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A systematic approach 
for developing mechanistic models 
for realistic simulation of cancer 
cell motion and deformation
Pouyan Keshavarz Motamed1,2 & Nima Maftoon1,2*

Understanding and predicting metastatic progression and developing novel diagnostic methods can 
highly benefit from accurate models of the deformability of cancer cells. Spring-based network models 
of cells can provide a versatile way of integrating deforming cancer cells with other physical and 
biochemical phenomena, but these models have parameters that need to be accurately identified. In 
this study we established a systematic method for identifying parameters of spring-network models 
of cancer cells. We developed a genetic algorithm and coupled it to the fluid–solid interaction model of 
the cell, immersed in blood plasma or other fluids, to minimize the difference between numerical and 
experimental data of cell motion and deformation. We used the method to create a validated model 
for the human lung cancer cell line (H1975), employing existing experimental data of its deformation 
in a narrow microchannel constriction considering cell-wall friction. Furthermore, using this validated 
model with accurately identified parameters, we studied the details of motion and deformation of 
the cancer cell in the microchannel constriction and the effects of flow rates on them. We found that 
ignoring the viscosity of the cell membrane and the friction between the cell and wall can introduce 
remarkable errors.

Metastasis is the most lethal cause of cancer-associated deaths1. The metastasis cascade includes cancerous cells 
detachment from the primary tumor, intravasation into the circulatory or lymphatic system, traveling in the 
body, extravasation, and growth in a secondary site. The cancer cells that intravasate and enter the bloodstream 
are known as circulating tumor cells (CTCs). The deformability of CTCs plays an important role in the metastasis 
cascade because entrapment of CTCs in capillaries and their penetration into the endothelial cell–cell junctions 
during intravasation and extravasation highly depend on their drastic deformation2. Therefore, developing novel 
diagnostic tools and novel tools for predicting metastatic spreading requires accurate quantitative models of 
cell deformability. Such models require experimental data of cancer cell deformation as well as highly efficient 
computational methods in terms of calculation time.

The difference between the deformability of healthy and diseased cells motivated several experimental studies 
to find label-free biomarkers for differentiating these cells using techniques such as optical tweezers3, atomic force 
microscopy4, and micropipette aspiration5. Furthermore, the recent progress in microfabrication techniques has 
helped microfluidic devices to become the ultimate choice in studying cell behaviour6 thanks to their quick and 
high throughput operation. Microfluidic devices were also made for capturing and sorting cancer cells based 
on cell deformability7. In one type of these microfluidic devices, a constricted microchannel is used to study 
the deformability of cells in terms of the time required for the cell to deform and pass through the constriction. 
Because experiments revealed that the more malignant the cells, the more deformable they are, the passage time 
of cancer cells through the constricted microchannel was sought as a good index for cell malignancy8–10.

Because computational models can be used to design and improve such microfluidic devices, the development 
of models of cells which are suspended in fluid, and deform to enter and pass through a narrow channel has 
attracted many researchers11–14. The numerical methods used for modelling of motion and deformation of soft 
materials suspended in a fluid domain are categorized into continuum and discrete methods15 and were reviewed 
previously16. In continuum approach, mainly, (visco)elastic solid models17,18 and liquid drop models12,14,19 were 
used in order to simulate the deformation of cells. However, the continuum solid models are computationally 
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expensive for modelling deformations of cells in interaction with the surrounding fluid domain and the liquid 
drop models are insufficient in simulating cell transit in the constriction since they assume a lubrication layer 
between the cell and the constriction walls14.

Complexity of interactions at the cellular level motivated researchers to use discrete methods in the recent 
years20. In discrete methods, the fluid phase is modelled using various methods such as dissipative particle 
dynamics21, smoothed particle hydrodynamic22, and lattice Boltzmann method (LBM)23,24. LBM has become 
popular due to its intrinsic parallelization ability and acceptable accuracy in modelling fluid flow in microcapil-
laries with low Reynolds numbers25. In discrete methods, fluid-cell interactions are modelled using immersed 
boundary method24,26 or dissipative coupling method (DCM)23. Furthermore, in discrete methods, the cell 
membrane is discretized by a triangular spring network as a coarse-grained spectrin-link model21,27. The com-
putational efficiency of spring-based network models over continuum models of red blood cells (RBCs) sus-
pended in fluid was demonestrated28 and many authors used these models to study motion of deforming cells 
in fluid flow. For example, Cimrák et al. developed a spring-network model for describing the flow of cells in 
microchannels23. Xiao et al.11 modelled the cell deformation passing a narrow slit using a discrete method in 
which the flow was modelled using dissipative particle dynamics, while Tan et al.29 modelled the fluid domain 
with LBM and conducted a parametric study on the effects of various micropore size and the applied pressure 
on the squeezing of a CTC through micropores.

Because discrete spring-based network models are efficient for modelling cell deformation in terms of accu-
racy and computational cost, they can be scaled up to organ-level models of metastasis that include circulation, 
entrapment, and extravasation of CTCs. They can also be used for developing and optimizing microfluidic devices 
for cancer diagnosis. The spring-network models include a few parameters which represent the viscoelastic 
material properties of the cell in discrete domain30 and should be identified for each cell type, cell size, and mesh 
arrangement through a lengthy process to correctly reproduce experimental measurements. There have been 
studies that identified spring-network parameters for RBCs15,24. However, to the best of our knowledge, there 
were no studies that identified spring-network parameters for cancer cells and for other cell types the spring-
network parameters were identified through manual adjustments. There has not been any structured method 
for identifying the spring-network model parameters by minimizing the error between model calculations and 
experimental data.

In this paper, to identify the parameters of the spring-network model of cancer cells, we developed a method 
by coupling an optimization algorithm to a discrete model of the cancer cell (human lung cancer cell) passing 
through a constriction. This model considered friction between the cancer cell and the microchannel wall. The 
optimization was performed using genetic algorithm (GA) and existing experimental data of deformation of 
cancer cells in a microfluidic constriction was employed9. In our model, in addition to the spring-network model 
for the deformation and motion of the cell, the fluid flow was modelled using LBM, and dissipative coupling 
was used to model interactions between the cell and fluid flow. This study can be a corner stone for developing 
numerical models related to: (a) cancer-cell deformations in microcapillaries, (b) finding cancer cell material 
properties31, and (c) designing advanced microfluidic devices for deformability-based cancer diagnosis.

Materials and methods
Lattice Boltzmann method and dissipative coupling.  All computational simulations were per-
formed in Extensible Simulation Package for Research on Soft Matter (ESPResSo) open-source code (version 
4.0.0)32 using its Object-in-Fluid (OIF) module33 for modelling viscoelastic cells interacting with fluid flow and 
microchannel walls. Customarily, at the macroscopic level, fluid flow is treated as a continuum and analyzed 
by solving the Navier–Stokes equations. However, in recent years, LBM became a powerful method of choice, 
especially at the cellular length scale, due to its high calculation efficiency and its intrinsic parallelism15. In LBM, 
the fluid flow is discretized in time and space by considering the fluid as fictitious particles. In the present work, 
three-dimensional 19-velocity cube lattice scheme (D3Q19) has been utilized in the LBM governing equations 
as follows:

where ni(x, t) , δt , δx , τ and fi(x, t) are the density distribution function, time step, grid spacing, relaxation time 
toward the equilibrium distribution nieq , and external force, respectively. At each lattice site, the macroscopic 
fluid density ρ and velocity u can be obtained from the particle density functions as follows:

where, ei is the discrete velocity vector34.
Immersed boundary nodes were defined using vertices of triangular mesh representing the surface of the 

cell membrane. Motions of these nodes due to fluid forces and viscoelastic properties of the cell membrane are 
governed by the Newton’s second law of motion:

(1)ni(x + δx , t + δt) = ni(x, t)−
1

τ

(

ni(x, t)− ni
eq(x, t)

)

+ fi(x, t) for i = 1, 2, . . . , 19

(2)ρ(x, t) =
∑

i

ni(x, t) for i = 1, 2, . . . , 19

(3)ρ(x, t)u =

∑

i

ni(x, t)ei for i = 1, 2, . . . , 19
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where mj is the mass of the node j, and Fj is the force applied to that node. The viscoelastic behaviour of the cell 
is defined by elastic and viscous parameters which will be explained in “Spring-network model of cell”.

In the dissipative coupling method, the coupling are done by means of the drag force exerted by the fluid on 
the nodes of the cell membrane33 as follows

where v is the velocity of the cell-membrane node, and u is the velocity of the fluid at the same position. In this 
equation, ξ is the phenomenological friction coefficient between fluid and the immersed object that was already 
calibrated using experimental data35. It was reported that ξ is dependent on the surface area of the immersed 
object ( S ), the number of cell membrane mesh nodes ( n ) and the dynamic viscosity of the fluid ( υ ). Equation 6 
defines ξ for a sphere with radius r and discretized into n nodes as follows:

where ξref  is the calibrated friction coefficient for a reference sphere, given in Table 1, nref  is 393, and Sref  is the 
reference surface area of the reference sphere with the reference radius rref  of 4 µm35.

Spring‑network model of cell.  We used the viscoelastic cell model implemented in OIF in which the cell 
is discretized employing a two-dimensional triangular network of parallel springs and dashpots according to 
the Kelvin-Voigt viscoelastic model. In this model, the deformation behaviour of the cell is imitated using one 
viscous damping coefficient and five elastic moduli (stretching, bending, local area, global area, and volume) as 
described below15.

Stretching modulus.  The stretch of a spring spanning as an edge on the cell membrane mesh connecting cell 
membrane vertices A and B is defined as23:

where ks , L0 , L , and −→p AB  are the stretching modulus, the relaxed length of the edge AB, the current length of 
the edge AB, and the unit vector pointing from vertex A to vertex B, respectively. Moreover, � =

L
L0

 is the stretch 
and κ(�) describes the neo-Hookean hyperelastic behaviour of the edge36:

Bending modulus.  Bending is defined in terms of the changes in the angles between two neighbouring trian-
gles. For triangle ABC, the bending force can be calculated as follows23:

where θ0 and θ are the angle between two triangles in the resting and current shapes, respectively. kb is the bend-
ing modulus and −→n ABC is the unit vector normal to the triangle.

Local area, global area and global volume moduli.  The biology of the cell membrane necessitates resisting to 
changes in the local area, global area and volume of the whole cell15. For node A, forces applied on each node 
of the triangle ABC for satisfying the local area, global area, and global volume preserving constraints can be 
computed from:

(4)mj
d2x

dt2
= Fj for j = 1, 2, . . . , number of nodes

(5)Fj = ξ(v − u) for j = 1, 2, . . . , number of nodes

(6)ξn,r =
nref

n

√
S

√

Sref
ξref

(7)
−→
F s(A) = ksκ(�)

L− L0

L0

−→
p AB

(8)κ(�) =
�
0.5
AB + �

−2.5
AB

�AB + �
−3
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(9)
−→
F b(ABC) = kb

θ − θ0

θ0

−→n ABC

(10)
−→
F a(A) = −kal

SABC − S0ABC
t2a + t2b + t2c

−→
AT

Table 1.   ξref  for the reference sphere (r = 4 µm, n = 393) immersed in three different fluids35.

υ(mPa · s) ξref
(

nN ·

s
m

)

1.5375 1.82

1.3 1.54

1.0 1.18
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where S0ABC , SABC are the areas of the triangle ABC in the resting and current shapes, ta , tb , tc are the distances 
of the triangle vertices to its centroid T. S0 and S are the areas of the entire cell in resting and current shapes, V0 
and V  are the whole volumes of cell in the resting and current shapes. Also, kal , kag , and kV are the local-area 
modulus, global-area modulus, and global-volume modulus, respectively. As stated before, −→n ABC is the unit 
vector normal to the triangle ABC23.

Viscous damping coefficient.  Since the cell membrane has a lipid layer within its bilayer, it exhibits viscoelastic 
behaviour. In OIF the membrane viscosity was implemented using a Newtonian viscous damper15:

where kvisc is the viscous damping coefficient, and −→v A is the velocity of node A.

Cell‑wall interaction.  At a constant pressure drop between the two ends of the constricted microchannel, the 
passage time (entry time + transit time) of a cell depends on cell deformability as well as cell-wall surface friction. 
Furthermore, in ESPResSo repulsive forces were defined between the nodes of the cell and microchannel wall to 
avoid cell penetration into the microchannel wall in order to model the behaviour of the cell near the walls as15:

where d is the distance between the nodes of cell and wall, dcut is the threshold of repulsive force activation, a 
and n are the repulsive force coefficients, and −→m is the unit vector pointing from the wall node to the cell node15. 
The repulsive-force parameters were considered to be constant in all simulations in this study.

On the other hand, since originally ESPResSo and OIF did not have friction-force implementation in the 
source code, to realistically model cell passing through a constriction, we defined the below friction force

where µf  is the surface friction coefficient.

Numerical model of cell passage through a microfluidic constriction.  In this study, our aim is to 
develop a validated spring-network model for cancer cells as well as a numerical tool that can accurately find the 
parameters of this model. The validated model with accurate parameters then can be used to model the defor-
mation behaviour of cancer cells in various scenarios. We identified parameter values that enabled the model 
to replicate the experimental data9 of a cancer cell passing through a microfluidic constriction. In their study, 
a suspended microchannel resonator with a constriction was used to investigate the deformability and surface 
friction of various types of cancer cells including the human lung cancer cell line H1975. The constriction was 
6 μm in width, 15 μm in depth, and 50 μm in length with a 45° tapered entrance. Cells were kept in cell solution 
(RPMI 1640) at 37 °C and sent through the microchannel with a constant pressure drop that drove the flow in 
the fluidic microchannel. The flow rate of the blank media at the drop pressure of 1.5 psi was reported to be 38 
μL/h. The measurements of the passage of H1975 were performed at two different drop pressures of 1.8 psi and 
0.9 psi9. The flow rates at these two drop pressures were calculated using Poiseuille’s law as listed in Table 2. In 
this table, the entry time is the required time for the cell to completely enter the constriction and the transit time 
is the time the cell takes to travel in the constriction and to completely exit it. Because their experimental results9 
were reported based on the cell buoyant mass, to find the cell radius in their experimental data, we used the fol-
lowing equation that relates the cell radius r to its buoyant mass:
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3
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Table 2.   The extracted entry time and transit time for the cell radius of 6.5 μm at two flow rates.

Experiment number Flow rate ( µLh ) Entry time (μs) Transit time (μs)

1 22.8 17,540 3740

2 45.6 2470 526
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where, mb is the cell buoyant mass, ρ is the cell density, and ρf  is fluid density9. We modelled the cancer cell as a 
sphere with the radius of 6.5 μm and discretized with a triangular surface mesh with 393 nodes. We performed 
Python scripting in ESPResSo to create the geometrical setup of the microchannel and the computational lattice 
for our simulations. Table 3 shows the parameters used in our numerical simulations of cancer cell motion and 
deformation in the microchannel.

Because, in the experiments, walls of the microfluidic channels were not lined with endothelial cells, receptor-
ligand interactions between the CTCs and walls did not exist and therefore they were not considered in the 
present model.

To achieve the goal of this study, a large number of numerical simulations should be executed repeatedly 
to find accurate model parameters. Since numerical simulation of the whole microchannel setup was com-
putationally expensive, performing the calculations with a smaller model with an acceptable computational 
accuracy could greatly speed up the parameter identification process. We performed numerical simulations of 
the motion and deformation of lung cancer cells in four geometrical domains shown in Fig. 1. In this figure, 
Model #1 (panel a) includes the entire fluid passage, while Models #2, #3 and #4 (panels b, c and d) only include 
a portion of Model #1.

Figure 1e shows the fluid velocity profiles at the depth of 7 μm at the cross-section E-E (shown with a dashed 
line in Fig. 1b) for the flow rate of 45.6 µL/h. All three partial models, that have smaller geometrical domain 
compared to the complete microchannel model (Model#1), have velocity profiles very close to that of Model#1. 
The numerical results of lung cancer cell entry time along with the required simulation runtime were compared 
in the four models with similar viscoelastic parameters for four various combinations of the parameter values 
shown in Table 4. The calculated cell entry time and simulation runtime of Models #2, 3 and 4 against those of 
Model #1 were compared in Table 4. For Models #2, 3 and 4, the average errors were 4%, 4.2% and 1419.2%, 
respectively, while the average runtimes were 1509.25 s, 267.25 s, and 2161.5 s, respectively. Because of its sub-
stantial error, Model #4 cannot be reliably used instead of Model#1. Although Model #2 was 0.2% more accurate 
than Model #3, its runtime was over five times of that of Model #3. Since Model #3 can sufficiently and efficiently 
represent Model #1, we used Model #3 in the calculations of the present study.

Figure 1f illustrates the fluid velocity profile at the E–E cross section (Fig. 1b) for the flow rate of 22.8 µL/h 
with different lattice grid spacing for the fluid domain. As Fig. 1f shows the fluid flow is not sensitive to the grid 
spacing of equal or less than 1.5 μm. Therefore, in this study the grid spacing of 1 μm was used for the fluid 
domain to have a high accuracy while keeping the computational cost manageable.

The deformation of the spring-network cell model, however, is sensitive to the mesh size so that all param-
eters should be changed when the mesh size is changed. Therefore, for each mesh size of the cell, the proposed 
parameter identification process should be repeated.

Genetic algorithm.  The spring network model for the cell includes several parameters which need to be 
set accurately and because the parameters are dependent on one another, finding the best set of parameters to 
imitate large deformations of cells is a complicated task. In this work, we propose an optimization-based method 
to accurately identify the parameters of spring-network models of cells. We defined an error function and devel-
oped an optimization algorithm based on GA to accurately and automatically identify parameters to minimize 
the error of the model results compared to the experimental results.

The steps of the GA code are as follows:

1.	 Random n = 128 bits fractional binary numbers were generated for each model parameter to constitute the 
initial population for each iteration. The fractional binary numbers were converted to fractional decimal 
numbers using the following equations:

(17)(0.a0a1 . . . an−1)2 = (a0 × 2
−1

+ a1 × 2
−2

+ · · · + an−1 × 2
−n)10 = q10

(18)K = KL + (KU − KL)× (q10)

Table 3.   Parameters used for modelling cancer cell deformation and motion in the microchannel.

Parameters Symbol Value Unit

Time step �t 0.01 µs

Lattice resolution �x 1 µm

RPMI 1640 kinetic viscosity υ 0.785 mPa · s

RPMI 1640 density ρf 1006 kg

m3

Reference friction ξref 0.922
(

nN ·

s
m

)

Cancer cell density ρ 1050 kg

m3

Repulsive force activation threshold dcut 0.1 µm

Repulsive force scale coefficient a 0.0001 -

Repulsive force coefficient n 1.2 -
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	 where KL , KU are the lower bound and the upper bound given in Table 5. As an example, the following binary 
fraction for Ks with KL = 0.0001 and KU = 10 and n = 128, 0.01111111110110101010100010001101111001
0011110010001110110111101101010110101010100001000011010101101101101010010011110000001101
10 is the decimal Ks of 4.994. The initial population includes 40 different chromosomes for each iteration.

2.	 Parents were selected from the initial population and then crossover were performed for probabilities of 
higher than 0.8. Mutations were performed for each bit for probabilities of higher than 0.8.

Figure 1.   Investigations for selecting a computationally efficient geometrical domain to simulate the passage 
of cancer cells through a microchannel. The selected geometrical domain would be used in the computationally 
expensive parameter-identification process. Four different models were investigated: (a) Model #1: the entire 
microchannel setup used in experiments of Byun et al.9, (b) Model #2: part of the entire microchannel setup of 
Model #1, (c) Model #3: the entire constriction part of Model #1, (d) Model #4: the entry part of the constriction 
of Model #1, (e) Comparison of fluid velocities at the depth of 7 µm of the microchannel at cross-section E–E 
in (b) for the four models, and (f) The fluid velocity with different lattice grid spacing sizes for the flow rate of 
22.8 µL/h at the cross section E–E shown in panel (b). Fluid flow is not sensitive to the grid spacing size for the 
grid spacing of 1.5 µm and finer.

Table 4.   Comparison of the four models in Fig. 1 in terms of entry time and run time for four combinations 
of viscoelastic parameters.

Viscoelastic Coefficients Model #1 Model #2 Model #3 Model #4

ks kb kal kag kV kvisc Entry time (s) Run time (s) Entry time (s) Run time (s) Entry time (s) Run time (s) Entry time (s) Run time (s)

0.5 0.8 0.05 0.9 0.9 1.5 245 40,565 245 1326 250 182 310 103

1.3 1.6 0.5 1.0 1.5 2.0 410 46,346 390 1567 430 271 1390 409

1.3 1.6 1.0 1.0 2.0 4.0 450 47,747 435 1536 470 292 4250 1253

1.0 1.6 1.0 2.0 2.0 4.0 500 49,498 520 1608 530 324 23,340 6881

Table 5.   Upper and lower bounds for model parameters.

ks kb kal kag kV kvisc µf

Lower bound 0.0001 0.0001 0.0001 0.1 0.1 0.1 0.0001

Upper bound 10.0 10.0 10.0 10.0 10.0 10.0 1.0



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21545  | https://doi.org/10.1038/s41598-021-00905-3

www.nature.com/scientificreports/

3.	 Binary numbers were converted to decimal numbers according to the upper and lower bounds of each 
parameter as provided in Table 5.

4.	 Numerical simulation of the corresponding experiment was conducted for each set of parameters, and then 
the outputs were stored and compared with the experimental results.

5.	 Each iteration had about 400 distinct parameter sets. In order to generate random numbers based on the 
best results of the previous iteration, 20 best sets of parameters of the previous iteration, were chosen based 
on the error function. They were stored and added to the initial population of the current iteration.

6.	 The algorithm stopped if one of the below conditions occurred:

(a)	 The error function value is less than a user-defined threshold.
(b)	 The best result remains unchanged for 20 successive iterations.

The parameter identification process and the required numerical simulations were performed on the Graham 
supercomputer of Compute Canada. Up to 300 intel Xeon E5-2683V4 cores with the base frequency of 2.1 GHz 
were used in parallel. Each of the single simulation of 1 ms (105 time steps) of the cell motion on the Graham 
supercomputer when allocating one core and 1024 MB RAM took around 1850s.

Data visualisation and post processing.  For visualising the microfluidics walls, cancer cell and fluid 
flow, coordinates and fluid velocity were extracted from the OIF module in .vtk files. These files were then visu-
alised using ParaView open-source software (version 5.8). Other cell-related information such as cell length, cell 
area strain and cell velocity were calculated by defining appropriate filters in ParaView. No smoothing or averag-
ing was used in presenting the data.

Results
Validation of the parameter identification method for spring‑network model of cells.  In order 
to assess the sufficiency of our proposed GA-based method  for identifying the values of parameters of the 
spring-network model of cells, we used the method to identify the parameters of the RBC. We used the RBC 
stretch experiment performed using optical tweezers by Mills et al.3. Figure 2a shows the 3-D model of the RBC 
with 374 mesh nodes that we used in our calculations. The RBC was stretched in the axial direction as shown in 
Fig. 2b. We used the following error function

where sa and st are the axial and transversal diameter of RBC, respectively, which were calculated numerically at 
the last time step. Also, ea and et are the axial and transversal diameter of the RBC measured in stretch experi-
ment with optical tweezers3. The stop condition error threshold was defined to be one15.

Figure 2c compares the experimental results of Mills et al.3 with the numerical result of our stretching simu-
lation using the parameter set that our proposed method identified (Table 6) by minimizing the error function 
of Eq. (16). As Fig. 2d shows, the error function greatly decreased from 4.8 to close to 1 after only five iterations 
and then decreased to below the threshold of one after ten iterations and the calculations stopped and model 
parameters were identified (Table 6). Figure 2c also shows the numerical result that Cimrak et al.15 obtained 
using their manually adjusted parameters given in Table 6 on an RBC with the same number of nodes and mesh 
configuration as used in our simulation and shown in Fig. 2a. As Fig. 2c and Table 6 show, compared to the 
parameters obtained by Cimrak et al.15, the parameters identified by our GA method enabled closer replication 
of the experimental results with a substantially lower error (0.73 versus 1.46).

Parameter identification of the spring‑network model of cancer cell.  In this section, we used our 
proposed GA method to identify parameters of the human lung cancer cell (H1975). While the time the cell 
takes to squeeze and completely enter the constriction (entry time) is highly dominated by the deformability 
characteristics of the cell, the time the cell takes to travel inside the constriction (transit time) is affected by both 
surface friction and the deformability of the cell9. We, therefore, ignored the surface friction effects in calculating 
the entry time and first identified the viscoelastic parameters during the entry phase by minimizing the follow-
ing error function:

where ETs , and ETe are numerically calculated entry time, and experimentally measured entry time, respectively. 
Here, nt is equal to 2 for using the entry time at two flow rates.

As described in “Spring-network model of cell”, the surface friction force is activated when the distance 
between the wall and cell nodes is less than dcut . We observed that the number of cell nodes which have the active 
surface friction is not the same in different flow rates. Hence, the surface friction coefficient was identified for 
each flow rate separately according to the following error function:

(21)Error =

12
∑

i=1

(

(

sai − eai
)2

+
(

sti − eti
)2
)

(22)Error1 =

nt
∑
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∣

∣
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where i is the experiment number according to Table 2 and TTs , and TTe are numerical transit time and experi-
mental transit time, respectively.

Table 7 shows the identified values for the friction coefficients of the lung cancer cell with the radius of 6.5 μm 
discretized with 393 nodes using experimental results at two different flow rates (given in Table 2). 

Table 8 shows the entry time, transit time and the calculated errors at these two flow rates.

Steps of cancer cell deformation in constriction.  The model of the cancer cell deformation rigorously 
validated against the experimental data, presented in “Parameter identification of the spring-network model of 
cancer cell”, enables us to study details of the deformation process inside the constriction. The model can provide 
information about the deformation of cancer cells in the constriction at the length scale and time scale that are 

(23)Errori2 =

∣

∣

∣

∣

1−
TTs

i

TTe
i

∣

∣

∣

∣

for i = 1, 2

Figure 2.   Validation of the proposed parameter identification method using stretch experiments of the red 
blood cell (RBC) with 374 nodes (a) relaxed state, (b) stretched state, (c) comparison of RBC stretch results 
obtained (1) experimentally by Mills et al.3 using optical tweezers, (2) numerically by Cimrak et al.15 using 
parameters given in Table 6 and (3) numerically using the parameters identified using the proposed genetic 
algorithm identification method. The model with parameters identified using the proposed method can replicate 
experimental data more closely than the model by Cimrak et al. (d) error minimization evolution of the 
proposed method. The main drop in the error occurred in the first five iterations and the five next iterations fine 
tuned the parameters and decreased the error to less than the threshold of one.

Table 6.   Parameter values for healthy RBC identified using the stretch experimental data of Mills et al.3.

ks kb kal kag kV Error

Cimrak et al. (2018) 0.006 0.008 0.001 0.5 0.9 1.46

Proposed GA method 0.0016 0.0569 0.0011 0.281 2.94 0.73
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not accessible in the experimental measurements. Understanding the deformation steps, that the cancer cell 
undergoes, is key for our study in the next sections and for developing future microfluidic devices for cancer cell 
characterization and diagnosis.

Figure 3 shows the progression of the deformation of the lung cancer cell in the constriction in terms of cell 
length (panel a), position of the cell indicated by its leading and trailing edges (panel b), cell area strain (panel 
c), and the 3-D view of the cell at nine key instances of passage (panel d). The area strain was calculated as the 
difference of the instantaneous area with the resting area divided by the resting area. In this figure, the flow rate of 
22.8 µL/h drove the cell. At the onset of entry (Step i), a sudden 22% elongation (Fig. 3a) and a sudden increase 
of 0.036 in the area strain (Fig. 3c) occurred. The sharp slopes in the leading and trailing edge traces (Fig. 3b) 
show that the cell moved inside the channel while deforming from a sphere to an ovoid (Fig. 3d).

Between Steps i and viii, the gentle slopes of the leading and trailing edge traces (Fig. 3b) show continuous 
but sluggish progression of the cell into the constriction. However, details of the deformation are not visible in 
the leading and trailing edge traces. Pushing the cell against the constriction wall between Steps i and ii (Fig. 3d), 
caused the cell length to drop to near only 3% longer than the original diameter (Fig. 3b) but the almost constant 
area strain shows that the cell expanded in the direction normal to the view of Fig. 3d. Between Steps ii and 
iii, the cell underwent another rapid elongation (7% increase) and a rapid increase in the area strain (to 0.05) 
as Fig. 3a,c show. The major portion of the time (89%) during entry was spent between Steps iii and viii when 
the cell underwent small gradual elongation and gradual increase in the area. In Step vi, the area strain stayed 
almost constant while the length gradually increased. In Step vii, the cell ceased the constant area regime and 
eventually completely entered the constriction in Step viii. This was accompanied by a sudden 0.003 decrease in 
the area strain while the cell suddenly elongated in the narrow constriction to the eventual 29% increase com-
pared to the original diameter. Step ix is the transit step during which the cell length and area strain remained 
almost constant while the cell rapidly travelled the narrow constriction as demonstrated by the steep traces of 
the leading and trailing edges in Fig. 3b.

At the higher flow rate of 45.6 µL/h , the steps described above are completed faster as panels of Fig. 4 show 
(steps are labeled in Fig. 3). The initial stretch of the cell in Step i was more at the higher flow rate than it was at 
the low flow rate of 22.8 µL/h as Fig. 4a shows (16.6 vs 15.9 µm). Furthermore, the area strain in Fig. 4c shows a 
higher jump of 0.07 in Step i than the jump of 0.05 that the cell underwent at the lower flow rate. Between Steps 
i and viii, unlike at the lower flow rate that the area strain showed the overall continued growth 0.05 to about 
0.07, at the high flow rate, the area strain remained almost constant near 0.07 with small undulations (Fig. 4c). 
Figure 4b shows the axial location of the centre of the cell at both flow rates. As this figure shows, between Steps 
i and ii, the cell entered further into the narrow constriction at the high flow rate than it did at the low flow rate. 
This is evident from the cell-centre axial locations of 11.6 µm with the high flow rate versus 8.2 µm with the low 
flow rate (both at 0.3 ms). This observation is consistent with the cell length plots of Fig. 4a where between Steps 
i and ii, the cell always elongated more with the high flow rate than it did with the low flow rate. As Fig. 4a shows, 
while the time span between Steps i and ii at the two flow rates were almost the same, cell deformation evolution 
between Steps ii and viii were compressed in time at the high flow rate compared to that at the low flow rate. The 
straight horizontal lines (Step ix) at the end of the plots in Fig. 4a,c show that the transit time was much shorter 
at the high flow rate than it was at the low flow rate. This is consistent with the almost vertical line at the end of 
the cell-centre trace of Fig. 4b that indicates very short transit time compared with the steep-sloped end of the 
cell-centre trace at the low flow rate.

Parsimony of spring‑network model for cancer cells.  While the elastic parameters used in the model 
that we present here for cancer cells are widely used in spring-network models of cells, the viscosity is not 
included in some cell models24. Also, the friction between the cell and the wall is usually ignored in models9,14. 
In the following sections, we investigated how ignoring these two parameters, in order to reduce the number of 
the parameters of the cancer-cell model, can affect the validity of the model results.

Effects of membrane viscosity on cell deformation in constriction.  Considering viscosity of the cell membrane is 
crucial in developing a sufficient model of cancer cell motion and deformation. Indeed, the cell deformation in 
the constrictions showed flow-rate-dependent sensitivity to membrane viscosity as demonstrated in this section.

Table 7.   The best values for the spring-network model parameters of the lung cancer cell.

ks kb kal kag kV kVisc µ1

f
µ2

f

0.073 1.649 0.969 3.084 0.823 2.481 0.0118 0.0009

Table 8.   Errors and calculated entry and transit times for the best values of the model parameters for the lung 
cancer cell at the two flow rates of Table 2.

i Calculated entry time (μs) Calculated transit time (μs) Error1 Error1
2

Error2
2

1 16,595 3497
0.206 0.069 0.011

2 2094 532
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Figure 3.   Deformation and motion of a lung cancer (H1975) in a microfluidic channel with flow rate of 
22.8 µL/h calculated using the validated model. (a) evolution of the cell length as the cancer cell advanced in 
the microchannel, (b) motion of the cell in the microchannel represented by the trajectories of its leading and 
trailing edges, (c) evolution of the area strain of the cell (change in the cell area relative to its undeformed shape 
divided by its undeformed initial area) as the cell advanced in the microchannel, and (d) snapshots of the 3-D 
model of cell progression in the microchannel at nine instances. The instances shown in (d) are indicated by 
arrows in the evolution of cell length in panel (a). The cell underwent a rather sudden elongation in Step i that 
was accompanied by a jump in the area strain as well. The cell length then quickly decreased upon start of 
squeezing of the cell to the constriction between Steps i and ii but the area strain continued to grow as the cell 
expanded in the direction normal to the view provided in panel (d). Between Steps ii and viii, the cell continued 
to deform as it is evident from panels (a,c,d) while it stayed almost at the same position as panel (b) shows. 
After complete entry of the cell in the constriction, the cell transited in the constriction in Step ix that was much 
shorter than the entry time as the sloped trajectory lines of panel (b) near the end of the time show.
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At the low flow rate (22.8 µL/h), ignoring the cell membrane viscosity reduced the deformation and changed 
the timing of deformation. Both the cell length (Fig. 5a) and area strain (Fig. 5b) show, although the cell without 
viscosity reached to Step v (defined in “Steps of cancer cell deformation in constriction”) sooner than the cell with 
the correct viscosity did (5.2 vs 6.2 ms respectively). However, it remained in Step vi (indicated with the straight 
horizontal line after 5.2 ms) while the cell with the correct viscosity finished all steps and exited the microchan-
nel. Consistently, the 3-D views of the cell in Fig. 6 show that the cell without viscosity remained unchanged at 
the entrance of the narrow constriction at the shown instances of 6.53 ms and beyond. Meanwhile, the cell with 
the correct viscosity exhibited a series of deformations that eventually resulted in the entrance to the narrow 
constriction at 16.53 ms.

On the other hand, at the high flow rate (45.6 µL/h), the cell with ignored viscosity reached Step ii sooner 
than the cell with the correct viscosity did (1.6 vs 2 ms) as it is clear in the cell length plot of Fig. 5c and the area 
strain plot of Fig. 5d. The cell with ignored viscosity completed all subsequent steps sooner than the cell with 
the correct viscosity did and exited the microchannel with the passage time of 1.9 ms compared to that of 2.2 ms 
for the cell with correct viscosity.

Figure 4.   Comparison of deformation and motion of a lung cancer (H1975) in a microfluidic channel at two 
flow rates of 22.8  and 45.6 µL/h. (a) evolution of the cell length as the cancer cell advanced in the microchannel, 
(b) motion of the cell in the microchannel represented by the trajectories of its centre of mass, and (c) evolution 
of the area strain of the cell (change in the cell area relative to its undeformed shape divided by its undeformed 
initial area) as the cell advanced in the microchannel. The evolution of the cell at the low flow rate and the steps 
are marked in Fig. 3 and here it is shown for reference. The cell underwent a higher initial elongation and area 
strain in Step i with the high flow rate than it did with the low flow rate. The initial high area-strain value, that 
the cell reached to in Step i with the high flow rate, stayed almost constant during the entry steps. However, with 
the low flow rate, the area strain gradually increased during the entry steps until it eventually reached to the high 
value that the cell reached to Step i with the high flow rate.
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Effects of friction on cell passage in constriction.  In this section, we demonstrate that in order to develop accurate 
spring-network models of cancer cells in interaction with a wall, using an accurate friction coefficient is crucial 
and this parameter should not be ignored. Figure 7 shows the transit step (Step ix as defined in Fig. 3) for the flow 
rates of 22.8 and 45.6 µL/h at four axial locations along the narrow constriction. In both Fig. 7a,b, the top rows 
show the cell motion states simulated while ignoring friction and the bottom rows show the cell motion states 
simulated using the friction coefficient identified for the flow rate (Table 7). We present the location-matched 
states of cells because the cell in the frictionless condition travelled so fast that time-matched comparison is not 
useful. The cell is coloured with the velocity magnitude.

At the low flow rate (22.8 µL/h ), at the 18 µm axial location, the cell with identified friction still had nonu-
niform velocity with the maximum speed of about 2 cm/s while the frictionless cell already exhibited rigid body 
motion with the uniform speed of 3 cm/s. At this flow rate, both with-friction and frictionless cancer cells showed 
rigid-body motion at the 30 and 42 µm axial locations and the frictionless cell travelled twice as fast as the cell 
with correct friction did (at the constant speed of about 3 vs 1.5 cm/s). At the higher flow rate (45.6 µL/h ), at the 
18 µm axial location, cells in both conditions reached to rigid body and constant-speed motion. The frictionless 
and with-friction cells travelled at 10 and 7 cm/s, respectively. Ignoring the cell-wall friction caused a remarkable 
error in the transition time (81% and 55% error for 22.8 and 45.6 µL/h , respectively).

As explained in “Parameter identification of the spring-network model of cancer cell”, in the proposed param-
eter identification method, the friction coefficient should be identified separately for each flow rate. When instead 
of the friction coefficients individually identified for each flow rate, the average of the friction coefficients identi-
fied for each flow rate was used, the following was observed. For the higher flow rate simulation became unstable 
and crashed, since forces exerted on the cell membrane nodes were high at this flow rate. For the lower flow rate, 
using the average friction coefficient caused the calculated transit time to have %47 error in comparison with 
the experimental data.

Discussion
Spring-networks have been increasingly employed for modeling the motion and deformation of red blood 
cells24,27,37, leukocytes38, platelets39 and cancer cells40. Spring-network models were already used for designing 
microfluidic chips41 and for such designs having a validated model with accurate parameters, as our method 
provides, is crucial. Furthermore spring-network models can be used to obtain fundamental understandings 
about metastatic spreading in the body and it is crucially important to use accurate parameters in these models. 
To the best of our knowledge, our proposed method is the first systematic method to find parameters of spring-
network models to develop validated cancer cell models.

Figure 5.   Effects of membrane viscosity on cancer-cell deformation in constriction at two flow rates. (a,c) 
evolutions of the cell length and area strain at 22.8 µL/h, (b,d) evolutions of the cell length and area strain at 
45.6 µL/h. The area strain is defined as the change in the cell area relative to its undeformed shape divided by its 
undeformed initial area. Membrane viscosity had flow-rate dependent effects of the motion and deformation 
of the cell. Neglecting the viscosity caused overestimation and underestimation of the entry time to the 
constriction at the low and high flow rates, respectively.
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The parameters of the spring-network model of the RBC were determined by linking a continuum-mechanics 
model and a spring-network model of the cell15. However, that approach needs special assumptions which restrict 
the model from being general since the derivation is only valid for one specific geometry and cell type. Also, 
the parameters determined employing that approach do not accurately model the cell behaviour in comparison 
with experimental results and further calibration of the model parameters is required37. Our proposed method 
directly identifies the spring-network model parameters and does not rely on any other intermediate models or 
other restrictive assumptions.

To assess the effectiveness of the proposed method, we applied it to find parameters of the spring-network 
model of the RBC to imitate its deformation in the stretch experiments performed using optical tweezers. We 
showed that the parameters obtained using the proposed method enable closer replication of the experimental 
data compared to the reported parameters in the literature that were adjusted manually.

Ye et al.42 proposed functions that associated the transit time with bending modulus alone or shear modulus 
alone while treating all other parameters fixed. They later expanded the function to include both bending and 
shear moduli41. They studied effects of these two moduli on the entry time and fitted functions to relate the two 
moduli with transit time. Our approach in this work is different as we proposed a method to identify model 
parameters based on experimental data of cell motion in a microfluidic constriction.

Figure 6.   Effects of the viscosity of cell membrane on the 3-D motion and deformation of a lung cancer cell in 
a microfluidic constriction at the flow rate of at 22.8 µL/h. Neglecting the viscosity caused the cell to get stuck 
at the constriction entrance after the 6.53 ms while the cell with correctly identified viscosity underwent drastic 
deformations until it successfully entered the constriction at 16.53 ms.
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The model of the cancer cell used in this study only includes the cell membrane represented by a network of 
springs. However, the deformation of the cell is also affected by the elasticity of the cell nucleus and cytoplasm. 
We identified the parameter values of the spring-network model of the cell using experimental data of the defor-
mation of the entire cell. Therefore, the elasticity of the cell nucleus, cytoplasm and membrane are all lumped 
together and are captured by the parameters of the spring network of the cell.

For the two flow rates for which we had experimental data, the discrete friction coefficient was found to 
strongly depend on the flow rate. To correctly capture the physics of the interaction of the cell with the channel 
wall, in terms of the cell transit time, the friction coefficient was found to decrease from 0.0118 at 22.8 µL/h to 
0.0009 at 45.6 µL/h. We observed that, compared to the low flow rate, at the high flow rate the cell nodes got 
closer to the channel wall causing a higher nodal normal repulsive force. The proposed algorithm balanced the 
intense normal repulsive force with a reduction in the coefficient of friction at the high flow rate (Eq. 15). These 
observations, however, were based on the experimental data at only two flow rates and should be verified by col-
lecting experimental data at multiple flow rates and performing the parameter identification using the method 
proposed in this work.

An immediate application of the proposed method with the accurately identified parameters of the spring-
network model of the cancer cell is to predict the cell deformation and passage in the microchannel constriction 
at flow rates not measured experimentally. In the absence of experimental data to identify the friction coefficient 
for flow rates other than the two flow rates, a linear relationship between the friction coefficient and flow rate was 
assumed using µ1

f  and µ2
f  in Table 7. Figure 8a,b illustrate the entry time and transit time of the cell as functions of 

flow rate, respectively. As Fig. 8a shows, the cell entry time to the narrow constriction generally follows a power 
law decreasing trend with increasing the flow rate from 15.5 ms at 23 µL/h to 1.6 ms at 46 µL/h. Similarly, the 
general trend of cancer-cell transit time in the narrow constriction is a power law decrease with increasing the 

Figure 7.   Effects of friction between the walls of the microchannel and the cancer cell on the cell motion and 
deformation during its transit in the constriction (Step ix in Fig. 3) of motion at the flow rates of 22.8 µL/h (a) 
and 45.6 µL/h (b). The cell is viewed from the top (perpendicular to the microchannel axis). Because neglecting 
friction caused the cell to pass very fast, instead of time-matched states, axial location-matched states are shown. 
At both flow rates, the cell velocity magnitude at any location in the constriction was always overestimated when 
the friction was ignored.
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flow rate from 3.2 ms at 23 µL/h to 0.6 ms at 46 µL/h (Fig. 8b). Interestingly, as Fig. 8c shows, the transit time 
and entry time have a linear relationship with a coefficient of determination of 0.92. In this figure the increas-
ing directions of both axes correspond to decreasing the flow rate as Fig. 8a,b show. The values of the flow rate, 
entry time and transit time reported in Fig. 8a,b are important for designing new experiments for obtaining 
cell-deformation information at several flow rates for further improving the accuracy of the identification of the 
parameters of the spring-network model of cancer cells.

Cell deformability was shown to be a promising label-free biomarker for cancer diagnosis43 and some 
high-throughput single-cell microfluidic devices have been proposed for cell characterization based on this 
biomarker7,44,45. Moreover, recently artificial intelligence was used to substantially increase the specificity of 
deformability-based cell sorting in microfluidic chips46. The method proposed in the present study can be used 
to obtain validated spring-network models of motion and deformation of cells that can be used for simulating 
passage of cells in microfluidic devices. This enables simulation of the cell deformation for designing new micro-
fluidic devices by changing and optimizing the geometrical and fluid flow parameters before manufacturing the 
chip for cell characterization based on deformability.

Imaging modalities such as magnetic resonance phase contrast angiography in combination with mathemati-
cal optimization can be used for obtaining patient-specific vascular networks47. The validated cancer cell models 

Figure 8.   Effects of flow rate on the calculated entry time (a) and transit time (b) of a lung cancer cell in a 
microfluidic constriction as well as relationship between entry time and transit time at different flow rates (c). 
Simulations were performed using the validated spring-network model of the cell with accurately identified 
parameters. Both entry time (a) and transit time (b) generally follow a power law decrease with flow rate and 
they have a linear relationship with each other as the flow rate changes (c).
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also enable computationally efficient simulations of the metastatic processes in such vascular networks. These 
models can include cell-wall friction that can affect CTC adhesion and extravasation.

A sufficient model of deformation and motion of cancer cells should include viscosity of the cell as we dem-
onstrated that ignoring the viscosity of the lung cancer cell had remarkable effects on its motion and deformation 
in the constriction. At the low flow rate (22.8 µL/h), the membrane viscosity encouraged deformation so that the 
cell completely squeezed in the microchannel sooner than it did in the absence of viscosity. However, at the high 
flow rate (45.6 µL/h), the cell viscosity resisted cell deformation and slowed down the deformation and therefore 
the entry time with viscosity was longer than it was without viscosity. This shows the sophisticated effects of 
the cell-membrane viscosity on the deformation and motion of the cancer cell and that these effects cannot be 
numerically achieved with a simplistic model.

A sufficient model of a cancer cell passing through a constriction should also consider the friction between 
the cell and the microfluidic wall as we demonstrated in this study. We showed that for a spring-network model, 
the flow-rate dependent friction coefficient should be identified and used in the model to accurately simulate 
the interactions of the cancer cell with the microchannel wall.

The method proposed in this study, the validated model and the knowledge obtained from it can be the 
basis for models of CTC in circulation, entrapment and extravasation stages of metastasis. Such models are 
important for obtaining better fundamental understandings of the metastasis process as well as for developing 
novel predictive tools.

Limitations.  Higher accuracy in the simulation may be attained if the model parameters are obtained for 
the cell with a higher number of nodes. However, this would increase the computational cost to the extent 
that it cannot be possible for the GA code to find an accurate solution for the model parameters based on the 
experimentally measured passage time. The algorithm proposed in this work should be improved to enable more 
computationally efficient parameter identification process for finer discretization.

Furthermore, as it has been shown for parameter identification of the RBC using the stretch experimental 
data, the GA code can efficiently and accurately identify model parameters when the number of inputs and 
outputs are increased. For cancer cell deformation in a microchannel, measuring the output (e.g., entry time) 
at several flow rates can increase the number of input–output pairs and therefore can enable more efficient and 
more accurate identification of the cancer-cell model parameters compared to what we reported here. Future 
experiments should be carried out considering this requirement.

In this study only one lung cancer cell line (H1975) was investigated. Future studied should consider other 
cell types and the performance of the proposed method for those cell types should be investigated.

This study only considered flow rates of up to 45.6 µL/h. Future experimental and modelling studies should 
consider the effects of higher flow rates on the modes of motion and deformation of the cell in the constriction 
and should investigate whether friction and membrane viscosity parameters still play crucial roles at such high 
flow rates.

For the two flow rates for which we had experimental data, the discrete friction coefficient was found to 
strongly depend on the flow rate. To correctly capture the physics of the interaction of the cell with the channel 
wall, in terms of the cell transit time, the friction coefficient was found to decrease from 0.0118 at 22.8 µL/h to 
0.0009 at 45.6 µL/h. We observed that, compared to the low flow rate, at the high flow rate the cell nodes got 
closer to the channel wall causing a higher nodal normal repulsive force. The proposed algorithm balanced the 
intense normal repulsive force with a reduction in the coefficient of friction at the high flow rate (Eq. 15). These 
observations, however, were based on the experimental data at only two flow rates and should be verified by col-
lecting experimental data at multiple flow rates and performing the parameter identification using the method 
proposed in this work.

Code availability
ESPResSo is an open-source code available from http://​espre​ssomd.​org. Object-in-Fluid module is an open-
source code available at https://​github.​com/​icimr​ak/​espre​sso/​tree/​python. The parameter identification code is 
available upon reasonable request from the correspondence author.
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