L-tryptophan (L-Trp) independent, well described
in microorganisms [9]; and (ii) Trp-dependent, which includes four biosynthetic pathways that are
named according to their first intermediates, and which is a significant source of endogenous IAA for
higher plants [10]. The auxin metabolism comprises (i) an oxidative catabolism leading to the inactive
2-oxindole-3-yl acetic acid (oxIAA) [11]; and, (ii) a conjugation with sugars, amino acids, peptides,
or proteins [12]. IAA conjugates have transport, storage, and deactivation functions, which ensure the
maintenance of auxin homeostasis [13].

Another important process that is involved in the concentration gradient is passive and active
auxin transport. In higher plants, auxins are transported together with assimilates through the vascular
system at long distances (phloem). At a short distance (cell-to-cell), a polar active movement combines the
chemiosmotic force, ATP hydrolysis and auxin transporters [14]. Major protein carriers that are present
in the auxin transport are (i) AUXIN RESISTANT 1 (AUX1) and LIKE-AUX1 (LAX) from the subfamily
of amino acid permeases contributing to auxin influx [15]; (ii) PIN-FORMED (PIN) transmembrane
proteins specifically delivering auxin molecules out of the cell and regulating intracellular auxin
homeostasis [16]; (iii) P-GLYCOPROTEINS/ATP-BINDING CASSETTE SUBFAMILY B (PGP/ABCB)
transmembrane transporters [17]; and, (iv) PIN-LIKES (PILS) proteins with structural similarity to
PIN proteins that are localised in the membrane of the endoplasmic reticulum [18]. The loss of
the asymmetric distribution of auxin due to the genetic alteration of PIN function affects many
developmental processes, e.g., embryogenesis, organogenesis, tissue differentiation, and various
tropisms [19–21]. It has also been shown several times that auxin influx carriers (AUX1/LAX) play
an important role during gravitropism, phototropism, lateral root, and root-hair development [22–25].
Furthermore, additional substances, such as flavonols, have been recently proposed as endogenous
auxin transport regulators [26,27]. Flavonols are plant phenolic secondary metabolites that have been
suggested as auxin transport inhibitors [28]. Based on the fact that auxin transport is elevated in the
absence of flavonoids is and reduced in the presence of excess flavonols, they are thought to act as auxin
efflux modulators [29] that are targeting both PIN [30,31] and ABCB [32,33] auxin efflux facilitators.
Nevertheless, the regulation of auxin distribution by flavonols seems to be more complex, involving
auxin signalling [34,35], changes in vesicular trafficking [31], or protein phosphorylation [36].

In this review, we focus on the indirect and direct methods for visualization of auxin signalling,
metabolism, and transport. We describe the recent advances in monitoring auxin distribution and
signalling, as well as bioanalytical tools for the quantification and visualisation of auxin metabolites at
tissue and cellular level.

2. Indirect Auxin Visualization—Methods Based on Detection of Auxin Action

2.1. Reporters Based on Auxin Signalling

Visualisation of auxin in plants, direct or indirect, has attracted a lot of interest in phytohormone
research for many years. The first auxin reporters were made of promoters of auxin inducible genes that
were fused to a β-glucuronidase (GUS) reporter gene, such as SAUR:GUS transformed into tobacco [37]
or soybean GRETCHEN HAGEN 3 (GH3)-derived GH3:GUS used in white clover (Trifolium repens) [38].
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Both of the reporters were able to show an asymmetric pattern of the auxin action during gravitropism
or phototropism.

Going more into details on the DNA sequence, a 183-bp auxin-responsive region (AuxRR) of the
PsIAA4/5 promoter was identified in Pisum sativum containing two auxin-responsive domains (AuxRD)
A and B defined by linker scanning mutagenesis [39,40]. AuxRD A possesses a conserved sequence
T/GGTCCCAT and has been described as an auxin switch, while AuxRD B was hypothesised to
have an enhancer-like activity, with C/AACATGGNC/A

A/GTGTT/C
T/C

C/A nucleotide sequence [39].
Domains A and B were cloned to control GUS expression in a BA:GUS construct and tested in
Arabidopsis for their functionality [41]. In the root elongation zone, the expression of BA:GUS was
induced by active auxins such as IAA, NAA or 2,4-dichlorophenoxyacetic acid (2,4-D); and, less by
indole-3-butyric acid (IBA). Moreover, other tested compounds, such as inactive auxin analogue,
IAA metabolic precursors, IAA transport inhibitors, or phytohormones, were unable to induce GUS
expression. In planta, the inducibility of the BA:GUS reporter gene by IAA was increased from 10−7 M
to 10−4 M, but was inhibited at 10−3 M. In addition, BA:GUS expression pattern was confirmed by
introducing the second reporter gene, encoding the green fluorescent protein (GFP), under the control
of BA sequence. BA:GFP expression displayed a similar pattern to that of BA:GUS, and was inducible
by auxin as well [41]. Using chemical genetics in Arabidopsis, BA:GUS reporter has been successfully
used as bait for the identification of inhibitors of auxin transcriptional activation [42].

2.1.1. The Signalling Reporter DR5 and Variants

The most popular auxin reporter to indirectly visualise auxin in plants is the artificial
auxin-response promoter DR5 [43], whose activity reflects an auxin response maximum [44]. Among
several auxin inducible genes, GH3 from a soybean was identified as rapidly and specifically induced
by auxins [45]. Transcriptional activation of this gene was observed within 5 min after auxin
application [46]. Within the GH3 promoter, the smallest composite natural auxin response element
(AuxRE) with strict auxin specificity was identified and named D1-4 element [47]. The D1-4 represents
an 11 bp 5′-CCTCGTGTCTC-3′ sequence, and contains a coupling element that overlaps with the
TGTCTC motif required for auxin inducibility [48]. The TGTCTC sequence occurs in many promoters
of early auxin responsive genes, bound by ARFs and responding rapidly to active auxins only [47]
(Figure 1a). Together with the GGTCCCAT sequence that was identified in a pea [39], it is also present
as a TGTCTCtcatttGGTCCCAT sequence in SAUR promoters [49].

Thymidine substitutions in the natural D1-4 AuxRE (CCTCGTGTCTC) provided the synthetic
DR5 AuxRE 5′-CCTttTGTCTC-3′, with an exceptionally strong auxin response when cloned upstream
of a minimal −46 cauliflower mosaic virus (CaMV) 35S promoter [43]. Eight repeats of the synthetic
DR5 (8x) AuxRE displayed up to 10-fold higher inducibility by NAA when compared with the eight
repeats of natural D1-4 (8x) AuxRE. In addition, the spacing between TGTCTC elements and nucleotide
composition upstream of TGTCTC elements was suggested to be important for the auxin inducibility
in the DR5 construct [43]. Several variants of DR5 element were prepared to monitor auxin signalling
action in plants (Figure 1). Seven tandem repeats of the 11 bp sequence 5′-CCTTTTGTCTC-3′ fused
to a −46 bp CaMV35S minimal promoter and driving the GUS gene gave a rise to the DR5:GUS
reporter [50]. Nine inverted repeats of the 11 bp element, a CaMV35S minimal promoter and a TMV
leader sequence were used to create a DR5rev version of the auxin responsive promoter. Different
reporter genes were combined with DR5rev promoter, such as phosphonate monoester hydrolase
PEH A gene in DR5rev:PEHA [51], an endoplasmic reticulum-targeted green fluorescent protein in
DR5rev:GFP [44] (Figure 1b), three tandem copies of Venus, a fast maturating variant of the yellow
fluorescent protein, fused to a nuclear localization signal (NLS) in DR5rev:3xVenus-N7 [52] (Figure 1b),
a red fluorescent protein (RFP) targeted to the endoplasmic reticulum in DR5rev:mRFPer [53] and
DR5rev:erRFP [54] (Figure 1b), or a luciferase coding region in DR5:Luciferase [55]. Overall, transgenic
Arabidopsis plants that were carrying these reporters displayed a similar pattern, with visible staining
in root quiescent centre (QC), columella cells, protoxylem, the most distal domain of developing shoot
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primordia with an incipient leaf vein and in root primordia tips. It has been shown that the activity of
DR5 correlates with auxin accumulation detected by immunolocalisation in Arabidopsis [56].
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identified by protein binding microarrays [57]. Interestingly, the TGTCGG sequence occurs also in a 
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Figure 1. Indirect auxin reporters. (a) DR5 reporters were derived from auxin response element (ARE)
sequence for binding of ARF transcription factors in auxin responsive promoters. (b) The expression
of DR5rev:GFP, DR5rev:3xVenus-N7 and DR5rev:erRFP reflects similar auxin signalling output in
Arabidopsis root tip. Degradation based reporters DII and R2D2 contain degron domain from Aux/IAA
repressors leading to ubiquitination and degradation in the presence of auxin. They represent
auxin signalling input. 35S, CaMV35S minimal promoter; ARE, auxin response element; ARF,
AUXIN RESPONSE FACTOR; Aux/IAA, AUXIN/INDOLE-3-ACETIC ACID; GFP, green fluorescent
protein; RFP, red fluorescent protein; Venus, yellow fluorescent protein; and, Ω, tobacco mosaic virus
leader sequence.

To create a more sensitive auxin responsive promoter, two bases in the original DR5 binding
sequence TGTCTC were exchanged to make a TGTCGG with higher binding affinity to ARF,
as identified by protein binding microarrays [57]. Interestingly, the TGTCGG sequence occurs also
in a promoter of Agrobacterium tumefaciens T-DNA of Ach5 Ti plasmid [58]. Nine original AuxREs in
the DR5rev promoter were replaced with new binding site elements producing a DR5v2 promoter [59]
(Figure 1a). The expression pattern of DR5v2 matches more precisely the auxin accumulation
sites, as predicted from the localisation of the polar auxin transporters [60]. Moreover, DR5v2
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showed a weak activity in the dividing cells of the embryo, leaf, or shoot meristem corresponding
to an auxin function in cell division processes [61]. When comparing the activity of DR5 and
DR5v2 in a DR5v2:ntdTomato-DR5:n3EGFP double reporter [59], all of the expression sites of DR5
were overlapped by a DR5v2 expression and the additional DR5v2 signal appeared in other cell
types (cotyledons and vasculature during embryogenesis, in metaxylem, pericycle, lateral root cap,
epidermal cells of root, and in the cells surrounding the shoot primordia and the L1 layer of the
shoot apical meristem). The difference in DR5 and DR5v2 sensitivity and localisation can be useful
for the identification of unique regulatory factors, preferring specific AuxRE binding sequences in
both promoters.

2.1.2. Degradation-Based Auxin Reporters

In addition to DR5, another type of auxin responsive promoter was constructed to monitor auxin
signalling input [62]. The auxin interacting domain II (DII) [63] of IAA28 protein was cloned under
a constitutive promoter and was fused to Venus with a NLS sequence [64] to generate the DII-Venus
auxin sensor (Figure 1). The DII domain is the Aux/IAA domain that is ubiquitinated and induces
degradation of the protein in response to the auxin dose-dependent presence. Therefore, DII-Venus
monitors the input into the auxin signalling pathway by the degradation of fusion protein, thus switching
off the signal in the presence of auxin, in an opposite manner to DR5 principle. Two promoter variants
were used for the sensor: a CaMV35S promoter [64] or a RPS5A promoter [59]. The need of “auxin
input” quantification led to the development of an innovated reporter. The combination of DII-Venus
and mDII-ntdTomato, a mutated auxin insensitive variant of DII, into one construct gave a rise
to the ratiometric version of the auxin input—R2D2 [59] (Figure 1a). Two fluorophores allow for
a semiquantitative measurement of auxin accumulation as a ratio of yellow and red signal. Auxin
sensitive DII and R2D2 reporters enable the observation of fast changes in auxin accumulation at
cellular resolution in real-time [59,64–67]. Based on DII degradation, another quantitative ratiometric
sensor for analysis of auxin dynamics in real-time was developed and optimised for the use in single
cell systems combining a luminescent reporter with an internal normalization element [68].

Interestingly, DII and R2D2 reporters showed partial auxin insensitivity in the root tip, particularly
in the epidermis, cortex, and endodermis cell files that are close to the QC [59,64,65]. After the
gravistimulation or exogenous auxin application, the DII-Venus signal of both the reporters is not
switched off completely in these cells, suggesting a distinct type of regulation when compared to cells
without signal. Moreover, the comparison of DR5 and DII signals revealed discrepancies between the
auxin signalling response input and output, suggesting the presence of the auxin, but the absence
of a signalling response in particular parts of the growing plant [59]. It would be useful to combine
DR5v2 and R2D2 in a single three-colour reporter to inspect the auxin input and output in one plant.

2.1.3. Dissecting the Specificity of the Auxin Signalling

To follow the specificity of the auxin signalling, a set of Aux/IAA and ARF reporters were fused
with GUS or GFP tag to report signalling pathways with particular sets of Aux/IAA and ARF proteins.
An ARF collection using transcriptional fusion with nuclear localised 3xGFP mapped their different,
as well as overlapping expression pattern in embryo and in the root tip [69]. Analogically, members
of Aux/IAA family possess a wide range of localization patterns in Arabidopsis, suggesting their
spatiotemporal specificity [70–78]. When combining the members of Aux/IAA and/or ARF families
provides a huge set of possible mutual interactions pointing to variability and complexity of the auxin
signalling in plant development [62,79] and waiting to be revealed.

2.2. Focused on Auxin Source

Inspecting auxin production by the activity of auxin biosynthetic genes provides us another
approach how to visualize auxin indirectly. Indeed, auxin biosynthesis pathways are represented by
a wide scale of participating enzymes [80]. Several biosynthetic pathways produce free IAA most probably
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in the tissue-, cell-, or time-dependent manner, reflecting plant development plasticity and adaptability.
The expression patterns of two related enzymes in the probably essential Trp-dependent auxin
biosynthetic pathway, TAA1p:GFP-TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1),
and TAR2p:GUS (TRYPTOPHAN AMINOTRANSFERASE RELATED 2), are complementary in stele, QC,
and columella cells [81]. Subsequent enzymatic step to produce IAA is catalysed by flavin-containing
monooxygenases from the YUCCA (YUC) family. Several fusion variants of the YUC1 to YUC11 to
a GUS, nuclear-targeted 3xGFP, or a cytosolic GFP-GUS tag showed auxin production specificity in
flower organs [82], during embryo development [83,84] and leaf formation [83], or in the root tip [85].
The expression patterns of these genes point to the root meristem as a very active place for auxin
biosynthesis [81,85].

2.3. Following Auxin Flow

Auxin biosynthesis reporters in combination with the reporters of the auxin transport machinery
mark the auxin source and subsequent auxin flow. As auxin efflux carriers from the PIN family
represent limiting factors of auxin transport [86], they can serve as an arrow of auxin flow direction
by their polar cell localisation, and sites with high auxin concentration can be therefore predicted.
Grouped by their structure [87], “long” PINs (1–4, 7) enable intercellular auxin transport with partially
redundant function [88,89], while “short” PINs (5, 6, 8) participate mainly in intracellular auxin
distribution. Over the years, an almost complete set of PIN transporters translational reporters
with fluorescent proteins were generated (PIN1 [56], PIN2 [90], PIN3 [91], PIN4 [89], PIN6 [92–94],
PIN7 [88], and PIN8 [94–96]; Figure 2). In case of PIN5, the translational fusion with the GUS
reporter was published [92]. Particularly, the PIN1 protein localization in combination with the
DR5 reporter served to predict auxin accumulation as a common modulator for organ formation in
many plant developmental processes [56], e.g., embryo development [44,56], defining apical-basal
axis in embryo [84,97], lateral root primordia formation [98], primordia development of inflorescence
meristem [52], vascular pattern development in leaves [60], leaf shape [99,100], or de novo organ
formation from explants [101]. In addition, in the root apical meristem, combined action of PIN1,
PIN2, PIN3, PIN4, and PIN7 is considered to establish a local auxin “reflux loop”, thus maintaining
the activity of the root apical meristem [88].
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Figure 2. Visualisation of auxin flow. Functional translational fusion of auxin transport proteins enables
to predict auxin distribution in Arabidopsis root tip. Auxin efflux carriers from the PIN family were
fused with GFP. PIN, PIN-FORMED.

2.4. Immunolocalisation and In Situ Hybridisation Approaches

A complex expression pattern of ARFs and Aux/IAAs in the shoot apical meristem was provided by
RNA in situ hybridization [62]. Whole-mount in situ hybridisation and immunolocalisation techniques
served to detect mRNA and proteins of PIN efflux carriers in Arabidopsis seedlings [88,102,103].
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Together with GFP reporters, the antibodies against auxin transporters helped to define their cellular
localization, particularly anti-PIN1 [104], anti-PIN2 [105], anti-PIN3 [106], and anti-PIN4 [51].

3. Direct Methods for Tracking Auxin Distribution

3.1. Immunolocalisation of IAA

A high amount effort was also invested to directly visualise IAA by specific antibodies in planta.
In Arabidopsis, the successful use of IAA antibodies confirmed IAA accumulation in accordance to
DR5 reporter in columella initials and the QC region of the mature root and in lateral roots [56,107].
In addition to Arabidopsis, immunolocalisation of IAA was applied in several other plant species
to monitor auxin levels during development, e.g., in developing peach leaf cells [108], sunflower
embryos [109], tobacco embryo [110], maize coleoptile tips [111], or during the adventitious root
formation from cotyledon explants of walnut [112]. Nevertheless, even if the IAA visualisation using
antibodies can show auxin accumulation in plants, it seems that the immunolocalisation of such small
molecule, like IAA, is not a suitable approach on the sub-cellular level [113].

3.2. Radiolabelling

3.2.1. Traditional Methods for Studying Polar Auxin Transport in Plants

One of the original methods how to directly track auxin movements in plants employs
radioactively labelled molecules of IAA or other natural and synthetic auxins. Different strategies for
different purposes in various plant species and cell cultures have been developed in order to investigate
the basics of polar auxin transport and its role in plant development [114]. This methodology has been
also used for the functional characterisation of auxin transport carriers [115,116]. Although having the
advantage of being possibly carried out in any desired mutant background, this approach has certain
limitations. Despite the progress in the development of microscale manipulator techniques, the spatial
resolution of the method still remains the major limit. The radioactively supplemented source of
auxin is applied on plant tissue segments that are covering several cell types. Moreover, tissue-specific
dissection of plant organs for scintillation quantification has not been achieved. Thus, the method
is not suitable for determination of local auxin changes in specific tissues [26]. The second major
limitation is represented by passive diffusion of auxin through cell plasma membranes from the donor
source, which may influence the overall outcome of the transport evaluation. For this reason, proper
controls have to be performed to minimize the impact of this background process, e.g., simultaneous
application of labelled auxin with the compound of similar size and polarity, which is not transportable
by the active auxin transport machinery. Also, the treatment with auxin transport inhibitors helps to
reveal background diffusion by blocking active transport [115].

The fundamentals of the complex polar auxin distribution in roots and its influence on root
elongation and georeaction were laid in 1980’s, when evidences of two-directional IAA transport
were exposed—the acropetal transport towards the root apex in stele and basipetal transport from
the apex towards the base in the outer root cell layers [117–121]. Auxin is transported basipetally in
a single polarity in stems including hypocotyls and inflorescences [122–125]. In the very first assays,
lanolin paste or agar blocks were used as a donors of radiolabelled IAA and the radioactivity was
measured in receiver agar blocks in the opposite site of the examined segment [121]. The spatial
resolution of this approach was sufficient only for bigger plant species, such as Zea mays [117],
Phaseolus coccineus [118,119,122,123], or Vicia faba [120,121,126]. The first attempt to measure
direct auxin transport in Arabidopsis thaliana was performed by Okada [127], who transferred cut
inflorescence segments of Arabidopsis into microtubes with a small amount of liquid source of 14C-IAA,
while measuring radioactivity at the other end of the inflorescence. This study confirmed the basipetal
transport of auxin in the plant shoot, and revealed the importance of PIN1 transport carrier in this
process as playing a role in proper floral bud formation [127]. For the root polar auxin transport
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mechanisms, optimised handling of this assay was developed using 3H-IAA-supplemented agar
cylinders made with a narrow stem transfer pipette to only locally apply 3H-IAA to the root tip.
By that means it was found that the basipetal auxin transport in agravitropic mutant of pin2 allele
eir1-1 is altered, while the acropetal auxin transport remains undistinguishable from the wild-type.
This experiment demonstrated that the apex-to-base direction of IAA flux is responsible for gravitropic
responses in Arabidopsis [128]. The measurements of auxin in hypocotyls can be more difficult because
of the weak uptake of IAA from the aqueous media into the intact hypocotyl, and therefore it is helpful
to dissect the shoot apex and place the agar block on the decapitated site [115].

With these methods auxin movement was measured as the amount of IAA transported between
the donor and the receiver site of the plant segment over a defined period of time. It defined an auxin
flux, while the quantification of radioactive auxin in several loci with an increasing distance from
its source will determine the rate of the auxin transport [115]. This was done by performing the
“pulse-chase” assay when the plant tissue is treated for a short time with radioactive auxin, followed
by a longer treatment with non-labelled auxin for defined periods of time. The tissue is then cut into
segments, and the level of radiolabelled IAA in each segment is quantified [129]. This method helped
to determine the differences between transport rates of IAA and IBA in both Arabidopsis root and
inflorescence tissues. No IBA movement was detected in the inflorescence when compared to basipetal
IAA transport at the rate of 13–15 mm per hour. In roots the basipetal transport of both IBA and IAA
displayed the same rate of 8–10 mm per hour [129].

All of the protocols and methods of radiolabelled auxin applications for determination fluxes
and rates of auxin transport in roots, hypocotyls, and inflorescences are reviewed in Lewis and
Muday [115]. Taken together, the measurement of radioactively labelled auxins represents a very
sensitive and fast technique for the direct tracking of auxin in planta. These methodologies have
significantly contributed to the elucidation of the basic principles of the polar auxin transport in
different developmental processes [127–132]. It also has been crucial for the determination of the
functionality of auxin transport carriers responsible for the precise regulation of the auxin polar
transport in plants [32,133–137].

3.2.2. Cellular Polar Auxin Transport Matters

The above-mentioned methods that are based on the detection of movement of radioactively
labelled auxins provided information about overall auxin polar transport within distinct organs
and tissues and its impact on plant morphogenesis. However, suspension-cultured cell lines may
represent a sensitive system for evaluation of kinetic parameters of individual auxin transporters,
their substrate specificity or the role in promoting and regulating auxin fluxes from and into the
cell. Based on the accumulation of radioactivity in the tobacco cell culture, Delbarre et al. [138]
published comparative data on two synthetic auxins 3H-NAA and 14C-2,4-D. This study showed
that these two analogues behaved differently across the plasma membrane. 1-NAA appeared to be
transported by passive diffusion into the cell, but required carriers for active efflux. On the contrary,
2,4-D required active auxin influx to get into the cell while it was shown as a weak substrate for
auxin efflux transporters [138]. Based on these findings, these two molecules are used to dissect
these two processes and to study auxin influx and efflux independently. The selective affinities of
2,4-D and 1-NAA to auxin transporters have been later confirmed in Arabidopsis suspension-cultured
cells [139,140]. Nevertheless, Hošek et al. [141] detected an increased accumulation of 2,4-D in BY-2
tobacco cells after 1-naphthylphthalamic acid (NPA) treatment suggesting its role as a substrate for
auxin exporters. Moreover, a proposed mathematical model for 2,4-D transport includes possible
passive diffusion contributing to its influx and efflux. It is in concert with previously published
evidence demonstrating a contribution of diffusion (influx/efflux) and active efflux to 2,4-D transport
in Nicotiana tabacum L. cv. Virginia Bright Italia (VBI-0) cells [142,143], and BY-2 over-expressors of the
Arabidopsis gene PIN7 [86].
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In addition, expressing auxin transporters in heterologous systems helps to overcome certain
limitations of this approach. Due to metabolic changes such as conjugation or inactivation of auxin
in the plant cell systems, it is hard to determine the precise pool of free auxin to be transported [114].
Moreover, because the regulation of auxin transport is a very complex process that is driven by
multiple carriers, which may be functionally redundant, expression of the desired transporters in
a non-plant system will separate auxin influx and efflux, and solve the problem of redundancy. So far,
several heterologous systems, such as yeast [32,33,86,137,144–147], mammalian cells [32,33,86,144,146],
or oocytes of Xenopus laevis [148] have been prepared to evaluate specific roles of desired transport
proteins in the auxin transport machinery. However, some substrate specificity, inhibitory sensitivity,
and kinetic parameters of heterologously expressed proteins were observed [32,86,146], and have to be
kept in mind for further studies in plants.

3.3. Fluorescent Labelling

3.3.1. Strategies to Label Plant Hormones

Even though the indirect detection of the auxin action using auxin-sensitive reporters provides
a powerful tool, which has been widely exploited for several years to study the modes of auxin
distribution, these methods have certain limitations. Firstly, the overall signal output from the reporter
expression is an indicator of the presence of auxin, including local biosynthesis and metabolism,
to the transport contribution. Likewise, the cells promoting auxin transport are not necessarily
sensitive for auxin signalling. Moreover, these reporter transgenes are not available for all of the model
species and the introgression of the reporters in mutant lines is time-consuming. Finally, since the
regulation of the auxin transport machinery is a very dynamic and complicated process, all of the
indirect and invasive methods for auxin detection are no longer sufficient for both temporal and spatial
resolution of auxin monitoring. Consequently, the efforts are made to develop microscale techniques
to visualise auxin tissue-specific, as well as inter- and intracellular transport in real time [149].

The current conception of studying molecular and structural insights of plant hormone modes
of action is based on the interplay between biology and chemistry. Libraries of diverse structural
analogues of phytohormones led to discoveries on the relationships between their structure and their
biological effect (structure-activity relationship—SAR) [150]. It helped to unravel the essential parts
of the molecule responsible for its biological activity from the non-essential moieties, which can
be modified for different purposes. This chemical biology approach opened a new field how
to study the biological properties of small compounds that are involved in plant growth and
development. Employing fluorescent labels that are conjugated with hormone molecules provides very
useful tools to visualize their distribution in vivo in real time in all organs and tissues at cellular
and sub-cellular levels. They can also help to identify the sites of their perception by creating
detectable receptor-ligand complexes [151]. In combination with rapidly developing and very sensitive
microscopic imaging techniques, fluorescently labelled phytohormones represent a modern approach
with high spatio-temporal resolution to investigate the coordination of their transport, perception and
mode of action regulating all the aspects of plant development and responses to various environmental
stimuli. Moreover, regarding the usage of fluorescent compounds, no transformation of reporter
construct is needed to detect the presence of the hormone. Thus, the determination of its distribution
can be elucidated in any chosen plant line [149].

The synthesis of the fluorescent analogues is preceded by the selection of the optimal structure
design. This can be achieved based on the structure-activity relationship information coupled with
computational modelling, which provides structural information about the target protein based on
its crystal structure. In silico screening of proposed structures with the protein binding site can
help to predict the best option of modification when considering the theoretical binding interactions.
Nevertheless, the real overall chemical features of the derived molecules influenced by both the used
linker and the fluorescent label have to be borne in mind. The position of the labelling site [152], and the
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character and the length of the linker [153–155] play a crucial role in the bioactivity of the new hormone
analogues. Also, the choice of the fluorescent probe has to be considered. In general, there are three
possible ways how to fluorescently label and visualise the object of interest for imaging: (i) fluorescent
proteins; (ii) small organic fluorophores (Figure 3); and, (iii) quantum dots—QDs [156]. Talking about
hormones, small bioactive molecules, only the last two approaches can be taken into account. QDs are
not very often used in phytohormone field [157–159]. Small organic fluorophores are still the most
important players with the commonly used fluoresceins (FITC), rhodamines (RITC), coumarins, NBD
(7-nitro-2,1,3-benzoxadiazole), and BODIPY (boron-dipyrromethens) dyes. Furthermore, a plethora of
their structural analogues covers the whole UV-VIS spectra of emission wavelengths, so one can choose
according to their application needs [156]. Because of the distinct pH conditions inside the cells, in
apoplast and different organelles, pH sensitivity of the labels has to be taken into account. For example
fluorescein is very sensitive to pH changes and gets protonated below pH 7, resulting in significant
decline of its fluorescent intensity due to a reconfiguration of the fluorophore’s π-electron system
after protonation [160]. On the contrary, BODIPY and Alexa Fluor dyes lack pH-dependent ionizable
substituents, making them pH-insensitive alternative to FITC [161,162]. In addition, rhodamine-based
labels are more photo- and pH-stabile, but they suffer from bad water solubility [163]. Nevertheless,
Alexa Fluor dyes are negatively charged, which may influence the distribution of their conjugates [161].
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Figure 3. Scheme of tissue-specific localization of fluorescent auxin analogues. The active auxin
transport carriers regulate the asymmetric distribution of auxins within different developmental
processes. The distribution pattern of fluorescently labelled auxins should mimic the native IAA
gradients in specific tissues such as (a) lateral root initiation sites, (b) the lower side of gravistimulated
roots, or (c) the concave side of apical hook. Moreover, the non-specific fluorescent signal needs to
be investigated, for instance by using a fluorescent analogue non-specific for polar auxin transport
machinery. Green color represents localization of auxin analogue labeled with green fluorophore,
e.g., NBD (7-nitro-2,1,3-benzoxadiazole).

As indicated above, the tracers together with the linkers significantly differ in chemical and
physical properties, and therefore their application may change the behaviour of the tagged molecules,
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such as solubility, charge, hydrophobicity, or fluorescent intensity, resulting in altered physiological
properties, e.g., the speed of uptake, perception, transport dynamics, or metabolism [156]. Hence,
before the fluorescent analogues of endogenous hormones can be used as a tool to study molecular
insight of their activity, all of the mentioned details should be investigated using in vitro and in vivo
bioassays to confirm that the addition of the fluorophore and the linker counterparts does not alter
the physiological properties of the hormone. Moreover, the possible enzymatic degradation of the
fluorescent construct in living systems has to be considered and elucidated with sensitive methods
to (i) minimize misinterpretations of data obtained when using fluorescent hormone analogues;
and, to (ii) obtain credible data of the hormone distribution based on the fluorescent pattern.
Additionally, since the fluorescent hormone analogues are applied exogenously in non-physiological
concentrations, the artificial non-specific fluorescent signal and the real tissue-specific accumulation
need to be distinguished properly. For that purpose, negative fluorescent controls that provide
a fluorescent signal but are not recognised by auxin transport carriers can be used [164]. If the uneven
distribution of the compounds during auxin-related developmental processes is driven by the polar
auxin transport, then the fluorescent maxima in the specific tissues can be expected (Figure 3). Negative
controls should not exhibit this accumulation.

3.3.2. Up-To-Date Labelling of Auxins

The SAR analysis investigating auxin structural insights revealed only two moieties crucial for
its biological activity—system of one or more aromatic rings and carboxyl group side chain [165,166].
The ring structure can be modified significantly, showing a high level of promiscuity of the auxin
receptor binding site [63]. Despite the secondary amino group of the indole ring of IAA contributes to
the interaction with the receptor by creating hydrogen bonds, it is not needed for the proper binding
of auxin into the binding pocket of the receptor [63,167,168]. Unlike the carboxylic group, different
positions in the aromatic ring structure can be used for the attachment of fluorescent moeity. The first
published fluorescently labeled IAA was used to study the biological activity of humic substances and
their possible interactions with the receptor for IAA in carrot cell culture [169]. The conjugation of FITC
with both IAA and low molecular weight fraction (LMr) of humic substances revealed a correlation
between the fluorescent patterns of FITC-IAA and FITC-LMr on cell membranes of Daucus carota,
suggesting that IAA and LMr fractions bind the receptor in the same way [169]. However, neither
the structure of the FITC-IAA conjugate, nor its stability in carrot cells were discussed, which makes
the observed results hard to interpret. More recently, Sokołowska et al. [170] have presented new
fluorescent conjugates of RITC and FITC fluorophores with IAA via the secondary amino group
of the indole ring. These compounds have been shown to retain auxin-like biological activity and
its distribution pattern has been driven by auxin transport system. Even though the used dyes
themselves are thought to be transported differently (RITC by apoplastic, FITC by symplastic transport),
the fluorescent compounds exhibited a similar distribution pattern to the one of free auxin [170].
Nevertheless, a mass spectrometry (MS) analysis of the tested compounds revealed the cleavage
of the conjugates with a release of fluorophore from IAA. The fragmentation is discussed to take
place during the MS analysis. But, the fact that it may be due to enzymatic degradation in planta
still needs to be taken into consideration while interpreting the data based on the biological activity
and of the observed fluorescent pattern. To our knowledge, the last published attempt to produce
fluorescently labelled auxin was performed by coupling of two different auxin compounds—IAA and
NAA—with NBD tag [164]. Based on the previous research of alkoxy-auxin analogues as competitive
inhibitors of auxin transporters [171], the new fluorescent analogues were synthetised with NBD
introduced on 5-hydroxy-IAA and 7-hydroxy-NAA. These compounds were designed to be active
for auxin transport machinery, but neither for the auxin signalling TIR1/AFB pathway, nor for the
GH3-dependent metabolism pathway. Both NBD-IAA and NBD-NAA have been shown to exhibit the
pattern of distribution similar to the DR5 pattern in free auxin-treated roots. Moreover, the presence
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of NBD-auxins in endoplasmic reticulum of cultured cells confirmed that such compounds enable
tracking auxin gradients with high spatio-temporal resolution on the subcellular level [156,164].

3.4. Microelectrodes

Another method for direct non-invasive monitoring of auxin fluxes in vivo employs IAA-selective
microelectrodes [172,173]. Organogenesis and reactions of plants to environmental stimuli are driven
by dynamic auxin transport generating auxin gradients in specific tissues [174]. This uneven auxin
distribution creates an electrical potential across the organ [175,176], where the side with higher
auxin concentration is considered as positive (secreting more H+ ions) compared to the side with
lower auxin levels. These electrical potentials can be surface-measured using microelectrodes [124].
To be used for continuous recording of auxin transport and the quantification of the local IAA levels,
the electrochemical sensors must display a high selectivity for IAA, sensitivity, fast response times,
and calibration stability. Mancuso et al. [172] used a platinum electrode with surface-immobilised
multiwalled carbon nanotubes (MWNTs) and with a small planar sensing tip for good spatial resolution
in combination with a self-referencing electrode to measure auxin transport in root apices of Zea mays.
Even though the usage of MWNTs enhanced the method sensitivity when compared to a bare platinum
electrode, the detection limit of only 0.1 µM IAA was achieved, and thus an exogenous application
of IAA had to be performed. Nevertheless, this method was presented as a useful approach for the
direct determination of IAA in root samples, direct measurements of its local concentrations, and
measurement of IAA fluxes in different positions along the maize root. The study demonstrated that
the most intensive influx rate is in the transition zone. This peak in flux (expressed in fmol·cm−2·s−1)
at 1.0–1.5 mm above the root apex corresponds to the auxin reflux loop model [88]. Moreover, the
application of auxin uptake inhibitors significantly decreased the influx of IAA into the cells, resulting
in a drop of the flux peak for this zone [172]. Although this microelectrode method is applicable only
on cells at the root surface or on a thin cell layer, it appears to be a valuable tool for detecting auxin
fluxes and has helped to discover and characterise several auxin transport mutants and inhibitors of
auxin transport carriers [146,177–181]. This method has been improved by using platinum black and
carbon nanotube surface modifications, which helped to increase signal-to-noise ratio [173]. Together
with better signal processing and data integration, it enabled directly and non-invasively measuring
endogenous IAA transport parameters, with no external source of IAA needed. This enhanced method
was used to determine the differences in IAA movements in roots of wild-type maize and auxin
transport mutant maize [147,182]. The most intense transport of endogenous IAA was detected in the
distal elongation zone of maize roots. Expectedly, the flux of auxin in transport mutant was significantly
reduced [173], which correlates with the effect observed in Arabidopsis thaliana that is caused by the
loss of function mutant of orthologue transporter in Arabidopsis [32]. Furthermore, the detection of
inhibition of both IAA efflux and influx after treatment with auxin transport inhibitors points out the
potential of self-referencing microsensors as a valuable approach for in vivo non-invasive monitoring
of IAA transport despite it is still limited to the root surface layers and epidermal cell [173].

4. New Valuable Tools to Visualize Auxin Metabolites

The regulation of bioactive auxin levels is complex, and cell- and tissue-specific metabolic profiling
can help to answer many questions about local IAA biosynthesis and degradation, as well as auxin
transport and the formation of auxin gradients. This short summary does not present the whole
picture of auxin profiling methods. For more recent and specific overviews of novel bioanalytical
approaches, including the advances of mass spectrometry (MS) and biosensors, we refer the reader to
other publications [183–186].

4.1. Cell-Type Specific Mass Spectrometric Analysis

MS-based quantitative measurement of auxins on a tissue and at a cellular level is a difficult
task, not only due to extremely low concentrations (fmol–pmol/g of fresh weight), but also due to
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the presence of interfering substances in the plant matrix (e.g., pigments, lipids, phenolic compounds,
or proteins) [187]. Together with chemical/thermal/light lability and enzymatic/oxidative degradation
of auxins during the extraction and isolation steps, accurate and precise determination is highly
challenging [184]. Recent technical advances in analytical methods helped to detect more IAA
metabolites (precursors, catabolites, and conjugates) in one sample, and thus to obtain information
about the overall pattern of auxin metabolome. Gas chromatography (GC) and liquid chromatography
(LC), coupled to tandem mass spectrometry (MS/MS) are often used in the analysis of the most
known auxin metabolites, the substances with very different physicochemical properties [188,189].
Several MS-based measurements confirmed the auxin gradients in meristematic tissue sections, such
as cambial meristem [190,191] and isolated cell types of the Arabidopsis root apical meristem [11,113]
(Figure 4). Moreover, a single-cell-resolution analysis of IAA and other phytohormone metabolites in
the Arabidopsis guard cell protoplasts has been recently published [192].
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Figure 4. Auxin distribution map within the Arabidopsis root tip. (a) The data presented in the
map was derived from four green fluorescent protein (GFP)-tagged Arabidopsis lines (J2812:GFP,
pWOL:GFP, pSCR:GFP and M0028:GFP), covering almost all of the different cell types of the root
apex. (b,c) Roots from eight-day-old Arabidopsis seedlings were protoplasted and sorted using FACS,
and the concentrations of IAA (b) and oxIAA (c) were quantified in the separated GFP-expressing
cell populations using LC-MS/MS. Cell type-specific concentrations of both auxins were calculated in
fmol per 100,000 isolated GFP-expressing protoplasts and then normalised to the non-GFP-expressing
reference population for each GFP cell line. “NA” represents cell populations that were not analysed;
“BCG” means the background level. The maps were constructed based on the IAA and oxIAA levels
published in [11].

Cryo-sectioning is a popular method of minute plant tissue sampling, which often provides
sufficient cell-type-specific resolution for hormone profiling. For example, the IAA distribution
in 30-µm tangential sections that were obtained across the cambial region was measured by
GC-MS [190]. To connect the hormone distributions to the status of hormonal signalling and
homeostasis, a genome-wide gene expression profiling at a high resolution across the cambial zone
were performed [191]. These results suggest that most of the auxin response genes showed maximal
expression in the middle of the cambial zone, coinciding with the peak in auxin content.

Another possible high-resolution cell-type specific method is based on the auxin quantification
in root cell populations that are sorted by fluorescence-activated cell sorting (FACS). This approach
enables the recognition of isolated protoplasts of similar size and granularity, followed by their sorting
into homogenous cell-type groups according to the presence or absence of internal fluorochromes
(e.g., GFP). In isolated protoplasts that are derived from Arabidopsis mutant lines expressing GFP
in specific root cell types, the presence of IAA concentration gradients within the root tip with
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a distinct maximum in the organizing QC of the root apex has been confirmed [113]. Interestingly,
cell type-specific auxin measurements do not effectively match DR5 expression in the root apex,
however, graded auxin response more closely fits measured auxin concentrations [193]. The found
auxin distribution also confirms the hypothesis of different polarisation of PIN proteins at the root
apex, resulting in auxin accumulation in the root cap [194]. In Figure 4, the IAA distribution map
shows a concentration maximum in the lateral root cap, columella, columella initials, and QC cells.
A similar gradient was also found at concentration levels of oxIAA, the primary auxin catabolite
formed in the Arabidopsis roots [11]. Its origin at the cellular level contributes, in addition to active
transport, to maintaining the correct IAA minima/maxima ratios that are necessary for proper root
growth and development.

4.2. Auxin Monitoring by Solid-State Biosensors

As mentioned above, hormonal signalling reporters and sensors are preferred for in vivo and
real-time detection of auxin in living tissues [195]; nevertheless, other biosensors also offer real-time
and in vivo quantitation of auxin [186]. Generally, a biosensor is a sensitive analytical device
combining a biological component module for the analyte’s recognition with a physicochemical
detector, which converts a biological response (e.g., immunochemical or electrochemical reactions)
into a signal that can be captured and interrogated [183]. Several reviews have discussed the
applications of solid-state biosensors that are used for ex vivo and in vivo monitoring of auxin
metabolites [183,185,186]. For example, immunosensors designed for IAA detection can be classified
based on the type of the detector: (i) electrochemical [196,197]; (ii) photoelectrochemical [198];
and, (iii) piezoelectric [199]. Other types of biosensors make use of molecular imprinted materials
(MIPs), which also selectively recognize a template molecule. Several examples of the MIPs application
to auxin quantification can be found in the literature [200,201]. However, affinity-based sensors
often required an analyte extraction from plant tissues and one or more steps of pre-concentration.
A non-enzymatic electrochemical biosensor system that is based on the direct oxidation of IAA by
a graphite paste electrode was also introduced [202], and then modified to carbon nanotube-coated
platinum electrodes [203]. Moreover, Mancuso et al. [172] and McLamore et al. [173] used a self-referencing
vibrating microelectrode technique for the study of auxin fluxes in root apexes (for more details see
Section 3.3).

In summary, the solid-state biosensors, together with development of genetically encoded
reporters and sensors and advances in fluorescent labelling, facilitate the study of auxin signalling and
distribution in living intact plants. Several bioanalytical approaches, such as FACS and LC-MS/MS
methods, can be equally used for cell-specific analysis of auxins, and thus provides ideas about
the coordination of plant hormone metabolism and transport, and the regulation of core signalling
component expression.

5. Future Prospects

Diverse plant developmental events that are triggered by auxin trafficking, redistribution,
and tissue-specific accumulation as a response to ambient conditions represent very dynamic and
highly regulated processes. Moreover, the microenvironment in plant tissues is very complex and
two neighbouring cells can be in a different state of development, and thus have a distinct function.
For those reasons, claims on spatial and temporal resolutions of detecting techniques are increasing.
Therefore, the application of mass spectrometry imaging (MSI) and living single-cell MS analysis could
soon provide a powerful tool for studying of auxin distribution, even though it is still limited for
hormone profiling [186]. Moreover, very little is known about extra- and intracellular distributions
of auxins and their metabolites, as well as their levels in individual cell compartments. Separation
of organelles for auxin profiling was recently carried out by porous-specific filtration (e.g., gradual
separation of chloroplasts and mitochondria [204]) or density-based fractionation (e.g., chloroplasts
separation in percol solution [205]). However, a detailed organelle-specific analysis of auxin levels is
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still lacking. Therefore, we are looking forward to developing new analytical methods and periods of
innovative approaches to work at the intracellular level.

To detect and monitor auxin distribution with sufficient spatial and temporal resolution in
minimal invasive manner, improvement of above-mentioned methods employing genetic biosensors,
as well as novel approaches of live imaging to capture extra- and intracellular hormone dynamics are
also demanded. Aside from the development of new expression reporters with high selectivity for
auxin molecules responding rapidly to physiological levels of hormones in linear manner so that the
response can be quantified [206], new genetically encoded biosensors for the quantitative distribution
of biomolecules based on (i) fluorescent translocation sensors; (ii) fluorescence-intensity-based
nanosensors; and, (iii) Förster resonance energy transfer (FRET)-based nanosensors are on the rise [207].
Also, the preparation of new fluorescent auxin analogues, which would display biological activity,
auxin transporters-dependent distribution, and enzymatic stability, remains a challenging issue.
The rapid progress of different microscopic imaging techniques [208] goes hand in hand with inventions
of devices allowing for the long-term monitoring of plant growth in vertical position to maintain
physiological growing conditions [67,209–212]. Moreover, employing of microfluidic perfusion system
that is controlled by micromechanical valves provides precise and fast control and modulation of the
plant environment when reversible delivery of the chemicals of interest is enabled [213,214]. This set of
devices, together, in combination with rapid-response and sensitive genetic reporters of auxin action
or reliable fluorescent auxin derivative treatment could offer a powerful method to visualize in vivo
auxin distribution with real time resolution on all organs and tissues, at the cellular and subcellular
levels. In addition, label-free imaging techniques, which have been used for metabolic imaging of high
abundant molecules in mammalian cells, such as lipids monitored with coherent anti-Stokes Raman
scaterring (CARS) microscopy [215] or ω-3 fatty acids by stimulated Raman scattering (SRS) [216],
may soon achieve adequate sensitivity for selective monitoring of plant hormones without any needs
of indirect visualization or structure modification, which would enable to track their distribution in
different processes in the most natural manner.
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Zažímalová, E. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells.
J. Plant Physiol. 2014, 171, 429–437. [CrossRef] [PubMed]

140. Simon, S.; Kubeš, M.; Baster, P.; Robert, S.; Dobrev, P.I.; Friml, J.; Petrášek, J.; Zažímalová, E. Defining the
selectivity of processes along the auxin response chain: A study using auxin analogues. New Phytol. 2013,
200, 1034–1048. [CrossRef] [PubMed]
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Macháčková, I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves
and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007, 58, 637–649.
[CrossRef] [PubMed]

206. Wells, D.M.; Laplaze, L.; Bennett, M.J.; Vernoux, T. Biosensors for phytohormone quantification: Challenges,
solutions, and opportunities. Trends Plant Sci. 2013, 18, 244–249. [CrossRef] [PubMed]

207. Okumoto, S.; Jones, A.; Frommer, W.B. Quantitative Imaging with Fluorescent Biosensors. Annu. Rev.
Plant Biol. 2012, 63, 663–706. [CrossRef] [PubMed]

208. Reddy, G.V.; Gordon, S.P.; Meyerowitz, E.M. Unravelling developmental dynamics: Transient intervention
and live imaging in plants. Nat. Rev. Mol. Cell Biol. 2007, 8, 491–501. [CrossRef] [PubMed]

209. Kirchhelle, C.; Moore, I. A Simple Chamber for Long-term Confocal Imaging of Root and Hypocotyl
Development. J. Vis. Exp. 2017, 123, 55331. [CrossRef] [PubMed]

210. Von Wangenheim, D.; Hauschild, R.; Fendrych, M.; Barone, V.; Friml, J. Live Tracking of Moving Samples in
Confocal Microscopy for Vertically Grown Plant Roots. eLife 2017, 6, e26792. [CrossRef] [PubMed]

211. Maizel, A.; von Wangenheim, D.; Federici, F.; Haseloff, J.; Stelzer, E.H.K. High-resolution live imaging of
plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J. 2011,
68, 377–385. [CrossRef] [PubMed]
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