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Abstract: Breast muscle weight (BrW) is one of the most important economic traits in chicken, and
directional breeding for that results in both phenotypic and genetic changes. The Jingxing yellow
chicken, including an original (without human-driven selection) line and a selected line (based on
selection for increased intramuscular fat content), were used to dissect the genetic architecture and
key variants associated with BrW. We detected 1069 high-impact single nucleotide polymorphisms
(SNPs) with high conserved score and significant frequency difference between two lines. Based on
the annotation result, the ECM-receptor interaction and fatty acid biosynthesis were enriched, and
muscle-related genes, including MYOD1, were detected. By performing genome-wide association
study for the BrW trait, we defined a major haplotype and two conserved SNPs that affected BrW.
By integrated genomic and transcriptomic analysis, IGF2BP1 was identified as the crucial gene
associated with BrW. In conclusion, these results offer a new insight into chicken directional selection
and provide target genetic markers by which to improve chicken BrW.

Keywords: chicken; missense SNP; breast muscle weight; genome-wide association study; IGF2BP1

1. Introduction

For poultry, the weight and size of breast muscle are crucial to production efficiency
and economic benefit by affecting carcass appearance, especially for chicken. Usually, the
ratio of breast muscle weight (BrW) is as high as 20% or even 25% in fast-growing chickens
(e.g., Cobb, Arbor Acres) [1,2], while it’s lower than 20% in slow-growing chickens [3,4].
Therefore, the identification of BrW associated genetic markers and causal genes is of
particular importance to chicken breeding. The Jingxing yellow (JX) chicken is renowned for
its delicious flavor, with meat rich in the major component of volatile organic compounds
(hexanal and 1–octen–3–ol) [5]. These characteristics and advantages make JX chicken an
important resource in breeding quality chicken. Unfortunately, this chicken has a slow
growth rate and non-ideal muscle production (body weight <1500 g and eviscerated weight
<1100 g at 90 d), which resulted in high aviculture costs. And the low meat production
is prevalent in native chickens. Therefore, the foremost breeding goal for JX chicken is
increasing meat production, especially BrW, with maintaining excellent meat quality and
flavor.

Modern farm animals have been genetically adapted due to intensive human-driven
selection, resulting in a genetically separate population that differs from the original
population with regard to morphology, physiology, and behavior [6–8]. For the JX chicken,
artificial selection for increased intramuscular fat (IMF) content in pectoral muscles has
been undertaken since 2000 [9]. Significant phenotypic enhancement and a discrete genetic
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architecture were identified for this selected line in previous reports [9,10]. Given that IMF
and BrW are related, BrW could be enhanced significantly along with the selection of high
IMF in chicken [9,11]. Therefore, comparison of the original line and the selected line is an
excellent means by which to dissect genetic architecture and explore the genes affecting BrW.
Wang et al. revealed a new landscape of genomic changes associated with domestication by
investigating the high-impact (missense) single nucleotide polymorphisms (SNPs), which
were determined by low PROVEAN score [12]. Thus, it is conducive to identify the genes
that respond to artificial selection by studying the missense SNPs in JX chicken.

Genome-wide association study (GWAS) is an efficient and precise method to inspect
the genetic markers associated with complex traits (e.g., body weight, meat production,
and fat deposition) in farm animals, especially for chicken due to the large-scale sequenc-
ing data [13,14]. For BrW trait, Liu et al. identified a significant genomic region (chr3:
61.82–68.57 Mb) affecting BrW in Beijing You chickens, with NCO17, TPD52L1, FABP7,
CJA1, and ASF1A identified as candidate genes regulating BrW [15]. Kang et al. identified
43 genes that were correlated with BrW in transcriptional level for Tiannong partridge
chickens [11]. Liu et al. reported chromosome 4 and 27 had BrW associated SNPs and genes
(LCORL and MAPT), and both of these two genes were expressed at significantly higher
levels in chickens with larger breast muscle [16]. These results suggest that candidate
variants or genes differ among various subspecies, with no clear identification of the major
functional genes related to BrW. However, the IGF2BP1 gene has been studied widely in
muscle development and lipid metabolism in animals [17,18]. Zhou et al. and Wang et al.
demonstrated that IGF2BP1 had a predominant role in body size as judged by GWAS and
quantitative trait locus (QTL) mapping in duck and chicken, respectively [19,20]. In chicken
advanced intercross line, an interval of chromosome 27 was recognized as a candidate
genomic region (containing IGF2BP1, GIP, and other genes) that affected growth traits [13].
Taken together these results suggest a possible role for IGF2BP1 in chicken breast muscle
development.

Collectively, due to the changes of genetic architecture and BrW trait after selection
of multi-generations [9,10], we analyzed the frequency and conservation of missense
variants as a means by which to explore genomic alterations between original and selected
chickens. GWAS and transcriptional analysis were then used to uncover genetic markers
and candidate genes associated with BrW. In this manner genetic changes and pivotal
markers associated with enhanced BrW, due to directional breeding, were identified.

2. Materials and Methods
2.1. Ethics Statement

All the experiments associated with chicken were conducted under the guidelines for
experimental animals established by the Ministry of Science and Technology (Beijing, China).
Ethical approval on animal survival was given by the animal welfare and ethics commit-
tee of the Institute of Animal Sciences (IAS, Beijing, China) and the Chinese Academy
of Agricultural Sciences (CAAS, Beijing, China) with the following reference number:
IAS2019-21.

2.2. Animals

Female JX chickens (total n = 520) were obtained from the Chinese Academy of
Agricultural Sciences, Institute of Animal Sciences (Beijing, China). Of these, 264 JX chickens
(the selected line) were used. This line had been propagated for 16 generations for enhanced
breast intramuscular fat content [21]. As well, 256 JX chickens (the original line) were used.
This line had not undergone any human-driven selection [9,10,21]. All chickens were fed
the same basal diet formulated according to NRC (1994) and NY/T (33-2004), and raised
in three-story step cages (one chicken per cage) with the recommended environmental
conditions. Feed and water were provided ad libitum during the study.
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2.3. Phenotypic Measurement

The chickens were weighed at 98 days of age after 12-h of fasting, euthanized, and then
exsanguinated by severing the carotid artery. The whole breast muscle (major and minor
breast muscle) was removed, weighed, and BrW was recorded (Supplement Table S1).
Venous blood samples were also collected and stored at −20 ◦C for DNA extraction.

2.4. Genotyping, Imputation, and Quality Control

Genomic DNA was isolated from blood samples (n = 520) by the phenol-chloroform
method. After quality control by gel electrophoresis, eligible DNA (presenting obvious
strap and no degradation) was used to construct a pair-end library of 300–500 bp of average
insert size. Each library was sequenced with a Novaseq 6000 sequencing platform (Illumina,
San Diego, CA, USA) to acquire raw reads with an average depth of 10× coverage. The data
can be accessed at CRA002643 and CRA002650 (https://bigd.big.ac.cn/gsa/) (accessed on
10 October 2021) [21]. Variant calling was implemented according to the standard bioinfor-
matic pipeline [22,23]. Briefly, the Burrows Wheeler Aligner MEM algorithm [24] was used
to align the clean reads to the reference genome GRCg6a (http://ftp.ensembl.org/pub/
release-104/fasta/gallus_gallus/dna/Gallus_gallus.GRCg6a.dna_sm.toplevel.fa.gz) (ac-
cessed on 10 October 2021). The output was converted to bam files and sorted by coor-
dinates based on Samtools software [25]. PCR duplication was deleted with the default
parameter of Picard software. SNP calling was executed with the HaplotypeCaller function,
and GVCF format variant files were obtained with the Genome Analysis Toolkit (GATK
3.6) [26]. The GVCF files of each individual were combined and joint variant calling was
performed by GenotypeGVCFs function. Finally, the VariantFiltration function in GATK
was used to acquire qualified SNPs with the following parameters: variant confidence
score < 30.0, QualByDepth < 2.0, ReadPosRankSum < −8.0, total depth of coverage < 4.0,
FisherStrand > 60.0.

The SNPs located in the autosome and the Z chromosome were reserved for next analy-
sis. Quality control was implemented with the particular parameters (–mind 0.2, –geno 0.1,
–maf 0.05) in PLINK 1.9 software [27]. After quality control, linkage disequilibrium phasing
was conducted to impute the missing alleles with the default parameter in Beagle 5.0 [28].
Ultimately, a total of 9,722,764 SNPs and 515 birds were retained (three chickens were
removed due to abnormal phenotypic record and two chickens were removed due to lower
call rate).

2.5. SNP Annotation, Frequency, and Conservation Analysis

SnpEff (v.5.0) was used to annotate variants based on their location categorization [29].
Conservation analysis was evaluated by the PhastCons score using SnpSift software (v.5.0) [30],
PhastCons information can be downloaded from the UCSC database (http://hgdownload.
soe.ucsc.edu/goldenPath/galGal6/phastCons77way/galGal6.77way.phastCons/) (accessed
on 10 October 2021). To compare the allele frequency difference between original and se-
lected chickens, we calculated the frequency of missense variants in original and selected
lines, respectively. And Fisher’s exact test was used to calculate the p values [31], and the
Bonferroni method was used to determine the genome-wide threshold for missense variants.

2.6. Heritability Estimate for BrW

To estimate the heritability for BrW, we firstly calculated the kinship matrix by the
method of VanRaden using the GCTA software [32,33]. And then, the variance component
and heritability were estimated by the univariate animal model constructed by ASReml
v4.1 in R environment [34]. The univariate animal model was defined as follows:

y = Xb + Za + e,

where y indicates the BrW phenotype, b represents the vector of batch effect, a represents
the vector of random additive genetic effects, e represents the vector of random residual

https://bigd.big.ac.cn/gsa/
http://ftp.ensembl.org/pub/release-104/fasta/gallus_gallus/dna/Gallus_gallus.GRCg6a.dna_sm.toplevel.fa.gz
http://ftp.ensembl.org/pub/release-104/fasta/gallus_gallus/dna/Gallus_gallus.GRCg6a.dna_sm.toplevel.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/galGal6/phastCons77way/galGal6.77way.phastCons/
http://hgdownload.soe.ucsc.edu/goldenPath/galGal6/phastCons77way/galGal6.77way.phastCons/
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effect. X and Z are design matrices related to the corresponding fixed and random effects,
respectively.

2.7. Genome-Wide Association Study

An univariate linear mixed model (LMM) was used to perform association analysis
based on all SNPs for BrW in GEMMA (0.98.4) software [35]. Within LMM, genotype was
presented as the fixed factor and the additive polygenic effect as the random effect for
exploration of marker effects and significance. The centered kinship matrix was calculated
based on all SNPs. Batch effect and strain effect were used to assess the influence on BrW
via the general linear model in R. The two effects were both included in LMM as the fixed
effect. The LMM emerged as follow:

y = Wα + xβ + µ + ε,

where y represents the vector of BrW record; W represents the matrix of covariates, includ-
ing a column of 1s, as well as batch and strain effect; α is vector of the corresponding coeffi-
cient (including the intercept); β is the effect size of each marker; µ ∼ MVNn

(
0, λτ−1K

)
,

µ represents the random polygenic effect, MVNn denotes the n-dimensional multivariate
normal distribution, λ is the ratio of two variance components, τ−1 is the variance of the
residual errors, K is the kinship matrix; ε ∼ MVNn

(
0, τ−1 In

)
, ε is the residual error, In

is the identity matrix. A Wald test was conducted to estimate the significance of markers
related to BrW. A restricted maximum likelihood algorithm was used to evaluate λ and β.

To reduce the false positive probability, a Bonferroni correction was used in associ-
ation analysis. A genome-wide and suggestive threshold were defined as 5.14 × 10−9

(0.05/9,722,406) and 1.03 × 10−7 (1/9,722,406), respectively. Genomic inflation factor (λ)
was calculated to estimate bias and stratification. The proportion of variance explained by

lead SNP was evaluated as the equation: 2pqβ2

σ2
g

[36], where p and q represent allele frequency

for minor and major alleles respectively, β represents the allele effect size, σ2
g represents the

genetic variance, which calculated by ASReml 4.1. Manhattan and quantile-quantile plots
were visualized via the qqman package in the R environment [37].

2.8. Narrowing the Candidate Region and Gene Annotation

Pairwise r2 for the lead SNP was calculated in PLINK 1.9 [27]. A narrowed interval was
defined with r2 > 0.8 and the 2-LOD drop-off method [38]. A significant SNP was phased
to infer the haplotype that may harbor the causal mutation. GLM and least significance
difference method of multiple comparisons were used to evaluate the haplotype effect
on BrW. The PhastCons conserved score based on 77 vertebrates was used to detect the
conserved SNP within the candidate region. The candidate genes were defined if located
approximately 10 kb upstream and downstream of the narrowed region. Candidate region
and genes were annotated by biomaRt [39].

2.9. Transcriptomic Analysis Based on Multiple Stages and D98

The transcriptome data were acquired with accession number CRA001334 (sampling
from the generation 15 of JX chickens) [40] and CRA001908 (sampling from the same
generation as GWAS) [41]. The raw reads were filtered with Trimmomatic 0.36 software
(LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50) [42], and acquired clean
reads were mapped to reference genome GRCg6a (http://ftp.ensembl.org/pub/release-
104/fasta/gallus_gallus/dna/Gallus_gallus.GRCg6a.dna_sm.toplevel.fa.gz) (accessed on
10 October 2021) using HISAT2 [43]. Then, we sorted and indexed the bam file, and
extracted the high quality mapped reads for assembling and merging the gtf files using
StringTie 2.1.6 [44]. Here, we only focused on the known transcript and skipped the
assembling process of novel transcripts with -e parameter. Based on the merged gtf file,
we assembled it secondly and calculated the raw count of each gene. The differentially
expressed genes (DEGs) analysis between the same original and selected populations as

http://ftp.ensembl.org/pub/release-104/fasta/gallus_gallus/dna/Gallus_gallus.GRCg6a.dna_sm.toplevel.fa.gz
http://ftp.ensembl.org/pub/release-104/fasta/gallus_gallus/dna/Gallus_gallus.GRCg6a.dna_sm.toplevel.fa.gz
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GWAS was conducted by DESeq2 software in R environment [45], and DEGs were defined
as fold change (FC) > 1.5 or FC < 0.67 and adjusted p value < 0.05. Stage-based expression
level for candidate genes were presented as adjusted count value using the data from
generation 15.

2.10. KEGG Pathway and GO Term Analysis

KEGG pathway enrichment analysis was performed by ClusterProfiler [46] to explore
the function of genes, which were annotated by missense SNPs with frequency difference
or high conservation score. Also, the KEGG and GO analysis were performed based on
DEGs between original and selected population. A p value of 0.05 was regarded as the
threshold for significant enrichment.

2.11. Statistical Analysis

GLM was used to estimate the significance of the effect of lead SNP on BrW. Pear-
son correlation analysis was used to evaluate the relationship between gene expression
and BrW.

3. Results
3.1. Genomic Variants Annotation

Bioinformatics analysis using the described pipeline detected over 9.7 million high-
quality bi-allelic SNPs in autosome and Z chromosome after filtration. The retained variants
were distributed in the genome with an average density of 1 SNP every ~110 bases. Among
those, about 58.08% of the SNPs were located in intron region, with only 1.73% of SNPs
anchored in exons (Figure 1A). Approximately 10.0% were up-stream and 9.6% were down-
stream of genes, respectively. For the SNPs around splicing site, an extremely low ratio
of splicing site acceptor (1.39%) and donor (1.89%) variants was detected (Figure 1B). For
the SNPs in exons, the synonymous (43.80%) and non-coding exon (41.96%) variants were
predominant, while the missense variants only accounted for 14.24% (Figure 1C).
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Figure 1. SNP characteristics of JX chicken. (A) Distribution of genetic variations within various
function regions. (B,C) Ratio of different variants in splicing site and exon region, respectively.

3.2. Allele Frequency Spectrum

Comparison of the allele frequency profiles of original and selected populations
revealed no obvious differences (Figure 2A,B). A decreasing percentage was observed
with increasing minor allele frequency (>0.10) in both original and selected chickens.
Considering the high impact of missense variants on protein function, the Fisher’s exact
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test was used to detect the significance of allele frequency difference between original and
selected chickens, and the Bonferroni method was used to determine the genome-wide
threshold (p < 1.54 × 10−6). A total of 5352 significant missense variants were detected,
primarily in 1–4 chromosomes (over 40%, Figure 2C, Supplement Table S2). To evaluate the
potential biological effect of these significant missense variants, we annotated them using
biomaRt and performed KEGG enrichment analysis based on hypergeometric distribution
for the acquired genes. A total of 2840 protein-coding genes were annotated based on
significant missense variants (Supplement Table S3). Some of these were involved in
multiple functional KEGG categories, including glycosaminoglycan degradation, ECM-
receptor interaction, and fatty acid biosynthesis (Supplement Figure S1 and Supplement
Table S4).
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Figure 2. Analysis of allele spectrum and frequency difference of missense and synonymous SNPs.
(A,B) Minor allele frequency spectrum of missense and synonymous SNPs in original and selected
population. (C) Manhattan plot of frequency difference of missense variants between two lines, the
y-axis represents the p value in log scale, which calculated by Fisher’s exact test, the x-axis represents
the physical position of missense SNPs in each chromosome.

3.3. Conservation Score Analysis

Genomic functional sites usually tend to be evolutionary conserved. Therefore, we
evaluated the conservation status for each synonymous and missense variant by basewise
PhastCons conservation score using the snpSift component for 77 vertebrates. A similar
bipolar pattern for distribution of PhastCons score was exhibited between synonymous and
missense variants. Over 75% of the SNPs had conservation scores ranging from 0–0.1 or
0.9–1.0 (Figure 3A). To explore the latent high-impact variants, we focused on the conserved
site with a PhastCons score greater than or equal to 0.98. A total of 1069 conserved variants
were overlapped with previous missense sites of significantly different frequency between
original and selected chickens (Figure 3B, Supplement Table S5). Of these, 912 protein-
coding genes were annotated based on the overlapped variants (Supplement Table S6).
Some of the acquired genes were included in ECM-receptor interaction, focal adhesion, and
fatty acid biosynthesis pathways (Figure 3C, Supplement Table S7). It’s worth noting that
partial genes involved in skeletal muscle growth and development were detected, including
the marker gene of slow-twitch MYH7 and crucial myogenic process transcription factor
MYOD1, as well as some members of the MYO gene family (e.g., MYO1D, MYO1H, and
MYO18B) (Supplement Table S6).
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3.4. GWAS for BrW

Based on the results that the vital genes related to muscle development were high-
impact variants, we compared BrW between original and selected population. As expected,
we found that the heritability of BrW is relatively high (h2 = 0.35) and higher BrW was
observed in the selected population (Figure 4A) with a nearly 8% difference found between
the original and selected population. To find the candidate variants and genes affecting
BrW, we performed GWAS for this trait using LMM. In the 6.08–6.33 Mb of chromosome 27,
an extremely significant peak was detected (Figure 4B). Within this region, 63 significant
SNPs (p < 1.03 × 10−7) were found. The proportion of variance in genotypes was explained
by the lead SNP (chr27_6115361) at up to 18.93% (Supplement Table S8). The minor
allele frequency of those significant sites was from 0.27 to 0.50 (Supplement Table S8).
To maximize detection efficiency of candidate genes, we expanded the up- and down-
stream candidate interval to 10 kb (Table 1). In this manner, 17 protein-coding genes and
2 miRNA were identified, including IGF2BP1, GIP, and the members of HOXB gene family
(e.g., HOXB2, HOXB3, and HOXB4). In addition to the peak in chromosome 27, only one
significant SNP greater than threshold was observed on chromosome 3. Located 10 kb
up-stream of this site, lncRNA (ENSGALG00000034564) is the only annotated gene in this
region by the current genome build (Table 1).

Table 1. Candidate genes in the significant region of chromosome 3 and 27.

Chromosome Start End nSNP Lead SNP Alleles MAF 1 β 2 Candidate Genes

27 6,086,729 6,339,862 62 chr27_6115361 A/G 0.48 −7.13

IGF2BP1, GIP, SNF8,
UBE2Z, ATPSMC1,

CALCOCO2, HOXB1,
HOXB2, HOXB3, HOXB4,
HOXB5, HOXB6, HOXB7,

HOXB8, HOXB9,
HOXB13, SKAP1,

gga-mir-196, gga-mir-10a
3 72,191,174 72,191,174 1 chr3_72191174 A/G 0.14 9.19 ENSGALG00000034564

1 MAF indicates minor allele frequency. 2 Allele substitution effect was estimated by GEMMA.
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3.5. Narrowing the Candidate Region

To investigate the BrW regulatory interval, we narrowed the candidate region by defin-
ing r2 > 0.8 and the 2-LOD drop-off method. A 51-kb refined region, chr27: 6.08–6.14 Mb,
was identified with a total of 31 candidate SNPs (Figure 5A, Supplement Table S8). To
find causal mutations, we inferred the haplotypes formed by those 31 SNPs and found
2 major haplotypes (frequency > 30%) (Figure 5B, Supplement Table S9). The effect of
the haplotypes was evaluated by GLM, with haplotype I associated with enhanced BrW
compared to haplotype II and the heterozygous haplotype state (p < 4.2 × 10−7, Figure 5C).
The frequency of the three genotypes (homozygote for haplotype I or II, and heterozygote)
was assessed for original and selected chickens, with greater frequency for haplotype I
(Figure 5D). The site conservation score was determined as described above. Only two
SNPs (chr27_6088946, chr27_6137277) were highly conserved in vertebrates, with sig-
nificant differences between the two lines (Figure 5E,F), indicating an important role in
regulation of BrW. The refined region contained IGF2BP1, GIP, SNF8, UBE2Z, ATP5MC1,
and CAOCOCO2, and chr27_6088946 was located in the up-stream of IGF2BP1 and GIP
(Figure 5A).
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Figure 5. Haplotype association analysis and frequency difference in original and selected popula-
tions. (A) A refined genomic region was identified by r2 > 0.8 and 2-LOD drop-off method, namely
the pink box. (B) Distribution of two major haplotypes (I and II) in JX chicken. (C) The effect of major
haplotypes on BrW, the haplotype I has an increasing effect on BrW. (D) The frequency of two major
haplotype (I and II) in original and selected population. (E,F) The frequency of two conserved sites
(chr27_6088946 and chr27_6137277) in original and selected population.

3.6. Identification of Candidate Genes by Transcriptome Analysis

To maximize mining of candidate genes, all the genes located within and outside the
defined region chr27: 6.08–6.14 Mb were both included in the following transcriptional
analysis. First, we correlated the expression level of those genes with BrW, and the only
significant results were for IGF2BP1 and HOXB2 expression, which were in negative and
positive relationship with BrW, respectively (Figure 6A–F, Supplementary Figure S2). To
determine whether altered transcriptional levels were due to human-driven selection, we
next compared the gene expression between original and selected chickens. The genes
IGF2BP1, HOXB4, HOXB5, HOXB6, and HOXB7 were differentially expressed between
the two lines, whereas SNF8, ATP5MC1, UBE2Z, CALCOCO2, and other members in
HOXB gene family were not differentially expressed (Figure 6F,G, Supplement Figure S3).
Therefore, IGF2BP1 could best be seen as plausible candidate gene, and so we examined
dynamic expression pattern for IGF2BP1 during different stages (Figure 6H). An obvious
decreasing expression of IGF2BP1 was found from E12 to D180, which was negatively
related to the development pattern of breast muscle (Supplement Figure S4).
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Figure 6. Transcriptomic analysis for candidate genes. (A–E) Correlation analysis between BrW and
genes IGF2BP1, UBE2Z, CALCOCO2, ATP5MC1, and SNF8, respectively. (F) Comparison for BrW
from the individuals performing the RNA-seq (n = 9 each population). (G) Differentially expressed
genes analysis for IGF2BP1, UBE2Z, CALCOCO2, ATP5MC1, and SNF8 between two lines, ** indicates
p < 0.01. (H) Stage-based expression pattern of IGF2BP1, E indicates embryo stage, D indicates the
age of after hatching.

In addition, we defined 2494 DEGs (482 down-regulation and 2012 up-regulation)
between two lines (Supplement Figure S5, Supplement Table S10). By enrichment analysis,
muscle related pathways (e.g., tight junction, calcium signaling pathway) and GO terms
(e.g., muscle cell differentiation, muscle structure development) were determined as signifi-
cant (Supplement Figures S6 and S7), indicating that the genes and pathways potentially
regulating BrW in the selected line were significantly differentiated from that in the original
line in transcriptomic level.

4. Discussion

JX is a widely known domestic chicken breed due to its excellent meat quality. Re-
garding pectoral IMF content plays an essential role in meat quality, we constructed a 16th
generation IMF selected line [9,10,21]. For indigenous chicken, meat production, especially
BrW, is the cardinal breeding index. In this study, a significant increase in BrW (about 12 g)
was found in the IMF selected population, which was consistent with a previous report
that a mild correlation was found between chicken IMF and BrW [11]. Herein, we used this
ideal chicken model to investigate genetic markers associated with BrW.

Long-term artificial selection of farm animals can produce biased genetic variants or
genomic signatures that distinguished the selected animals from the original population,
which may be caused by pleiotropy of genes under selection, hitch-hiking of unfavorable
alleles with the alleles under selection [7,8]. Therefore, we assessed the selection effects on
the genome before exploring the genetic markers associated with muscle development. A
distinct pattern based on global genomic variants identified a clear divergence between
the selected and original lines [10]. Furthermore, a parallel allele frequency pattern, based
on synonymous and missense variants, was obtained that was consistent with observed
patterns in humans and cattle [47,48]. Wang et al. defined high-impact SNPs as having
a PROVEAN score < −2.5 for missense variants [12]. Herein, we focused on frequency



Genes 2022, 13, 3 11 of 15

changes between the two chicken lines and conservation status, to evaluate chicken phe-
notype high-impact variants rather than on PROVEAN score for missense SNPs. After
strict quality control (p < 1.54 × 10−6, Fisher’s exact test for allele difference, PhastCon
score > 0.98), 1069 missense SNPs and 912 protein-coding genes were found to influence
chicken traits during intensive selection. This result indicates that only a small percentage of
genomic sites responded to artificial selection or possible environmental effect [49]. Based
on the above protein-coding genes, lipid metabolism related pathways, ECM-receptor
interaction, and fatty acid biosynthesis, were enriched in the selected chicken line [41].

In a previous study, it has been demonstrated that the BrW was elevated after selection
of IMF [9]. Here we found a divergent pattern for the genes related to muscle development
in genomic and transcriptomic levels, including myosin complex genes (e.g., MYO1D,
MYO1H, and MYO19), MYH7, MYOD1, MYF5, and other genes (Supplement Table S10).
Therefore, we performed GWAS to explore genetic markers associated with BrW. To mini-
mize false positives, Bonferroni correction method was used and identified a 260-kb region
(chr27: 6.08–6.34 Mb). By annotation, IGF2BP1, GIP, SNF8, UBE2Z, ATP5MC1, CALCOCO2,
HOXB gene family members, and two microRNAs were found in the region. Wang et al.
have reported that IGF2BP1 affected chicken body size (e.g., claw weight, shank length,
and carcass weight), and a deletion mutation in the promoter region has been validated
as a causal variant [20]. Similarly, IGF2BP1 was shown to affect body size in ducks [19].
In this study, the candidate region was located in the promoter and up-stream region
of IGF2BP1, which is consistent with the previous report [20]. Further, GIP is important
to bone size and growth traits in chicken [13,50], but zero expression was detected in
muscle. HOXB5 was differentially expressed between two lines, but the correlation with
BrW was relatively low. The genes HOXB5, HOXB6, and HOXB7 were involved in the
morphogenesis of chicken respiratory tract [51], HOXB7 and HOXB8 were also shown to
be associated with beard trait in chicken [52], but few reports suggested a role for HOXB
genes in breast muscle development. Although HOXB2 was positively correlated with BrW,
the expression level of which is relatively low in muscle tissue. In addition, we detected no
expression of HOXB1, HOXB9, HOXB13, SKAP1 in muscle tissue, as well as the lncRNA
(ENSGALG00000034564). According to expression atlas, the microRNAs gga-mir-10a and
gga-mir-196 were not expressed in skeletal muscle [53]. SNF8, UBE2Z, CALCOCO2, and
ATP5MC1 have been shown a core function in metabolic disease and cancer. Partial QTLs
or SNPs have been associated with coronary artery disease (SNF8 and UBE2Z) [54,55].
CALCOCO2 is associated with autophagy-related genes, influencing tumorigenesis and
progression of osteosarcoma [56]. Overexpression of ATP5MC1 was confirmed to perturb
glucose metabolism and inhibit the oncogenic K-Ras signaling [57]. But no studies have
reported that these genes were involved in the growth process of chicken.

Current knowledge of these genes makes identification of causal variants and as-
sociated genes difficult. To narrow candidate genomic regions and ensure accuracy, we
combined the linkage status of the lead SNP with the 2-LOD cutoff method for fine-signal
mapping [38]. A 51-kb refined region and a major haplotype comprising 31 significant
SNPs were identified, which enhanced BrW by 10%. Liu et al. reported significant regions
for the percentage of breast muscle (BrP) in chromosome 1, 10, and Z of Cobb × Beijing
You F2 population [16]. Liu et al. defined prominent SNPs associated with BrW and
BrP in chromosome 3 of Beijing You chickens [15]. Pampouille et al. identified multiple
genomic regions (e.g., chr4, 5, and 8) interrelated with breast phenotypes in high and
low pH selection lines [58]. The range of identified loci associated with BrW in different
chickens is relatively large due to low density of marker. In this study, we identified a
narrowed genomic region affecting BrW based on a whole genome sequencing strategy,
which provided a target by which to investigate the mechanisms associated with BrW in
chickens.

In this region, the frequency of the major haplotype and two conserved SNPs were
consistently changed toward directional selection. These results provide evidence for
functional selection of an animal genome within a limited number of years [59]. However,
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a functional assay to verify the role of conserved SNPs is still required. To precisely map
the candidate genes, we integrated transcriptome data to investigate the expression level of
those genes from previous studies [40,41]. We found that only the mRNA level of IGF2BP1
was negatively related to BrW. Wang et al. reported higher transcription level of IGF2BP1
was detected in Ross compared with that in Gushi chickens [20]. This indicates that body
size and muscle development are likely regulated in a positive manner by IGF2BP1. But
actually, cellular assay demonstrated that reinforced proliferation of myocytes was observed
with siIGF2BP1 treatment in C2C12 myoblasts, and a decreasing trend was captured
during the prenatal stage (E33~E95) of skeletal muscle development [60]. Those results
are highly consistent with the results reported herein. Five other genes were excluded
due to lack of expression or poor relationships. Furthermore, we found that IGF2BP1
was differentially expressed between original and selected chicken lines. But regrettably,
there was insufficient RNA-sequencing data to compare the transcriptomic difference
between individuals with different genotypes, the existing samples are heterozygous for
haplotype or SNPs. In a word, the results of this study indicated that IGF2BP1 or its
upstream regulatory element was directionally selected during the IMF enhancement, with
confirmation by transcriptional activity differences between the two chicken lines.

5. Conclusions

Collectively, intensive selection for IMF in chickens has produced a pattern of genomic
variant, reflected in lipid- and muscle-related pathways and genes that differed from
unselected chickens. IGF2BP1 was confirmed as a major gene affecting BrW in JX chickens.
It’s worth noting that a refined haplotype and two conserved SNPs located in the up-stream
of IGF2BP1 have a strong effect on BrW, and the frequency change of which was consistent
with the selection process. These results suggest novel targets for investigation of the
genetic mechanisms that impact breast muscle development. Such an investigation will
serve as the foundation upon which to improve chicken BrW.
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