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Abstract: Bone is a dynamic organ that can adapt its structure to meet the demands of its biochemical
and biophysical environment. Osteocytes form a sensory network throughout the tissue and orches-
trate tissue adaptation via the release of soluble factors such as a sclerostin. Osteocyte physiology has
traditionally been challenging to investigate due to the uniquely mineralized extracellular matrix
(ECM) of bone leading to the development of osteocyte cell lines. Importantly, the most widely
researched and utilized osteocyte cell line: the MLO-Y4, is limited by its inability to express sclerostin
(Sost gene) in typical in-vitro culture. We theorised that culture in an environment closer to the in vivo
osteocyte environment could impact on Sost expression. Therefore, this study investigated the role of
composition and dimensionality in directing Sost expression in MLO-Y4 cells using collagen-based
ECM analogues. A significant outcome of this study is that MLO-Y4 cells, when cultured on a
hydroxyapatite (HA)-containing two-dimensional (2D) film analogue, expressed Sost. Moreover,
three-dimensional (3D) culture within HA-containing collagen scaffolds significantly enhanced Sost
expression, demonstrating the impact of ECM composition and dimensionality on MLO-Y4 behaviour.
Importantly, in this bone mimetic ECM environment, Sost expression was found to be comparable to
physiological levels. Lastly, MLO-Y4 cells cultured in these novel conditions responded accordingly
to fluid flow stimulation with a decrease in expression. This study therefore presents a novel culture
system for the MLO-Y4 osteocyte cell line, ensuring the expression of an important osteocyte specific
gene, Sost, overcoming a major limitation of this model.

Keywords: osteocyte; MLO-Y4; bone; composition; dimensionality; 3D; fluid flow; mechanobiology

1. Introduction

Bone is a complex multicellular organ that possesses the ability to functionally adapt
its structure to meet the biochemical and biophysical demands placed upon it. A potent
regulator of bone adaptation is mechanical loading [1,2]. Evidence suggests that the mas-
ter orchestrator of bone mechanoadaptation is the osteocyte [3–5], which accounts for
over 90% of the cell population in mature bone [3]. These stellate cells reside within a
calcified matrix, in spaces termed lacunae, and extend long processes that interconnect
to coordinate secretion of biological signalling factors, such as sclerostin, regulating bone
anabolism [6–10]. Bone extracellular matrix (ECM), formed by osteoblasts, is a composite
material comprised of both organic and inorganic components. The matrix is primarily
made up of collagen type I fibres that have been mineralised with inorganic hydroxyapatite
(Ca10(PO4)6(OH)2) [11]. Bone ECM also comprises glycosaminoglycans (GAG) such as
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chondroitin sulphate and a range of growth factors [12]. The final composition of the ECM
is a key factor driving the terminal differentiation of osteoblasts into osteocytes, which
transition to display a completely different phenotype, gene expression, and biochemical
profile. Moreover, the three dimensional ECM affords a spatial context to direct signalling
events mediated by various adhesion molecules such as integrins and growth factor re-
ceptors [13]. However, this uniquely mineralised ECM also poses a fundamental obstacle
in studying primary osteocytes as they are embedded in this hard mineralised tissue and,
thus, are difficult to extract in sufficient numbers as they are non-proliferative ex vivo.
As such, the MLO-Y4 cell line was originally developed as a model of the osteocyte and
has been subsequently used extensively for this purpose with over 270 published papers
having utilised this cell model [9,14]. MLO-Y4 cells share similar features with osteocytes
such as dendritic processes, low alkaline phosphatase production, and high osteocalcin,
and connexin 43 production [15]. The MLO-Y4 cell line has facilitated the discovery and
validation of numerous mechanisms in bone, including that fluid shear stress can result in
the synthesis and release of bioactive molecules that initiate signalling pathways to prevent
apoptosis, recruit osteoprogenitors, and encourage the osteogenic differentiation of such
cells [6,16–19].

Whilst our understanding of bone biology and the role of osteocytes have been signifi-
cantly advanced through the development of the MLO-Y4 cell-line, it has several significant
limitations. The primary of which, is the deficiency of sclerostin production at physiological
quantities [20]. This protein is almost exclusively and constitutively produced by mature
osteocytes encased in their mineralised matrix. Coded by the Sost gene, it acts as a negative
regulator of bone formation [21] via the Wnt/β-catenin pathway [6,15]. Atkins et al. (2011)
showed that sclerostin levels are markedly reduced in bones under mechanical loading
and significantly increased in the unloaded bone [21,22]. Sclerostin therefore facilitates
bone formation and the strengthening of existing structures at a site of loading. With our
increased understanding of this molecule’s significance in regulating bone anabolism, it has
become a pivotal focus of research in the development of novel anabolic therapeutics for
metabolic bone disease [9,23,24]. One such therapeutic, romosozumab, is a sclerostin mon-
oclonal antibody that was recently approved by the FDA for the treatment of osteoporosis
in postmenopausal women [25]. Whilst MLO-Y4 cells remain a pivotal cell type used in
investigating bone biology, the deficiency of Sost expression cannot be dismissed. This
limitation has driven the development of the IDG-SW3 cell line, and other Sost expressing
lines [9]. The IDG-SW3 cells proliferate in the presence of interferon-gamma (IFN-
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effects upon cells. Therefore, it is clear that while these models are helpful, a cell line that
expresses physiological levels of sclerostin, where the regulating mechanisms are intact
and without atypical growth conditions, would represent a powerful alternative.

When considering such a model for osteocyte study, it is important to consider the
tenants of the tissue engineering triad. Tissue engineering has highlighted the importance
of the ECM in directing the development, repair, and functioning of diverse tissues [13].
Our lab has used collagen-GAG scaffolds to study cellular activity in osteoblasts and MSC
osteogenesis extensively [26–29]. Experiments have investigated the role of GAG composi-
tions [26], concentration [27,30], and physical characteristics such as stiffness and pore size
upon cellular attachment, proliferation, and migration of cells [27,30–33]. Moreover, these
compositions can be fabricated in three-dimensions (3D), acting as ECM analogues. These
analogues can be used to study the effects of fluid flow stimulation, modelling in vivo
mechanical loading of bone cells [31,34,35]. Regarding osteogenesis, much of our knowl-
edge has been gained from 2D culture studies, whereas 3D culture is now known to be far
superior, better representing the cellular experience in vivo [36,37]. Bone demonstrates a
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unique three-dimensional ECM in the body. The main inorganic bone ECM element, hy-
droxyapatite (HA), has recently proven itself to not only act as a structural ECM component
that confers strength and rigidity to bone, but also as a bioactive material [38]. Interestingly,
HA has also been shown to modulate gene expression in osteocytes [39]. The addition of
a hydroxyapatite mineral phase to form collagen-HA scaffolds has greatly increased our
understanding of osteogenesis [11,40–42]. HA is both osteoinductive and osteoconductive,
and advancing research has permitted the development of tissue engineered bone repairing
constructs [40,41,43], which have proven themselves in vivo [44]. Given that sclerostin is
understood to be produced by the mature osteocyte while embedded in its mineralised
matrix, we postulate that a mineralised matrix analogue could also be applied as an ECM
substitute, fostering the interactions we understand to be important for correct osteocyte
signalling and coordination of bone adaptation.

The objective of this study was therefore to investigate the role of substrate composition
and dimensionality in directing osteocyte Sost gene expression in the well-established cell
line, the MLO-Y4. The hypothesis of this study is that these cells would behave more like a
native osteocyte in a more physiologically relevant environment to mineralised bone. We
postulate that culturing MLO-Y4 cells in ECMs mimetic to native bone ECM containing
GAGs and HA, in both 2D and 3D culture will overcome some of the limitations of this cell
line when compared to traditional collagen-coated plastic culture conditions.

2. Materials and Methods
2.1. Cell Culture

MLO-Y4 cells were used in this study; this cell line is a murine derived model of
an osteocyte (gift from Dr. Lynda Bonewald, University of Missouri-Kansas City, MO,
USA) [14]. MLO-Y4 cells were expanded on rat tail collagen (BD Biosciences, Bedford, MA,
USA) coated cell culture plastic with α-Modified Eagle’s Media (α-MEM) supplemented
with 5% calf serum (CS), 5% foetal bovine serum (FBS), 1% L-Glutamine, and 2% penicillin–
streptomycin (P/S). The passage number for this study was 35–39.

2.2. Substrate Compositions

ECM analogues of varying compositions were produced using collagen slurries [45].
Established protocols for the incorporation of additional ECM components were fol-
lowed [29,30,43]. For 3D scaffolds, this included well-characterised freeze-drying tem-
peratures to ensure consistent pore sizes were produced [32,45–47]. The approaches are
briefly described below.

2.2.1. Collagen Only Slurry

A collagen slurry suspension was produced by mixing micro-fibrillar Collagen Type
I (0.5% w/v) with 0.05 m glacial acetic acid (Fisher Scientific, Loughborough, UK). The
suspension was then added to a mixing vessel (Lauda WKL230; Lauda Brinkman LP, Delran,
NJ, USA), cooled to 4 ◦C to prevent protein denaturation, and blended at 15,000 rpm using
an overhead blender (Ultra-Turrax T18; IKA Works Inc., Wilmington, NC, USA) until a
homogeneous suspension was formed. The suspension was then degassed under vacuum
and maintained at 4 ◦C [45].

2.2.2. Collagen-Glycosaminoglycan Slurry

A collagen-glycosaminoglycan (GAG) slurry was produced by mixing micro-fibrillar
Collagen Type I (0.5% w/v; Collagen Matrix, Allendale, NJ, USA) with chondroitin-6-
sulphate sodium salt, isolated from shark cartilage (0.05% w/v; Sigma-Aldrich, St. Louis,
MI, USA) in 0.05 m glacial acetic acid (Fisher Scientific, Loughborough, UK) [33,48,49]. The
suspension was added to a mixing vessel (Lauda WKL230; Lauda Brinkman LP, Delran,
NJ, USA), cooled to 4 ◦C to prevent protein denaturation, and blended at 15,000 rpm using
an overhead blender (Ultra-Turrax T18; IKA Works Inc., Wilmington, NC, USA) until a
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homogeneous suspension was formed before degassing under vacuum and maintained at
4 ◦C.

2.2.3. Collagen-Hydroxyapatite Slurry

The collagen-hydroxyapatite slurry was based on that used to create a novel scaffold
developed within our group [50]. This scaffold has shown itself to demonstrate potent
osteoinductive and osteoconductive capabilities in both in vitro and in vivo studies [43,50].
It has been realised as an adjunct to bone repair in a range of species through in vivo
studies [44,48,49,51] and notably, most recently including humans. This scaffold slurry
consists of type I microfibrillar bovine collagen (Collagen Matrix, Allendale, NJ, USA) and
0.5 M glacial acetic acid, blended together at 15,000 rpm using an overhead blender (Ultra
Turrax T18, IKA Works Inc., Wilmington, NC, USA). Blending was carried out in a reaction
vessel, which was maintained at 4 ◦C using a circulation cooling system (WKL 230, Lauda
Brinkman LP, Delran, NJ, USA) for a total of five and half hours. HA powder (Capital R
reaction powder, Plasma Biotal, Tideswell, UK) was suspended in 0.5 M acetic acid solution
and added in aliquots every hour to the collagen suspension during blending. The resulting
collagen slurry contained 0.5% (w/v) collagen and a HA concentration of 1% (w/v). The
slurry was degassed in a vacuum and maintained at 4 ◦C [43].

2.2.4. Collagen-Glycosaminoglycan-Hydroxyapatite Slurry

A collagen-glycosaminoglycan (GAG) hydroxyapatite (HA) slurry was produced by
mixing micro-fibrillar Collagen Type I (0.5% w/v; Collagen Matrix, Allendale, NJ, USA)
with chondroitin-6-sulphate sodium salt, isolated from shark cartilage (0.05% w/v; Sigma-
Aldrich, St. Louis, MI, USA), and HA powder (1% w/v; Capital R reaction powder, Plasma
Biotal, Tideswell, UK) in 0.05 m glacial acetic acid (Fisher Scientific, Loughborough, UK).
The suspension was added to a mixing vessel (Lauda WKL230; Lauda Brinkman LP, Delran,
NJ, USA), cooled to 4 ◦C to prevent protein denaturation, and blended at 15,000 rpm using
an overhead blender (Ultra-Turrax T18; IKA Works Inc., Wilmington, NC, USA) for a total
of five and half hours until a homogeneous suspension was formed before degassing under
vacuum and maintained at 4 ◦C.

2.3. Fabrication of 2D Film ECM Analogues

In order to allow a comparative analysis between cells cultured on 2D film ECM
analogues versus 3D scaffold analogues. The collagen slurries of different compositions
mentioned above, were first fabricated into 2D films. Briefly, 62.5 mL of each respective
slurry was added to a 125 × 125 mm stainless steel bracket that had been clamped to
a PFTE plate, which acted as a mould. The slurry underwent dehydration over 48 h at
room temperature in a fume hood (Figure 1A). Once dry, films were hydrated in PBS and
punched into discs of 34 mm diameter using a stainless-steel punch (Gedore, Remscheid,
Germany). Discs were allowed to dry on a PTFE plate in a fume hood before placement
in foil sleeves for dehydrothermal crosslinking at 105 ◦C for 24 h in a vacuum oven at
50 mTorr (VacuCell, MMM, Planegg, Germany) (Figure 1A).

2.4. Fabrication of 3D Scaffold ECM Analogues

Three-dimensional culture has fast been realised as a superior strategy for the study of
cells in vitro. The added dimension allows cellular polarisation and formation of apical and
basal profiles with which to interact with matrix and adjacent cells. This has been realised
in tissue engineering strategies investigating many different tissues such as those in bone,
blood vessels, and the eye [11,13,19,36,37,47,52–57]. To create 3D scaffolds for this study,
respective slurries were freeze-dried (VirTis Co., Gardiner, NY, USA) to a final freezing
temperature of −10 ◦C [45]. After lyophilization, scaffold sheets were dehydrothermally
crosslinked at 105 ◦C for 24 h in a vacuum oven at 50 mTorr (VacuCell, MMM, Planegg,
Germany). Individual scaffold discs (diameter 12.7 mm; depth 3–4 mm) were punched
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out of the sheets. Scaffolds were stored in phosphate buffered saline (PBS; Sigma-Aldrich)
(Figure 1B).
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Figure 1. Experimental design. Slurries of four different compositions were produced: Collagen-1
(Coll), Collagen-1 + Chondroitin Sulphate (Coll-GAG), Collagen-1 + Hydroxyapatite (Coll-HA),
Collagen-1 + Chondroitin Sulphate + Hydroxyapatite (Coll-GAG-HA). (A) 2D films were produced
by allowing slurries to air dry upon a clean bench. (B) 3D scaffolds were fabricated by freeze drying
slurry preparations. (C) Experimental timeline whereby all ECM analogues were seeded. After
3 days culture samples were analysed for viability assays. After 5 days seeded ECM analogues were
analysed for differential gene expression between each composition groups, and between 2D and 3D
culture groups.

2.5. Cellular Seeding of MLO-Y4 Osteocytes upon 2D and 3D ECM Analogues

To seed materials, MLO-Y4 cells were detached from flasks with Trypsin-EDTA (Sigma-
Aldrich) and resuspended in culture media (described above). Films and scaffolds were
seeded with a total of 150,000 cells. In six-well plates, 100 µL of cell suspension was added
dropwise onto the top surface of films or scaffolds, and the plates were placed into the
incubator for 15 min to allow for cell attachment. Whilst scaffolds required no stabilisation
during seeding in the wells, films were held in position using polycarbonate, CellCrown™
inserts (Scaffdex, Tempere, Finland) for 24 h after seeding. After this incubation period,
5 mL of culture media was added to each well. Seeded constructs were cultured under
standard conditions (37 ◦C, 5% carbon dioxide). For compositional studies, constructs
were carefully washed with phosphate buffered saline (PBS) 120 h following seeding and
underwent RNA extraction (Figure 1C).
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2.6. RNA Extraction and Gene Expression Analysis

Samples were blended in 1 mL Qiazol lysis reagent (QIAGEN, Frederick, MD, USA)
using a homogeniser (Omni International, Kennesaw, GA, USA). Then, 200 µL chloroform
(BDH, Poole, UK) was added to the lysate to facilitate phase separation. The Aqueous phase
was then transferred to labelled RNeasy columns (RNeasy mini kit (QIAGEN) to extract
total RNA as per manufacturer’s instructions. RNA was both qualified and quantified using
Nanodrop 2000 (Thermo Scientific, Waltham, MA„ USA) that recorded light absorbance at
260 nm. QuantiTect RT Kit (Qiagen, Frederick, MD, USA) was used for reverse transcription
to generate a cDNA library. This was followed by Real-time PCR (Eppendorf Mastercycler
Realplex 4 System, Eppendorf, Hamburg, Germany) and QuantiTect SYBR Green PCR Kit
(Qiagen, Frederick, MD, USA) using QuantiTect primers for Sost and with 18S used as a
housekeeping gene (for primer sequences—see Supplementary Table S1).

2.7. Sost Expression in Murine Long Bones

Primary murine Sost expressing osteocytes were used as a control group. Three
skeletally mature adult male mice were used. Animals had no prior intervention regarding
exercise or weight bearing and were otherwise unrestricted in their housing. Osteocytes
comprise the vast amount of bone cells with osteoprogenitors residing primarily upon
the periosteal surface, whilst mesenchymal and haematopoietic stem cell niches reside
primarily in the marrow. Cartilage and tendon connective tissue are localised towards
the articulating surface. In order to maximise the RNA yield from osteocytes, RNA was
isolated from the mice femoral shafts. Three adult mice were euthanised and the femora
were quickly dissected and withdrawn. Soft tissue was removed from the bone, periosteum
was stripped, and diaphysis isolated. Marrow was washed from the central cavity using
warmed PBS before the bone was snap frozen in liquid nitrogen. Bone samples were
subsequently blended in 1 mL Qiazol lysis reagent (Qiagen, Frederick, MD, USA) using a
homogeniser (Omni International, Kennesaw, GA, USA). The lysate then underwent RNA
extraction for use in RT-PCR analysis as described above.

2.8. Effect of Fluid Flow upon Sost Expression in MLO-Y4 Cells Cultured in Collagen-HA
3D Environments

MLO-Y4 cells seeded on collagen-HA scaffolds were pre-cultured for 72 h prior to
random allocation to either a static or flow group. Static group constructs underwent
a fresh media change and were cultured under standard conditions for a further 48 h,
after which they underwent RT-PCR analysis. The flow group constructs were placed into
customised individual flow perfusion bioreactors. Each reactor consisted of programmable
syringe pumps, scaffold chambers, and media reservoir (containing 50 mL of growth media)
(Figure 6B) [58]. The flow profile comprised of 1 h steady flow at 1 mL/min followed by
7 h low flow of steady flow at 0.05 m/min over 48 h [59]. After the 48 h culture period, the
scaffolds were removed for RT-PCR analysis.

2.9. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (Version 5.0) (GraphPad
Software, San Diego, CA, USA) software. All data are expressed as means ± standard
error with overlying data points. One-way analysis of variance (ANOVA) was used with a
Bonferroni test to compare between groups. A probability value of 95% (p < 0.05) was used
to determine significance.

3. Results
3.1. ECM Composition Influences Cellular Metabolic Activity

To determine the effect of substrate composition upon osteocyte viability and metabolic
activity, MLO-Y4 cells were seeded on collagen-based 2D films consisting of: (i) collagen,
(ii) collagen-GAG, (iii) collagen-HA, and (iv) collagen-GAG-HA. These will be referred to
a Coll, Coll-GAG, Coll-HA, and Coll-GAG-HA, respectively. The main finding was that
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while cellular DNA did not change with the addition of ECM components, there was a
significant cumulative reduction in cellular metabolic rate.

The average total DNA in the Coll control group was 305 pg. The Coll-GAG composi-
tion 2D film was found to have the highest total DNA content at 310 pg. In comparison,
the Coll-GAG-HA composition film was found to have the lowest average total DNA
content compared to the other groups at 251 pg. However, no statistical difference was
found between the groups (Figure 2A), indicating that 2D substrate composition does
not impact on cell number/viability. Regarding cellular metabolism, all groups were nor-
malised to Coll 2D control. The stepwise addition of GAG and HA components were found
to reduce the metabolic activity of cultured MLO-Y4 cells. The Coll-GAG 2D metabolic
activity was found to be reduced to 77.9% ± 5.2% (**, p = 0.0054), as was the Coll-HA 2D
group at 51.3% ± 7% (****, p < 0.0001). The Coll-GAG-HA group had the lowest overall at
34.1% ± 5.5% (****, p < 0.0001) (Figure 2B).
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Figure 2. Changes in biological activity of MLO-Y4 cells cultured on different 2D film substrate
compositions: Collagen-1 (Coll 2D), Collagen-1 + Chondroitin Sulphate (Coll-GAG 2D), Collagen-1 +
Hydroxyapatite (Coll-HA 2D), Collagen-1 + Chondroitin Sulphate + Hydroxyapatite (Coll-GAG-HA
2D). (A) Proliferation as measured by DNA content. (B) Metabolic Activity as measured by MTS
assay. (n = 3; * p < 0.05; ** p < 0.01, **** p < 0.0001).

Moreover, morphological analysis was performed on MLO-Y4 cells cultured on each
film after 72 h. No difference was identified in average # of dendrites/cell, dendrite length,
or average nuclear to cytoplasmic ratio across all film compositions (Figures S1 and S2).

Taken together, these data suggest that varying compositions did not alter cell viability
or proliferation as DNA remained similar across groups and did not alter cell morphology,
although ECM components significantly affected cellular metabolic rates.

3.2. ECM Substrate Composition Directs Sost Expression in MLO-Y4 Cells

To establish the effect of substrate composition upon osteocyte Sost gene expression,
MLO-Y4 cells were seeded on Coll, Coll-GAG, Coll-HA, and Coll-GAG-HA 2D films as
described above. Utilising Sost expression in MLO-Y4 cells cultured on 2D collagen-coated
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plastic as a reference, it was found that Sost expression was comparable to that of cells
cultured on 2D collagen films (Figure 3A), suggesting that the increased thickness of
collagen within the film did not impact on osteocyte signalling. The addition of GAG to the
film triggered a trend towards an increase in MLO-Y4 Sost expression when compared to
the collagen only film, with a 5.9-fold increase; however, this was not statistically significant
at p = 0.0178. The highest expression of all groups was found in MLO-Y4 cells cultured on
the Coll-HA film, with an 8868-fold increase, which was found to be statistically significant
when compared to the Coll-GAG and Coll control films (p < 0.01) (Figure 3B). This very
large fold increase speaks largely to the negligible expression in MLO-Y4 cells cultured
under standard conditions. Expression was also enhanced in the Coll-GAG-HA group, with
a 4202-fold increase when compared to the Coll control; however, this was not significant.
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Given this significant increase in Sost expression on the Coll-HA films, we next com-
pared expression to that in murine long bone. Despite this improved expression of Sost
in the MLO-Y4 cell line, it is still significantly lower than physiological levels (p < 0.01)
(Figure 3C). These data taken together indicate that substrate composition, specifically the
presence of HA, can direct the expression of Sost in MLO-Y4 cells, but not at a level to that
found in vivo.
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3.3. ECM Dimensionality Influences Cellular Metabolic Activity

To investigate the impact of dimensionality, the ECM compositions investigated earlier
were fabricated into 3D porous scaffolds and were utilised as a platform for MLO-Y4
culture. The 3D scaffold with the highest DNA content was the Coll-HA 3D composition at
303 pg whist the lowest value was found in the Coll-GAG-HA 3D group at 256 pg, which
is consistent with trends identified on 2D films. While the Coll-GAG 3D and Coll-HA 3D
scaffolds did not demonstrate a significant difference in DNA when compared to Coll 3D,
the DNA in these groups was significantly higher than that measured in Coll-GAG-HA 3D
(p < 0.05) (Figure 4A).
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Figure 4. Changes in biological activity of MLO-Y4 cells cultured on different 3D scaffold substrate
compositions: Collagen-1 (Coll 3D), Collagen-1 + Chondroitin Sulphate (Coll-GAG 3D), Collagen-1 +
Hydroxyapatite (Coll-HA 3D), Collagen-1 + Chondroitin Sulphate + Hydroxyapatite (Coll-GAG-HA
3D). (A) Proliferation as measured by DNA content. (B) Metabolic activity as measured by MTS assay.
(C) Metabolic activity in cells cultured on Coll 2D versus Coll 3D. (n = 3; * p < 0.05).

Regarding metabolic activity, no statistical difference was identified between the 3D
ECM groups (Figure 4C), which is inconsistent with that identified in 2D, where the addition
of ECM components reduced the activity of MLO-Y4 cells (Figure 4B). Interestingly, when
comparing metabolic activity in 2D vs. 3D using the Collagen alone substrate, there is a
significant decrease in cellular metabolic activity when cultured in 3D (p < 0.05) (Figure 4C),
indicating that dimensionality influences the metabolism of MLO-Y4 cells.
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3.4. 3D Scaffold Culture Increases Osteocyte Sost Expression When Compared to 2D
Film Counterparts

To investigate the effect of substrate dimensionality upon Sost gene expression, MLO-
Y4 cells were seeded on collagen-based 3D scaffolds supplemented with different ECM
components as described above.

Osteocytes cultured on Coll 3D scaffolds demonstrated an increased albeit insignificant
Sost expression when compared to its Coll 2D film counterpart, with a 37.6-fold increase
(p = 0.067). Cells cultured on Coll-GAG 3D scaffolds demonstrated a significant increase in
Sost expression compared to the Coll-GAG 2D, 10.1-fold increase (p < 0.01). Interestingly,
MLO-Y4 cells cultured on Coll-HA 3D scaffolds also demonstrated a further significant
increase in Sost expression compared to the Coll-HA 2D film, 7.7-fold increase (p < 0.01),
which had previously demonstrated that best response in 2D. Finally, osteocytes cultured on
Coll-GAG-HA 3D scaffolds demonstrated a significant increase in Sost expression compared
to the Coll-GAG-HA 2D film, 14.8-fold increase (p < 0.01) (Figure 5A). These data taken
together demonstrate that 3D culture can significantly enhance the expression of Sost in the
MLO-Y4 osteocyte cell line when compared to cells cultured upon 2D ECM analogues.
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those on 2D thin films for all group composition studied. (B) No statistically significant difference
existed between the Sost expression of cells cultured on Coll-HA 3D scaffolds compared to native
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Bioengineering 2022, 9, 35 11 of 19

3.5. MLO-Y4 Osteocyte-like Cells Express Physiological Levels of Sost in Coll-HA
3D Environments

The level of Sost expressed by MLO-Y4 osteocyte cells cultured on a Coll-HA 3D
scaffolds was compared to that expressed in murine long bone. Interestingly, no statistical
difference was found between the two groups investigated (p = 0.15) (Figure 5B). These data
demonstrate that MLO-Y4 cells cultured on collagen-HA scaffolds may act as an in vitro
model system capable of expressing Sost in comparable levels to primary cells in vivo.

3.6. Sost Expression in Coll-HA 3D Osteocyte Seeded Scaffolds Decreases in Response to
Fluid Flow

We next sought to investigate whether Sost expression is functionally regulated by
mechanical stimulation as is seen in vivo. A perfusion bioreactor was utilised to investi-
gate the effects of fluid flow upon MLO-Y4 cells seeded within the Coll-HA 3D scaffold
(Figure 6A). Flow-stimulated constructs demonstrated a significant drop in Sost expression
when compared to statically cultured controls at 0.16-fold expression relative to the control
(equating to an 83% decrease), (p < 0.01) (Figure 6C). Therefore, these data suggest that Sost
expression by MLO-Y4 cells cultured on Coll-HA 3D scaffolds is appropriately regulated
by mechanical stimulation akin to that of primary osteocytes in vivo.
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Sost expression by MLO-Y4 cells cultured collagen-HA scaffold subjected to flow stimulation versus
statically cultured. Sost expression decreased significantly upon flow stimulation (**, p < 0.01).

4. Discussion

Bone formation is a complex process regulated in part by the osteocyte specific protein
sclerostin. A main cell line developed for studying osteocytes, the MLO-Y4 cell, does
not produce this protein in physiological amounts under standard culture methods. The
overall objective of this study was therefore, to investigate if substrate composition and/or
dimensionality could influence the expression of Sost in MLO-Y4 cells. A significant
outcome of this study is that MLO-Y4 cells were found to express Sost when cultured



Bioengineering 2022, 9, 35 12 of 19

on a HA containing 2D film analogues. Three-dimensional culture upon HA containing
scaffolds further increased Sost expression. Importantly, Sost expression in MLO-Y4 cells
cultured on a Coll-HA 3D scaffold was found to be comparable to physiological levels.
Moreover, MLO-Y4 cells cultured in these novel conditions responded accordingly to
fluid flow stimulation with a decrease in Sost expression, indicating that Sost expression is
regulated in these novel culture conditions in a similar manner to that seen in vivo. This
study therefore presents a novel culture system for the MLO-Y4 osteocyte cell line ensuring
the expression of an important osteocyte specific gene, Sost, overcoming the main limitation
of this model. Moreover, this study furthers our understanding of the need for appropriate
biochemical and biophysical cues (i.e., substrate composition and dimensionality) for
in vitro models of cell physiology. This has interesting further implications on preceding
2D MLO-Y4 studies, which represent the bulk of osteocyte research, in addition to future
studies involving co-cultures with cells from both the mesenchymal and haematopoietic
lineages. Such multicellular systems could be used to recapitulate physiological and
pathological processes, in addition to acting as a possible stepping stone to in vivo studies,
therefore engaging the replacement, reduction, and refinement principles of Russell and
Burch [60].

This study demonstrated that substrate composition influences the expression of scle-
rostin. Traditional culture of MLO-Y4 cells is carried out on collagen-coated plastic to
maintain a dendritic phenotype [14]. The addition of GAG, an ECM component, resulted
in an increase in Sost expression relative to a collagen only control. GAG comprises an
important part of the osteocyte glycocalyx and is required for correct mechanotransduc-
tion [61]. The addition of hydroxyapatite to the collagen-GAG construct resulted in further
increased expression of Sost. This level of expression was not as high, however, when
compared to the robust expression observed in the collagen-hydroxyapatite film alone. The
HA concentration is the same in both collagen-GAG-HA and collagen-HA films, suggesting
that HA is driving an enhanced Sost expression, which is being somewhat reduced by the
presence of GAG, possibly by competitive binding with HA. This observation may also
be attributed to the enhanced stiffness of the HA containing films due to the presence of
the ceramic [62]; however, the response cannot be simply driven by a change in stiffness,
as tissue culture plastic is in the GPa range [63] and, yet, fails to elicit a Sost response,
indicating a biochemical component underlying the interaction.

Whilst HA has been established as an osteoconductive material, its osteoinductive
potential has also been investigated [11,40,64]. This specifically refers to its ability to direct
an undifferentiated cell down an osteogenic lineage rather than supporting the function of
an already differentiated osteoblast. Lin et al., in 2008, using C3H101/2 cells, suggested
that media conditioned by cells exposed to HA contained a secreted factor that could
prime osteogenesis in cells. This cell–HA media was found to be 60% more effective than
BMP supplemented media and 10x more effective than HA conditioned media alone [65].
Whilst Lin determined that this response was not simply due to leached Ca and Pi ions,
other studies have attributed the osteoinductive effect to them [66]. Lin’s work adds to
increasing research suggesting HA can act as a focal point for growth factors or potential
extracellular vesicles (EVs) [67], forming an osteoinductive niche [65]. We can infer that
as a stem cell and osteoblast supporting material, HA would also serve to facilitate and
support the activity of further differentiated osteocytes. This hypothesis is also supported
by the observation that the MLO-A5 post-osteoblast cell line can express the Sost gene in
the presence of hydroxyapatite mineral in 3D culture conditions after only 24 h, which
would suggest the environment does indeed play an important role in its regulation [39].
The expression of Sost by the IDG-SW3 cell in 2D culture is after approximately 10 days
culture. This prolonged culture period may reflect the time required for the maturing
osteocyte to lay a rudimentary mineralised matrix with which to interact. The significant
role of osteocytes in remodelling and mineral homeostasis has been well described [9,10].
Moreover, these data add to the growing evidence of HA as a bioactive molecule that has
been shown to modulate expression of osteocyte proteins, such as Frizzled, Dickkopf, and
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Wnt, which are master regulators of the planar cell polarity and canonical pathways in
osteocytes [38]. Therefore, it is clear that the addition of endogenous bone macromolecules
in the form of a more ‘bone-like’ mimetic ECM has a significant effect upon osteocyte gene
expression, and that such culture conditions, in the form of Coll-HA, can improve the
power of the MLO-Y4 osteocyte model in emulating the primary osteocyte.

Interestingly, whilst the sequential addition of substrate components resulted in sig-
nificant increases in Sost expression, there was a corresponding significant decrease in the
cellular metabolic rate. This observation may suggest that Sost expression is inherently
linked to cellular metabolism in this culture model. Given that MLO-Y4 cells are highly
active and dividing cells, we can infer that proliferation would represent the majority
of the metabolic burden occurring within a cell [68]. Cellular division is one such way
the MLO-Y4 differs from terminally differentiated primary osteocytes that do not divide.
Together, this may suggest that cells cultured upon bone-like ECMs were encouraged to exit
the highly metabolically active proliferation cycle, and instead temporarily slow to facilitate
a more differentiated osteocyte genotype. This observation may also be traced back to
the development of the cell line itself. It is described that cells cultured upon plastic lose
their dendritic phenotype, whereas cells cultured on collagen-coated plastic maintain their
dendrites, but interestingly also have a markedly reduced rate of proliferation [69]. The
theory is further supported by the observations of our dimensionality studies. Here, it was
demonstrated that cells cultured on collagen 3D substrates were found to have statistically
significant lower metabolic rates when considered against their 2D counterparts. This drop
in global metabolic activity when switching from a 2D to a 3D culture has been described
previously in the literature in other cell types such as nephrons [53] and cancer cells [47].
Given the only difference between the identical substrate compositions is their dimension-
ality, we are reminded that native osteocytes reside in a 3D bone environment and the Coll
3D ECM would more closely model this native environment. A reduced metabolic rate
was exhibited by, and comparable between, all cells cultured on 3D substrates. Moreover,
these rates were found to emulate the metabolic rate of cells cultured on 2D HA containing
films. Taken together, this suggests that dimensionality, and HA, have comparable but not
cumulative effects upon osteocyte metabolism.

The impact of dimensionality upon osteocyte culture becomes more intriguing when
we consider its role in directing cell Sost gene expression. Interestingly, there was an
increase in gene expression when compared between 3D and 2D for all compositions.
Indeed, 3D culture may well represent a critical element of osteogenesis. Notably, in 2D
osteogenic cultures, cells are known to form condensations within which osteogenesis is
maximised. Kim and Adachi have previously utilised rotary culture systems to generate
osteogenic spheroids using human mesenchymal stem cells (MSCs) [70]. Importantly,
they have also utilised this culture system with osteoblastic MC3T3 cells that underwent
osteogenic differentiation, importantly, without exogenous osteogenic supplements [71].
This highlights the role of mechanical cues in osteogenesis. More recently they have
also demonstrated the role of hypoxia in this culture system for accelerating osteogenesis
and Sost expression [72]. In this study, the greatest variability in expression occurred,
understandably, in the collagen alone culture groups, as we expect only trace expression
in these cells. Importantly, whilst there was no consistent predictable fold change in Sost
expression, the increase was observed in all groups. Notably, this difference was quite
robust, such that the remaining three groups were statistically significant. Reflecting upon
this variability of enhanced expression, we are reminded of the possible competitive ligand
binding previously discussed above. Here, competition exists for GAG and HA to bind
and interact with cell receptors such as integrins. This primary order competition between
ligand/receptors may be expanded to greater second order interactions, such as ligand
multivalency; that is, the number of ligands organised within a nanoscale cluster, which
can exert complex cellular effects [73–75]. Both GAG and HA would be expected to interact
with cell receptors through clustering and statistical rebinding and their co-location may
account for the larger fluctuations in Sost expression in GAG-HA ECMs compared to HA
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alone, whereby critical HA orientations and binding confirmations are less efficacious
due to interpositioned GAG molecules. This explanation does not take into account
the formation of contrasting focal adhesions and inter-receptor communication such as
orientation, stoichiometry, and sub-cellular location of signalling molecules which we know
are essential for normal osteocyte functions such as mechanosensors [9,39,61,76,77].

Our data suggest that the high expression of Sost in cells cultured on the Coll-HA
3D ECM analogue is comparable to that of bone cells in vivo. Our lab has previously
shown that Coll-HA scaffolds can act as an excellent bone mimetic environment for the
support of osteoblasts and stem cells in vitro [40,41,43]. The material stiffness acts as both
a mechanical cue for osteogenic differentiation [78], whilst also overcoming contracting
forces that allow the porous nature to remain patent and encourage the proliferation and
migration of cells throughout [43,79]. This has been realised in in vivo environments as an
adjunct to support and enhance bone repair [40,44,49,51]. These additional data demon-
strate positive trophic effects for MLO-Y4 cells and encourage previously unobserved Sost
expression, further validating the use of Coll-HA 3D as an in vitro model for investigating
osteocyte physiology.

With osteocytes seeded upon 3D Coll-HA scaffolds expressing comparable levels of
Sost to native cells, the next consideration was the effect of fluid flow upon this expression.
This was achieved using a dynamic fluid flow bioreactor, previously validated in our lab
for modelling in vivo mechanical loading stimulation [34,58]. Using the same dynamic
flow regime, MLO-Y4 cells cultured on 3D Coll-HA scaffolds demonstrated a drop in
Sost expression in response to fluid flow stimulation. The robust, statistically significant
inhibition of Sost confirms that within 72 h culture time the osteocytes had formed the
required cell–matrix connections with which to function in a physiological manner. Whilst
the mechanisms of mechanosensing are incompletely understood, we can infer that the
established well-described mechanisms of αvβ3 integrin binding of cellular processes and
the primary cilium-mediated mechanosensing mechanism must be functional [76,80–82].
Taken together, these data support the Coll-HA 3D culture method as a model of efficiently
encouraging the expression of the highly specific osteocyte genotype, comparable to that
found in vivo, and observing normal physiological responses to mechanical stimulation
through functional mechanosensors, and further validating the culture system as an in vitro
model for investigating osteocyte physiology and mechanobiology.

A limitation to this study was the use of bone diaphysis lysate as the primary cell
source. Whilst there are established protocols for the extraction of osteocytes, the require-
ments of this study were to obtain Sost expressing cells, which was achieved efficiently
without the application of collagenases or prolonged hypoxia that could rapidly impact
osteocyte gene expression. Given that no other bone cells are known to express Sost, and
that osteocytes are by far the most abundant cell in bone diaphysis [83], we are confident
that the extraction accurately represents expression in vivo. A further limitation is that the
shear–stress magnitude generated by the fluid flow bioreactor is lower than that estimated
to occur in vivo. It is possible, therefore, that there could be a more dramatic change in
gene expression. In spite of this, we demonstrated a statistically significant drop in Sost
with fluid flow, such as we would expect to observe in vivo.

5. Conclusions

This study has demonstrated the importance of substrate composition and dimen-
sionality in directing cellular physiology; specifically, the Sost gene in the osteocyte-like
MLO-Y4 cell line, which has traditionally been understood to have lost this ability. It is
reasonable to infer that cells cultured on substrates with characteristics resembling the
biophysical and biochemical properties of their in vivo environment would facilitate the
optimised function of differentiated cell types. This ‘loss-of-function’ of differentiated
cells in in vitro culture may be considered a type cellular ‘homesickness’, whereby the
cells does not have the required biochemical and biophysical cues with which to demon-
strate normal physiological behaviour. This indicates that cells can adopt increasingly
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complex genotypes under different culture conditions, and this can facilitate the expression
of tissue-type specific genes and, consequently, have ramifications upon other in vitro
studies involving differentiated cells and cellular homesickness, and this should therefore,
in particular, be considered when planning any observational experiments with cell–matrix
interactions. Additionally, this study has determined that the Sost gene is regulated by
both composition and dimensionality of the ECM substrate, implying that activation of
different cell–matrix interactions are capable of supporting and directing different functions.
Lastly, we have established an in vitro model capable of expressing Sost at physiological
levels that demonstrates normal behaviour in response to mechanical stimulation. This
represents a useful tool for the investigation of osteocyte physiology in the future and could
be adapted for future studies involving co-cultures with cells from both the mesenchy-
mal and haematopoietic lineages. These multicellular systems could be used to further
characterise environmental biophysical and biochemical cues, mediated by cell–cell, and
cell–matrix interactions, under static and flow conditions. Together, such models could
act as an intermediate investigatory step prior to in vivo studies, therefore realising the 3R
principles of Russell and Burch [60].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9010035/s1, Table S1: Table related to primer
sequences and concentrations employed in quantitative PCR analysis; Figure S1: High magnification
or MLO-Y4 cells cultured of different substrates of (A) Collagen-1 (Coll 2D), (B) Collagen-1 + Chon-
droitin Sulphate (Coll-GAG 2D), (C) Collagen-1 + Hydroxyapatite (Coll-HA 2D), (D) Collagen-1 +
Chondroitin Sulphate + Hydroxyapatite (Coll-GAG-HA 2D). (scale = 10um); Figure S2: Morphologi-
cal data from cells cultured on 2D substrates for 72 h. (A) There were no significant differences in
total number of dendrites per cells cultured upon different substrates. (B) There were no significant
differences in the length of dendrites when cells were cultured upon different substrates. (C) There
were also no significant differences in the nuclear to cytoplasmic to ratio of cells when cultured upon
different substrates.
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