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Abstract: Preeclampsia (PE) is the serious obstetric-related disease characterized by newly onset
hypertension and causes damage to the kidneys, brain, liver, and more. To investigate genes with key
roles in PE’s pathogenesis and their contributions, we used a microarray dataset of normotensive and
PE patients and conducted a weighted gene co-expression network analysis (WGCNA). Cyan and
magenta modules that are highly enriched with differentially expressed genes (DEGs) were revealed.
By using the molecular complex detection (MCODE) algorithm, we identified five significant clusters
in the cyan module protein–protein interaction (PPI) network and nine significant clusters in the
magenta module PPI network. Our analyses indicated that (i) human accelerated region (HAR) genes
are enriched in the magenta-associated C6 cluster, and (ii) positive selection (PS) genes are enriched
in the cyan-associated C3 and C5 clusters. We propose these enriched HAR and PS genes, i.e., EIF4E,
EIF5, EIF3M, DDX17, SRSF11, PSPC1, SUMO1, CAPZA1, PSMD14, and MNAT1, including highly
connected hub genes, HNRNPA1, RBMX, PRKDC, and RANBP2, as candidate key genes for PE’s
pathogenesis. A further clarification of the functions of these PPI clusters and key enriched genes
will contribute to the discovery of diagnostic biomarkers for PE and therapeutic intervention targets.

Keywords: preeclampsia; evolutionary analysis; human accelerated region; positive selection;
pathway analysis

1. Introduction

Preeclampsia (PE) is a serious complication of pregnancy that affects an estimated
2–8% of pregnancies worldwide [1–3]. It is characterized by newly onset hypertension,
often proteinuria and causes damage to multiple organs, especially the kidneys, brain, and
liver [4]. Pathologic changes in women who experience PE and in their fetuses have been
reported to lead to higher risks of metabolic, cardiovascular, and renal diseases later in
life [5–12]. The precise pathogenesis of PE is not yet known, and the only treatment that is
currently available for PE is simply the delivery of the fetus [4,13–15].

Microarray analyses can identify differentially expressed genes (DEGs) in investiga-
tions of the pathogenesis of PE. For example, a microarray analysis revealed that the genes
FLT1 (fms-like tyrosine kinase 1) and ENG (endoglin) are involved in the pathogenesis
of PE [16,17]. However, there is little consensus among several microarray studies, and
the DEGs for PE have not been fully defined [18,19]. Microarray analyses have provided a
foundation for understanding PE’s pathogenesis, but a system-level analysis that focuses
on gene sets could be more informative. A weighted gene co-expression network analysis
(WGCNA) focuses on sets of genes that are not among those identified in observed gene
expression data [20]. With a WGCNA (which is network-based), critical gene modules
and co-expression networks can be screened in datasets (such as microarray and RNAseq
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datasets). Microarray analyses using a large number of samples of decidual tissues have
been used to investigate the pathogeneses of PE [21], and several researches using WGCNA
analysis could be found [22–24], however, the exact pathogenesis of PE remains unknown.

Comparative evolutionary analyses of human genes have also contributed to the
discovery of key disease genes [25]. For example, although Alzheimer’s disease (AD) is
common in humans, it is extremely rare in other mammals, which suggests the possibility
that genetic changes that have taken place over the course of evolution are related to
humans’ vulnerability to this disease. Bufill et al. [26] proposed that an evolutionary
approach can be used to combine data from different disciplines that appear to be unrelated
in a manner that could clarify complex diseases. The insights obtained from evolutionary
analysis of human genes have already proven their value for the discovery of key disease
genes [25,27]. PE does not seem to occur in species other than humans [4], and we thus
speculated that approaching PE from an evolutionary standpoint could help identify the
cause(s) of PE.

To gain in-depth insights into the pathogenesis of PE, we conducted a WGCNA in the
present study to determine the status of PE-related gene modules, and we performed a
system-level analysis by integrating a protein–protein interaction (PPI) network analysis, a
sub-network cluster analysis, and a gene ontology (GO) and reactome pathway enrichment
analysis. We applied an evolutionary approach and evolutionary data for both human
accelerated region (HAR) and positive selection (PS) genes.

2. Materials and Methods
2.1. Microarray Data

We downloaded the microarray data of Yong et al. (GSE60438) from the Gene Ex-
pression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds (accessed on
4 April 2018)). The GSE60438 data, based on the platform of the Illumina Human WG-6
v3.0 Expression BeadChip, contains 23 decidual basalis samples from normotensive sam-
ples and 25 from PE samples in 34 PE/eclampsia pedigrees. The mean gestational age
(weeks) of normotensive and PE patients are 39.0 ± 0.859 and 32.0 ± 3.48, respectively,
and the mean maternal age (years) of normotensive and PE patients are 31.4 ± 4.34 and
30.2 ± 4.71, respectively.

2.2. Differentially Expressed Gene Screening

To screen for DEGs, we first normalized the raw signal intensities by using Chipster
software [28]. We conducted a significance analysis of microarrays in order to identify
DEGs; we calculated the fold changes (FCs) in the individual genes’ expressions, and
those with a p-value < 0.05 and |log2FC| > 1.5 were considered significant. We observed
significant differences in gene expressions between the normotensive and PE patients.
For each individual gene, as a measure of the gene’s differential expression between the
normotensive and the PE patients, we calculated the gene significance (GS) as the −log10
of the p-value obtained by Student’s t-test. We also determined the module significance
(MS) as the mean GS value for all of the module genes.

2.3. WGCNA

In order to identify co-expression modules associated with PE and their key genes, we
performed a WGCNA [20]. The WGCNA package implemented in the R program was used
to build an unsigned weighted gene co-expression network based on the expression value
of 48 microarray datasets, and the WGCNA package’s blockwiseModules function was
applied to build the network. The similarity matrix between each pair of genes across all
samples was calculated based on its Pearson’s correlation value. Then, the similarity matrix
was transformed into an adjacency matrix. Afterward, the ‘topological overlap matrix
(TOM)’ and the ‘corresponding dissimilarity (1-TOM)’ value were calculated. Finally, a
dynamic tree cut algorithm was employed to detect gene co-expression modules. We set
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the minimum module size of 30 genes to obtain appropriate modules, and for merging
modules, we used 0.25 as the minimum height (default settings).

The WGCNA results revealed 21 modules, each of which can be summarized by a
single representative expression profile (referred to hereafter as the ‘module eigengene
(ME)’). The ME of a module is defined as the first principal component of the module
and is a comprehensive representation of the relationships among the gene co-expressions
in each network. For our assessment of the relationship between each of the modules
and PE, we determined the correlations of the eigengenes in various PE samples. The
module eigengene-based intramodular connectivity measure kME roughly approximates
the standard intramodular connectivity (kIN). The kME value is the Pearson’s correlation
between a given ME and a specific gene’s expression level. The kME (also known as
module membership) was calculated to identify the genes that are significantly connected
in the module.

2.4. Gene Annotation and Enrichment Analysis

We used the Cytoscape plugin ‘ClueGO’ to identify the gene ontology (GO) terms
that are significantly associated with the modules revealed by the WGCNA [29]. A GO
term analysis was used to identify molecular functions and biological processes, with the
100 top-ranked genes vis-à-vis the kME value of the modules revealed by the WGCNA. The
ClueGO parameters were as follows: (i) a minimum GO-level interval of 3 and a maximum
interval of 8, (ii) a minimum of three genes per category, (iii) 4% gene association, and
(iv) a kappa score threshold ≥ 0.4. The statistical analyses included Bonferroni step-down
false discovery rate (FDR) correction for enrichment against the ClueGO human reference
genome [30]. Probability values < 0.05 were considered significant.

To investigate gene clusters from a human PPI network analysis, we conducted a
reactome pathway analysis and an analysis of GO term enrichment, using clusterProfiler
(http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html (accessed on
12 January 2022)) with a strict FDR cut-off, i.e., <0.05 [31]. The clusterProfiler package
includes a compareCluster function, which we used to determine and compare the enriched
functional categories of each gene cluster. By using the gene ratios (i.e., the proportions
of genes enriched in each category) and adjusted p-values, we constructed a dot plot that
depicts the between-cluster differences in enriched functional categories.

2.5. Construction of a Human Protein–Protein Interaction (PPI) Network

For the initial dataset, we downloaded protein interaction data from the iRefIndex
database (http://irefindex.org (accessed on 24 December 2018)). This database is a union
of several primary PPI databases, including the MPPI, MPIDB, MPact, MINT, MatrixDB,
IntAct, InnateDB, HPRD, DIP, CORUM, BioGRID, and BIND databases [32]. We integrated
PPIs from the large-scale BioPlex 2.0 interaction dataset in order to increase the confidence
and the completeness of the PPI network [33]; this dataset was obtained by high-throughput
affinity purification mass spectrometry. We also incorporated interaction data other than
direct physical bindings (e.g., protein phosphorylation) from an earlier study [34] into our
dataset. We filtered the final dataset to remove interactions from non-human sources; we
excluded redundant and self-interacting pairs. The final result was a human protein–protein
interaction (PPI) network containing a total of 22,616 nodes and 515,015 edges.

2.6. PPI Subnetworks among Proteins Encoded by PE-Associated Genes

We mapped the member genes in the cyan and magenta modules as seed genes to
the above-described human PPI network and then used Cytoscape ver. 3.8.2 to extract the
maximal connected component as the protein-interaction subnetwork [35]. We used a plu-
gin implemented in Cytoscape, i.e., the molecular complex detection (MCODE) clustering
tool [36], to analyze the resultant network and identify highly interconnected PPI clusters.
We applied 0.5 as the fluff density cutoff, 2 as the K-core, 0.2 as the node score cutoff, and
maximum depth up to 100. The Cytoscape-plugin CytoHubba was used to evaluate hub
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genes in the PPI networks [37]. We calculated the following to identify potential hub genes:
the node degree, the betweenness centrality, the maximal clique centrality (MCC), and the
maximum neighborhood component (MNC) [37,38].

2.7. Enrichment Analysis of HAR and PS Genes

We retrieved the HAR genes from Doan et al.’s study [27], which describes their
comparative genome analysis identifying conserved genomic loci with elevated divergence
in humans; 2737 HARs were identified, representing 2163 HAR-associated genes. We
next downloaded the lists of genomic regions showing PS signatures based on population
genetic statistics obtained from the PopHumanScan database [39] in order to identify recent
PS signatures inferred from human polymorphism data. Although the PopHumanScan
database includes the integration of eight different population genetic statistics for 22 non-
admixed Phase III human populations of the 1000 Genomes Project for detecting selective
sweeps at different historical ages, in the present study, we used only positively selected
regions that overlapped with protein-coding sequences as PS genes. We performed an
enrichment analysis using the sets of both HAR genes and PS genes using the one-sided
Fisher’s exact test in the R program’s fisher.test function.

3. Results
3.1. WGCNA Results

The expression matrices of 19,305 genes were obtained from the 48 samples after the
data preprocessing. We grouped the genes with similar expression patterns into modules
by using the R program’s WGCNA package. Using the protocol described in the Materials
and Methods section, we identified 21 modules. Figure 1 provides the numbers of genes
in each module. We used two more network metrics to identify PE-associated modules:
the GS and MS values. The GS was calculated as the −log10 transformation of the p-value
for each gene; we used Student’s t-test to measure the strength of the differential gene
expressions. The MS was calculated as the average GS value for all genes within each
module. Cyan and magenta modules had the two top-ranked MS values (Figure 2), and
each of these modules was enriched for genes that were differentially expressed between
normotensive and PE patients as shown by an increased MS value. We thus focused on the
cyan and magenta modules and evaluated each of the modules’ member genes.

The ME expression profiles for the cyan and magenta modules in the normotensive
and PE patients are depicted in Figure 3. In both modules, the eigengene expression was
increased in the PE patients. For a further clarification of the relationship between the
modules and PE, we determined the mean ME value and used the Student’s t-test to
compare the normotensive group to the PE group. As shown in Figure 4, the ME value of
both the cyan module and the magenta module was significantly greater in the PE group
compared to the normotensive group. Together, these results indicate that the genes in the
cyan and magenta modules were mostly upregulated in the PE group.

3.2. GO Analysis

We used the ‘biological process’ and ‘molecular function’ categories for genes in the
cyan and magenta modules for the GO analysis by using the Cytoscape plugin ClueGO,
which provides a functional annotation map for module member genes in which genes
are enriched corresponding to their respective GO terms and pathway. The results of this
analysis demonstrated that the cyan module is associated mostly with protein stabilization,
ribosomal small subunit biogenesis, the positive regulation of ATPase activity, endopepti-
dase complex, Ran GTPase binding, and aerobic respiration (Figure 5A), and the magenta
module is associated mostly with the cytosolic proteasome complex, protein localization
to the chromosomes, the telomeric region, the endoplasmic reticulum-Golgi intermediate
compartment membrane, and the regulation of muscle adaptation (Figure 5B). Table 1
provides the complete lists of the significantly enriched GO terms of the cyan and magenta
modules and their associated genes.
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Figure 1. The results of the weighted gene co-expression network analysis (WGCNA) of the tran-
scriptome in the normotensive and PE groups. In the clustering dendrogram with genes, the module
membership is represented by colors. The numbers of genes in each module are also shown. Twenty-
one modules were identified.
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error of the mean (SEM). 

Figure 2. Each module’s MS (module significance) value. Both the cyan and magenta modules were
highly enriched with differentially expressed genes (DEGs). Columns: mean values. Bars: standard
error of the mean (SEM).

3.3. PPI Analysis and the Identification of Densely Connected Clusters

We mapped the 319 genes in the cyan module and the 524 genes in the magenta
module to the human PPI network. The genes of the cyan module’s retrieved PPI con-
tained 158 nodes and 376 edges, and the genes of the magenta module’s retrieved PPI
contained 298 nodes and 692 edges (Figure 6A,B). It is known that disease-associated
genes tend to interact and work together in the same biological cluster in a molecular
interaction network [40], and we suspected that the detection of such clusters of interac-
tions could help identify the key pathways and genes in PE and elucidate the molecular
mechanisms underlying its etiology. To determine whether the cyan and magenta mod-
ules’ genes form any highly connected molecular clusters, we used the MCODE plugin
with tuned settings—instead of default settings—to identify pathway-like clusters in the
cyan and magenta PPI network (see the Materials and Methods). The MCODE analysis
revealed five densely connected clusters (C1 to C5) with 4–47 genes in the cyan module
and nine densely connected clusters (C1 to C9) with 4–35 genes in the magenta module
(Supplementary Table S1).
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Figure 3. The eigengene expression patterns for the cyan (A) and magenta (B) modules in the
normotensive and PE groups.



Genes 2022, 13, 2134 8 of 20Genes 2022, 13, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 4. The module eigengene (ME) expressions of the cyan (A) and magenta (B) modules. Col-

umns: mean values. Bars: SEM. 

  

Figure 4. The module eigengene (ME) expressions of the cyan (A) and magenta (B) modules.
Columns: mean values. Bars: SEM.
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Figure 5. The gene annotation enrichment analysis results for the ‘biological process and molecular
function’ GO categories for the cyan (A) and magenta (B) modules. A functionally grouped network
is shown. The terms are represented as nodes that are linked based on the terms’ kappa scores
levels (≥0.4).
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Table 1. List of significant GO terms for the cyan and magenta modules identified by the WGCNA.

Module Term p−Value Count Genes

Cyan

GO:0050821-protein stabilization 2.66 × 10−5 7 [ATP1B3, NLK, PPIB, PTGES3,
RPS7, SUMO1, TCP1]

GO:0061077-chaperone-mediated protein folding 3.93 × 10−4 4 [FKBP3, PPIB, PTGES3, TCP1]
GO:0042274-ribosomal small subunit biogenesis 4.39 × 10−4 4 [DCAF13, RPS7, RPSA, UTP3]
GO:0008536-Ran GTPase binding 6.45 × 10−4 3 [RANBP1, RANBP2, RANGRF]
GO:0030684-preribosome 6.58 × 10−4 4 [DCAF13, RPS7, RPSA, UTP3]
GO:0000462-maturation of SSU-rRNA from tricistronic

rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 7.64 × 10−4 3 [DCAF13, RPSA, UTP3]

GO:0032040-small-subunit processome 8.28 × 10−4 3 [DCAF13, RPS7, UTP3]
GO:0003755-peptidyl-prolyl cis-trans isomerase activity 1.20 × 10−3 3 [FKBP3, PPIB, RANBP2]
GO:0000413-protein peptidyl-prolyl isomerization 1.20 × 10−3 3 [FKBP3, PPIB, RANBP2]
GO:0016859-cis-trans isomerase activity 1.38 × 10−3 3 [FKBP3, PPIB, RANBP2]
GO:0022627-cytosolic small ribosomal subunit 2.11 × 10−3 3 [MCTS1, RPS7, RPSA]
GO:0030490-maturation of SSU-rRNA 2.23 × 10−3 3 [DCAF13, RPSA, UTP3]
GO:0032781-positive regulation of ATPase activity 2.49 × 10−3 3 [ATP1B3, DNAJB4, SUMO1]
GO:0018208-peptidyl-proline modification 2.90 × 10−3 3 [FKBP3, PPIB, RANBP2]
GO:0000502-proteasome complex 4.98 × 10−3 3 [PSMA3, PSMD14, TXNL1]
GO:1905369-endopeptidase complex 5.18 × 10−3 3 [PSMA3, PSMD14, TXNL1]
GO:0009060-aerobic respiration 5.61 × 10−3 3 [FH, SDHD, UQCRC2]
GO:0043462-regulation of ATPase activity 6.28 × 10−3 3 [ATP1B3, DNAJB4, SUMO1]
Magenta
GO:0031597-cytosolic proteasome complex 3.33 × 10−5 3 [IDE, PSMC4, PSMC6]
GO:0070198-protein localization to chromosome,

telomeric region 4.90 × 10−4 3 [ATRX, GNL3, POT1]

GO:0032508-DNA duplex unwinding 6.27 × 10−4 4 [ATRX, DHX9, GTF2H3, POT1]
GO:0032392-DNA geometric change 1.03 × 10−3 4 [ATRX, DHX9, GTF2H3, POT1]
GO:1905368-peptidase complex 1.26 × 10−3 4 [IDE, PSMC4, PSMC6, USP22]
GO:0032206-positive regulation of telomere maintenance 2.49 × 10−3 3 [ATRX, GNL3, POT1]
GO:0012507-ER to Golgi transport vesicle membrane 4.03 × 10−3 3 [LMAN1, TMED10, TMED7]
GO:0000502-proteasome complex 4.98 × 10−3 3 [IDE, PSMC4, PSMC6]
GO:1905369-endopeptidase complex 5.18 × 10−3 3 [IDE, PSMC4, PSMC6]
GO:0033116-endoplasmic reticulum-Golgi intermediate

compartment membrane 5.39 × 10−3 3 [LMAN1, TMED10, TMED7]

GO:0051436-negative regulation of ubiquitin-protein
ligase activity involved in mitotic cell cycle 5.83 × 10−3 3 [ANAPC7, PSMC4, PSMC6]

GO:0051439-regulation of ubiquitin-protein ligase activity
involved in mitotic cell cycle 6.05 × 10−3 3 [ANAPC7, PSMC4, PSMC6]

GO:0043502-regulation of muscle adaptation 6.28 × 10−3 3 [GLRX3, GTF2I, TWF1]

To determine the specific biological relevance of the C1 to C5 clusters among the
cyan module’s genes and the C1 to C9 clusters among the magenta module’s genes, we
performed a GO analysis on the ‘biological process’ enrichment. As shown in Figure 7,
in the cyan-associated C1–C5 clusters, the respective GO biological processes of cyto-
plasmic translation, rRNA metabolic process, RNA splicing, clathrin coat assembly, and
nucleotide-excision repair were identified. In the magenta-associated C1–C9 clusters,
the following respective GO biological processes were identified: RNA splicing, transes-
terification reactions with bulged adenosine as the nucleophile, cytoplasmic translation,
nucleotide-excision repair, proteasome-mediated ubiquitin-dependent protein catabolic
protein, aerobic electron transport chain, translational initiation, protein localization to
the centrosome, macroautophagy, and Rac protein signal transduction (Figure 7). Overall,
GO terms for RNA processing and protein processing were prominent in these clusters.
Supplementary Table S2 provides the complete lists of the significantly enriched GO bio-
logical processes and their associated proteins.



Genes 2022, 13, 2134 11 of 20

Genes 2022, 13, x FOR PEER REVIEW 12 of 21 
 

 

any highly connected molecular clusters, we used the MCODE plugin with tuned set-

tings—instead of default settings—to identify pathway-like clusters in the cyan and ma-

genta PPI network (see the Materials and Methods). The MCODE analysis revealed five 

densely connected clusters (C1 to C5) with 4–47 genes in the cyan module and nine 

densely connected clusters (C1 to C9) with 4–35 genes in the magenta module (Supple-

mentary Table S1). 

 

Figure 6. The preeclampsia (PE) protein–protein interaction (PPI) network constructed with the 

cyan (A) and magenta (B) module genes in the WGCNA. The genes of the cyan and magenta mod-

ules’ retrieved PPIs contained 158 and 298 nodes and 376 and 692 edges, respectively. The size of 

each node is proportional to its degree. The colors of the nodes (from lighter to darker) are propor-

tional to their kME values. 

Figure 6. The preeclampsia (PE) protein–protein interaction (PPI) network constructed with the cyan
(A) and magenta (B) module genes in the WGCNA. The genes of the cyan and magenta modules’
retrieved PPIs contained 158 and 298 nodes and 376 and 692 edges, respectively. The size of each
node is proportional to its degree. The colors of the nodes (from lighter to darker) are proportional to
their kME values.
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Figure 7. The results of the GO biological process enrichment analysis of the genes identified in
the cyan-associated and magenta-associated PPI clusters. The most over-represented GO terms are
depicted as dot plots; the gene ratio is denoted by size, and the significance is indicated by color.

3.4. Enrichment of HAR and PS Genes in the PPI Clusters

Human accelerated regions (HARs) were human genome regions that had diverged
over the past five to six million years after the divergence of humans and chimpanzees from
their last common ancestor [41]. Several HAR-associated genes identified in comparative
genomic studies are linked to various human traits and to human-specific diseases, such as
autism spectrum disorder [27,42]. Disease-related gene groups have also shown a strong
propensity to contain PS genes, as inferred from human polymorphism data [43]. We
thus used the HAR genes and PS genes we retrieved from earlier investigations [27,44]
to conduct a search of each PPI cluster, and we then used these HAR and PS gene sets to
evaluate the enrichment of the clusters. As shown by the −log10 (p-value) in Figure 8A, the
cyan-associated C3 and C5 clusters showed a strong propensity to contain PS genes. Of
the nine magenta-module PPI clusters, the C6 cluster was the most significantly enriched
for the HAR gene dataset (Figure 8B). The PS genes identified in the cyan module were
CAPZA1, DDX17, PSPC1, SRSF11, and SUMO1 in the C3 cluster, and MNAT1 and PSMD14
in the C5 cluster. The HAR genes identified in the magenta C6 cluster were EIF4E, EIF3M,
and EIF5. In Figure 9, these genes are represented by the node color (pale red for the PS
genes and light green for the HAR genes). The full name of the enriched genes in the
clusters are provided in Table 2. All of the data of the cyan and magenta cluster genes
overlapping with the HAR and PS genes are given in Supplementary Table S3.
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Figure 8. Densely connected clusters in the cyan (A) and magenta (B) module PPI network. With
the use of the MCODE plugin, five significantly connected PPI clusters were extracted from the cyan
module PPI network, and nine significantly connected PPI clusters were extracted from the magenta
module PPI network. Cluster-level enrichment was assessed for two evolutionary gene sets: HAR
genes and PS genes. In each cell, the shades of blue represent the −log10 (p-value) for the significance
of the overlap, obtained by Fisher’s exact test.

For the determination of the specific biological relevance of the cyan-associated C3
and C5 clusters and the magenta-associated C6 cluster, we subjected 38 genes in the
C3 cluster, eight genes in the C5 cluster, and four genes in the C6 cluster to reactome
pathway enrichment analyses. The results demonstrated that the cyan-associated C3
cluster is associated mainly with aspects of RNA metabolism, such as the processing of
capped intron-containing pre-mRNA, an mRNA splicing major pathway, mRNA splicing,
and mRNA 3′-end processing. This cluster is also associated with a gene expression
pathway, i.e., RNA polymerase II transcription termination (Figure 9A). Regarding the
C5 cluster, the significant reactome pathways were associated mainly with aspects of
cell-cycle regulation, such as cyclin E-associated events during G1/S transition, cyclin
A:Cdk2-associated events at S phase entry, and the G1/S transition (Figure 9B). In contrast,
the magenta-associated C6 cluster was significantly enriched for genes involved in protein
translation, such as ribosomal scanning and start codon recognition, GTP hydrolysis and
joining of the 60S ribosomal subunit, eukaryotic translation initiation, and cap-dependent
translation initiation (Figure 9C). Supplementary Table S4 provides the complete lists of
the significantly enriched reactome pathways and the associated proteins.
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Figure 9. PPI clusters enriched with HAR genes and PS genes: (A) The cyan-associated C3 cluster is
enriched with PS genes. The functional enrichment analysis (FEA) results of the member genes are
shown. (B) The cyan-associated C5 cluster is enriched with PS genes. The results of the FEA of the
member genes are presented. (C) The magenta-associated C6 cluster is enriched with HAR genes.
The FEA results are for the member genes. The PS genes are shown in light red and the HAR genes
are shown in light green in the network. We used clusterProfiler to determine the reactome pathways
for each gene set. The top five reactome pathways are represented by bar plots. The gene count is
denoted by the bar’s length, and significance is indicated by color. The Benjamini–Hochberg method
was used to adjust the p-values.
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Table 2. HAR genes and PS genes detected in the cyan module C3 and C5 clusters and the magenta
module C6 cluster.

Scheme Gene Full Name Module Cluster Degree Betweenness HAR Gene PS Gene

DDX17 DEAD-Box Helicase 17 cyan C3 13 533.6621 O

SRSF11 Serine and Arginine Rich
Splicing Factor 11 cyan C3 13 785.37203 O

PSPC1 Paraspeckle Component 1 cyan C3 5 364.12826 O
SUMO1 Small Ubiquitin-like Modifier 1 cyan C3 4 620 O

CAPZA1
Capping Actin Protein of

Muscle Z-Line cyan C3 2 206.9429 O
Subunit α 1

PSMD14 Proteasome 26S Subunit,
Non-ATPase 14 cyan C5 8 2130.39568 O O

MNAT1 Menage A Trois 1 cyan C5 5 226.87372 O

EIF4E Eukaryotic Translation
Initiation Factor 4E magenta C6 7 354.64491 O

EIF5 Eukaryotic Translation
Initiation Factor 5 magenta C6 4 48.22838 O

EIF3M Eukaryotic Translation
Initiation Factor 3 Subunit M magenta C6 4 617.89841 O

Degree: numbers of connection in PPI, Betweenness: the value of betweenness centrality in PPI.

As noted above, we used the Cytoscape-plugin Cytohubba to perform a hub gene anal-
ysis in order to identify high-significance genes that have key roles in the PPI networks [37].
As shown in Table 2, DDX17, SRSF11, and PSMD14 in the cyan-associated C3 and C5
clusters and EIF4E in the magenta-associated C6 cluster showed higher node-degree values.
In addition, among all the nodes in other cyan- and magenta-associated clusters, heteroge-
neous nuclear ribonucleoprotein A1 (HNRNPA1) in the cyan C1 cluster was identified as
the most connected node overlapping with the PS gene set. Genes including RNA binding
motif protein X-linked (RBMX) overlapping with the HAR gene set and protein kinase,
DNA-activated, catalytic subunit (PRKDC) and Ran-binding protein 2 (RANBP2) overlap-
ping with the PS gene set also showed higher node-degree values (Supplementary Table S5).
In these high node-degree genes, the hub gene parameter of betweenness centrality values
were also extremely high (Table 2, Supplementary Table S5). Together, the above-described
findings indicate that the pathways associated with the cyan and magenta clusters may be
critically affected by the defects of these highly connected hub genes, which are possible
key genes in the pathogenesis of PE.

4. Discussion

Inferring functional relationships by analyzing gene co-expression networks has been
fruitful in studies of various disease-related gene functions [45,46]. In the present study,
we conducted a WGCNA to identify PE-associated co-expression modules from publicly
available gene expression data, and the WGCNA revealed two co-expression modules,
cyan and magenta, which are highly enriched for genes differentially expressed between
normotensive patients and PE patients. We conducted a GO term enrichment analysis for
both modules and observed that the cyan module was enriched mainly for genes involved
in protein stabilization and chaperone-mediated protein folding, whereas the magenta
module was enriched for genes involved in the cytosolic proteasome complex, protein
localization to the chromosome, and the telomeric region. Each of these biological processes
is known to be involved in intracellular protein processing. Interestingly, preeclamptic
placentas were described as having accumulated a number of misfolded proteins, and it
was speculated that this accumulation may contribute to the pathophysiology of PE [47]. It
was also reported that hypoxia, ischemia, and the production of proinflammatory cytokines
associated with PE lead to protein misfolding and initiate endoplasmic reticulum (ER)
stress [48–50]. Furthermore, Zhou et al. recently showed that the genes with upregulated
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expression in syncytiotrophoblast (SCT) were involved in protein folding by using single-
cell RNA sequencing [51]. These observations suggest that cyan and magenta module
genes are related to some extent to the functions that regulate protein processing and
folding, and thus these genes may contribute to the PE risk during placenta development
and maintenance. Our findings indicate that the identified cyan and magenta modules
would be useful for investigating the molecular mechanisms of the development of PE.

Many PE-associated genes and pathways have been reported [52,53], but it is un-
likely that the etiology of PE would be explained by any one of these factors; it is highly
probable that multiple associated genes act together. Expanding our knowledge of the
inter-connectivity of PE-associated genes in functional pathways is thus crucial to fully
elucidate the mechanisms underlying PE. In the present study, a PPI network with genes
contained in the cyan and magenta modules was constructed, and because the identification
of small functional clusters that might contain proteins that participate in similar biological
processes would help clarify PE’s functional pathways, we used the MCODE clustering
tool in Cytoscape to extract densely connected protein clusters in the PPI network. Five
significant functional clusters were identified in the cyan module, and nine significant func-
tional clusters were identified in the magenta module. The results of the GO enrichment
analysis showed that (i) several biological functions related to protein processing are highly
enriched in clusters associated with the cyan and magenta modules, but (ii) GO terms for
RNA processing were linked mainly to clusters in the cyan module. These results indicate
an efficient extraction of the protein clusters by the MCODE plugin and suggest that these
clusters may form biological entities or pathways that are involved in PE.

To evaluate signatures of evolutionary forces acting on the MCODE-detected clusters,
we performed an enrichment analysis for the sets of HAR genes and PS genes. The diver-
gence of HAR genes between humans and other primate species was proposed to reflect
the genes’ possible roles in the evolution of human traits (e.g., cognitive ability) [25,27].
It was also suggested that evolutionary pressure on HAR genes may have preferentially
elicited human-specific functions [44]. In contrast, PS genes that were inferred by using
human polymorphism data were described as reflecting humans’ recent adaptations to a
wide variety of new environments [54]. Such an evolutionary scenario might indicate roles
for PS genes in achieving human adaptability to local environments.

We observed that HAR genes were mainly enriched in the magenta-associated C6
cluster. The HAR genes identified in this cluster are directly related to several pathways
involved in protein translation. For example, EIF4E in the C6 cluster is involved in protein
synthesis and a key checkpoint in the control of the rate of mRNA translation [55], and
EIF4E has a critical role in the pathology of various types of cancer [56,57]. Consistent
with these findings, it has been recently shown that the genes with upregulated expression
in extravillous trophoblast (EVT) were involved in translation by using single-cell RNA
sequencing [51]. In contrast, we observed that PS genes were mainly enriched in the cyan-
associated C3 and C5 clusters. DDX17 and SRSF11 are PS genes detected in the C3 cluster,
and they showed higher node degrees in the PPI network. DDX17 plays an important role
in various RNA-related functions, such as the processing of primary microRNA transcripts
and pre-mRNA alternative splicing [58,59]. SRSF11 gene is required for the recruitment of
telomerase to telomeres and telomere elongation [60]. We identified PSMD14 (a component
of the 19S regulatory cap in 26S proteasome) in the C5 cluster, and it also showed higher
node degree. PSMD14 is known to be associated with several types of cancer [61–63] and
was suggested to be a hub gene in PE [64]. These results are consistent with the possibility
that HAR genes and PS genes function as key players in the PPI clusters obtained from the
PE-associated cyan and magenta modules.

While HAR and PS genes seem to have conferred fitness advantages during some
stages of humans’ evolutionary history [27,65], it has also been speculated that these genes
increase the risk of human-specific disorders via antagonistic pleiotropy [66,67]. PE appears
to be a human-specific disease [4], at least in part because the highest ratio of brain/body
weight of the human fetus among the primate species requires an extremely high level of
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nutritional exchange from the mother [68]. It is thus possible that the HAR and PS genes we
identified in the cyan- and magenta-associated clusters have critical roles in the pathology
of PE. Collectively, the misregulation of the HAR genes (EIF4E, EIF5, and EIF3M) and
the PS genes (DDX17, SRSF11, PSPC1, SUMO1, CAPZA1, PSMD14, and MNAT1) in the
enriched clusters is more likely to underlie the molecular pathways that are involved in the
development of PE (Table 2). New insights into the molecular mechanisms underlying the
development of PE may be obtained by further analyses of the HAR and PS genes in the
clusters derived from WGCNA modules, and such insights may help identify targets for
PE treatment.

In summary, we primarily used WGCNA analysis and an evolutionary approach to
investigate the pathway and key genes associated with PE. We propose that these enriched
HAR and PS genes (EIF4E, EIF5, EIF3M, DDX17, SRSF11, PSPC1, SUMO1, CAPZA1,
PSMD14, and MNAT1) and the highly connected hub genes HNRNPA1, RBMX, PRKDC,
and RANBP2 are key genes for both diagnostic biomarkers in preeclampsia and therapeutic
intervention targets. Further experimental studies are necessary to confirm the roles of
these genes and molecular pathways.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13112134/s1, Table S1: The complete results of the MCODE analysis.
Table S2: The significantly enriched GO biological processes in the cyan and magenta PPI clusters
and the processes’ associated proteins. Table S3: Cyan and magenta cluster genes overlapping with
the HAR gene set and PS gene set. Table S4: The significantly enriched reactome pathways in the
cyan and magenta PPI clusters and the pathways’ associated proteins. Table S5: The results of the
Cytohubba analysis of the cyan and magenta PPI clusters.
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