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In my lecture given on the occasion of the 2021 Banting
Medal for Scientific Achievement, I briefly described the
history of the incretin effect and summarized some of
the developments leading to current therapies of obe-
sity and diabetes based on the incretin hormones,
glucagon-like peptide 1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP). In the text below, I dis-
cuss in further detail the role of these two hormones for
postprandial insulin secretion in humans on the basis of
recent studies with antagonists. Their direct and indi-
rect actions on the b-cells are discussed next as well as
their contrasting actions on glucagon secretion. After a
brief discussion of their effect on insulin sensitivity, I
describe their immediate actions in patients with type 2
diabetes and emphasize the actions of GLP-1 on b-cell
glucose sensitivity, followed by a discussion of their
extrapancreatic actions, including effects on appetite
and food intake in humans. Finally, possible mecha-
nisms of action of GIP–GLP-1 coagonists are discussed,
and it is concluded that therapies based on incretin
actions are likely to change the current hesitant therapy
of both obesity and diabetes.

The incretin effect, i.e., the amplification of insulin secre-
tion observed when glucose is administered orally as
opposed to intravenously, but reaching similar glucose
excursions, has been predicted since 1930 and was sub-
stantiated when it became possible to measure insulin
concentrations in plasma in the 1960s. However, it
remained a curiosity in spite of accumulating evidence
that the effect is essential for normal glucose tolerance
and is severely compromised in patients with type 2

diabetes. Recent research has documented that new phar-
maceutical agents, based on the actions of the two incretin
hormones, glucagon-like peptide 1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP), represent the
most effective therapy of the two major metabolic dis-
eases, obesity and type 2 diabetes, improving not only
metabolic parameters but also the risks of complications
and mortality. Nevertheless, the uptake of these newer
therapies is far less than their beneficial actions would
seem to justify (according to the CAPTURE Trial [1]). It
may, therefore, be timely to review critically some of the
most important characteristics of the incretin actions of
the two hormones in humans, with a view to explore dif-
ferences and similarities in order to better understand the
actions of these new therapeutics in obesity and type 2
diabetes.

Analysis of the Incretin Effect Using Receptor
Antagonists
The incretin effect, defined above, is quantified by com-
paring the insulin responses to oral administration of
glucose compared with those measured after intrave-
nous glucose infused in amounts that give rise to the
same glucose responses (isoglycemia). We know today
that the effect, which is responsible for keeping up to
80% of ingested glucose away from the circulation (2),
is essential for normal glucose tolerance. Several com-
pounds are able to influence glucose-stimulated insulin
secretion, including several peptides that can be ext-
racted from the intestinal mucosa, but it is generally
accepted that the peptides GIP and GLP-1 are the most
important responsible factors. This was recently probed
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in human experiments involving antagonists of the
receptors for these hormones, the GLP-1 and GIP
receptors. Both are G-protein-coupled receptors of the
B1 family expressed on the b-cells in the pancreas. The
GLP-1 receptor antagonist (GLP-1RA) used for this was
exendin 9-39 (Ex-9), a fragment of the GLP-RA, exen-
din-4 (a synthetic form of which is exenatide). Ex-9 was
identified as an antagonist of exendin-4 actions already
in 1991 by Raufman et al. (3). Exendin-4 was later
found to interact with the mammalian (and human)
GLP-1 receptor, and Ex-9 also antagonized this interac-
tion (4). Ex-9 has been given to humans in numerous
experiments since 1998, and its use has been carefully
validated in terms of dosing and degree of antagonism
(5). During the last few years it also has been possible
to antagonize the GIP receptor in humans. Based on
extensive searches of truncated forms of the 42-amino-
acid peptide GIP and of GIP(1-30)NH2, a truncated
form of GIP(1-30)NH2, namely, GIP(3-30)NH2, was
finally demonstrated to be a specific and potent com-
petitive antagonist of the human GIP receptor with no
agonist properties (6). Its originator, GIP(1-30)-amide,
is itself an amidated fragment of GIP. This fragment is
circulating in very low concentrations in humans (7),
but since it shares the N terminus with GIP, a trun-
cated form, (3-30)NH2, formed by the actions of the
dipeptidyl peptidase 4 (DPP-4) enzyme, is also likely to
circulate (although probably in concentrations too low
to quantitate reliably). With those two antagonists, it
was now possible to evaluate the incretin system and
its effects in humans. It should be noted that while the
GLP-1 system is highly conserved among mammals, the
GIP system exhibits considerable differences; GIP-RAs,
therefore, cannot be used interchangeably (8). In experi-
ments with healthy individuals given oral glucose, it was
shown that both antagonists impaired glucose tolerance,
and when given simultaneously, they cause glucose intoler-
ance, directly demonstrating the importance of the incre-
tin system for glucose tolerance in humans (9). Analyzing
insulin secretion on the basis of C-peptide secretion nor-
malized for glucose, the contribution of the individual
components of the stimulus could also be quantitated: glu-
cose alone accounted for 25%, GLP-1 for 27%, and GIP for
48% of the insulin response (10). This suggests that GIP is
the primary incretin hormone, consistent with the idea
that GLP-1 is physiologically more responsible for the ileal
brake mechanism, i.e., the endocrine inhibition of upper
gastrointestinal secretion and motility as well as appetite
and food intake, elicited by the presence of nutrients in
the distal small intestine (11). Evidently, the validity of
these estimates rests on the extent to which the effect of
the individual hormone on oral glucose tolerance test-
induced insulin secretion is blocked by the corresponding
antagonist. For GIP, the doses of the antagonist employed
have been demonstrated to block 80% of exogenous GIP
when the latter was given in doses resulting in physiological

elevations of GIP concentrations in plasma. A subsequent
dose-response investigation gave similar results (12). Reg-
arding GLP-1, the use of an antagonist as a tool for analyz-
ing its actions is much more complicated. First of all, part
of the action of endogenous GLP-1 on the endocrine pan-
creas and glucose metabolism is likely to be exerted via acti-
vation of sensory-afferent neurons of the vagus, and it is
not known to what extent Ex-9 is able to interfere with
this mechanism. The enteric neurons are enveloped in
enteric glial cells, which may outnumber the neurons by a
factor of up to 10. They are astrocyte-like cells that may
provide the enteric nervous system a protective barrier
(13). The accessibility issue may be more pronounced for
the larger conjugated GLP-1 receptor agonists. Second,
effects of activation of GLP-1 receptors in the islets may be
more complex than generally believed. The most conspicu-
ous effect of infusion of Ex-9 in humans is an invariable
increase in plasma glucose and glucagon concentrations
(14), whereas insulin responses are much more variable.
Indeed, in several experiments, administration of Ex-9 has
resulted in increasing rather than decreasing insulin con-
centrations. Although unproven, the most likely explanation
for the hyperglycemia is the increase in peripheral glucagon
concentrations. Consider that increases in the periphery are
reflections of much higher increases in portal vein concen-
trations (because of the dilution of the splanchnic blood
flow when it combines with the systemic circuitry). The
increase in glucose, in turn, may explain part of the aber-
rant insulin response. But what is the explanation for the
increase in glucagon concentrations? This immediately
raises the question of the expression of GLP-1 receptors
in the a-cells, but the consensus today is that the expres-
sion levels are low and probably of limited significance
(15). The somatostatin-producing delta cells, however,
robustly express the GLP-1 receptor, and numerous experi-
ments have supported that the inhibitory effects of GLP-1
on the a-cell is transmitted via the somatostatin secretion
of the delta cell (16). It has also been demonstrated repeat-
edly that the delta cells tonically inhibit glucagon secretion
(17). Therefore, the stimulatory effect of circulating GLP-1
on paracrine somatostatin secretion would be expected to
be blocked by Ex-9, which would result in increased gluca-
gon secretion. However, even in the absence of circulating
GLP-1, Ex-9 might still lower delta-cell somatostatin secre-
tion, because it may act as an inverse agonist, inhibiting
the spontaneous signaling of the delta cell GLP-1 receptor
(18). At any rate, decreasing somatostatin would in turn
result in increasing glucagon secretion. It is also now estab-
lished that glucagon powerfully stimulates insulin secretion
in a paracrine manner (19,20). It does so via the GLP-1
receptor (which is blocked in the Ex-9 experiments) but
certainly also via the glucagon receptor (GCGR); therefore,
the increased glucagon secretion would contribute to a
stimulation of insulin secretion. It has also been proposed
that the a-cells produce GLP-1. The problem with that
hypothesis is that there is very little GLP-1 in the pancreas.
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There are considerable amounts of proglucagon(72-107)-
amide, the N-terminally extended form of GLP-1, which is
formed in the pancreas via partial processing of the major
proglucagon fragment, proglucagon(72-158) (21). This
form, also designated GLP-1(1-36)-amide, cannot activate
the GLP-1 receptor but cross-reacts with many antibodies
against GLP-1 and has confused several investigators. Our
current hypothesis is that the processing of proglucagon in
the pancreas is not 100% specific and that a minor fraction
of proglucagon actually is processed to GLP-1(7-36)-amide
(in humans, amidation of GLP-1 seems to be rather exten-
sive) (22). For instance, in GCGR knockout mice, which
exhibit massive hypertrophy and hyperplasia of the pancre-
atic a-cells, about 1% or less of proglucagon is processed
to GLP-1(7-36)-amide (19). In normal pancreases, this level
would not be detectable, but the level increases signifi-
cantly in the hyperplastic islets and results in a measurable
release of GLP-1 from the pancreas, which may contribute
to insulin release. In the normal pancreas, glucagon from
the a-cells, acting on the GLP-1 receptor as well as the
GCGR, fully explains any effects of the a-cells on insulin
secretion (19). In conclusion, the results regarding insulin
secretion of experiments with Ex-9 in humans may not be
easy to interpret.

Effects of Incretins on Insulin Secretion—Direct or
Indirect?
As mentioned, the role of GLP-1 on normal postprandial
insulin secretion may not be prominent, and, at any rate,
effects exerted by circulating GLP-1 would be expected to
be minor since the circulating concentrations of GLP-1, in
the intact biologically active form, are very low (23). This
is because of degradation, occurring already in the gut
and mediated by endothelial DPP-4. This enzyme inacti-
vates GLP-1 to the extent that only about 10% of what
was released from the gut makes it in the intact form to
the pancreas (24). The insulinotropic effect of these low
concentrations is likely to be very small (25). However, in
situations with abnormal increases in the secretion of
GLP-1, as may occur during increased exposure of the
more distal small intestine with nutrients, the contribu-
tions may be very significant. Such conditions would
include accelerated gastric emptying, as seen after surgery
of the stomach with pyloroplasty, gastro-entero-anasto-
mosis, or Roux–en-Y reconstruction (26), and in these sit-
uations blockade with Ex-9 markedly reduces insulin
secretion, to the extent that postbariatric hypoglycemias
may be prevented (27). After large meals, measurable
increases in the postprandial plasma concentrations of
intact GLP-1 may be observed, and these may influence
pancreatic b-cell secretion. Similarly, exogenous GLP-1 is
likely to reach the b-cells via the arterial circulation and
may stimulate insulin secretion (and inhibit glucagon
secretion) directly.

GIP is also degraded by the enzyme DPP-4 (28) but
less extensively, and there is no indication that there is a

local degradation of GIP and that a neural pathway is acti-
vated. In addition, circulating levels of active GIP (about
50% of total) are much higher than those of GLP-1.
Therefore, GIP is probably acting directly on the pancreas
via the circulation, again consistent with its role as a pri-
mary incretin hormone. This is in agreement with the
proximal location of the GIP-producing K-cells with a
maximum in the duodenum and proximal jejunum.

The traditional concept is that GLP-1 and GIP act via
their specific receptors expressed on the b-cells, where
they seem to produce very similar actions, mainly via
cAMP, although other signaling mechanisms are probably
also activated. In agreement with the existence of two
parallel receptor systems expressed on the b-cells, the
effects of GIP and GLP-1 on insulin secretion were found
to be additive (29).

Effects on Glucagon Secretion
The two hormones have opposite effects on glucagon
secretion. In infusion studies, mimicking meal responses,
GLP-1 powerfully inhibited glucagon secretion, while GIP
stimulated secretion in both controls and subjects with
type 2 diabetes (30,31). In studies with RA during meal
intake, GLP-1 antagonism causes hyperglucagonemia, while
GIP antagonism lowers glucagon responses (32). The com-
plicated mechanisms involved in the GLP-1-induced inhibi-
tion have already been dealt with. Regarding GIP, GIP
receptors appear to be expressed by the a-cells, allowing
direct effects of GIP on the a-cells (33). Otherwise, gluca-
gon secretion is linked by glucose in the well-known feed-
back cycle between the liver and the a-cells; therefore, the
stimulatory effect of GIP may be surprising, with GIP
mainly being secreted during nutritional stimulation with
increasing glucose levels. However, in healthy humans, the
effect is mainly seen in the fasting state and during low
glucose levels (34). It has, therefore, been proposed that
GIP functions to stabilize glucose levels by promoting insu-
lin release at higher and glucagon release at lower glucose
levels (34).

Incretins and Insulin Sensitivity
Do the incretin hormones affect insulin sensitivity? Given
that GLP-1 receptors are not expressed on the skeletal
muscle cells and the adipocytes, and that these tissues are
responsible for the bulk of the insulin-induced glucose
uptake, it would seem unlikely that GLP-1 directly affects
insulin sensitivity. GLP-1 is also unlikely to influence the
glucose dynamics of the liver, although this is a contro-
versial issue; at the least, the hepatocytes do not express
the GLP-1 receptor (35). An early study by D’Alessio et al.
(36) based on Bergman’s minimal model suggested an
effect on glucose effectiveness, but in direct investigations
of the effects of GLP-1 on glucose clearance, where the
insulin-releasing effects of GLP-1 were prevented with
somatostatin, this could not be confirmed (37,38), and it
was concluded that the actions on plasma glucose depend
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on the secretion of the islet hormones. A clear effect on
insulin sensitivity was demonstrated in people with type
2 diabetes given GLP-1 as a continuous subcutaneous
infusion for 6 weeks, but it was concluded that this effect
was due to the concurrent weight loss (39). The GIP
receptor is expressed in adipose tissue (but not in skeletal
muscle), where it is thought to regulate both lipolysis and
lipid uptake depending on insulin availability (40,41).
Whether these actions would promote improved insulin
sensitivity is unclear. However, in rodent studies overex-
pression of GIP and administration of long-acting GIP
agonists have been reported to enhance insulin sensitivity
(42,43). The direct effect of GIP on insulin sensitivity has
not been studied in humans, but recent investigations
have raised the possibility that the GIP/GLP-1 coagonists
increase insulin sensitivity in rodents (44), and this has
been proposed to explain the particular effect of the coa-
gonist tirzepatide (45).

The Incretin Hormones and Type 2 Diabetes
When it comes to diabetes, the two hormones also differ
considerably. In 1993, it was definitively demonstrated
that a 4-h GLP-1 infusion in patients with type 2 diabetes
could normalize fasting glucose concentrations while insu-
lin secretion was stimulated and glucagon secretion inhib-
ited, with those changes reverting toward basal conditions
as glucose was getting normalized (46). In 2002, it was
demonstrated that a 6-week continuous subcutaneous
infusion of native GLP-1 in patients with longstanding
type 2 diabetes greatly improved glucose control, b-cell
function, and insulin sensitivity and caused weight loss
(without adverse effects) (39). In contrast, it was discov-
ered already in the mid-1980s that (porcine) GIP was inca-
pable of stimulating insulin secretion in patients with type
2 diabetes (47). Subsequently, in comparative studies of
patients and controls subjected to mild hyperglycemic
clamps (to allow comparisons of effects of similar glucose
concentrations in patients and controls), human GIP
barely affected insulin secretion. In contrast, GLP-1 (both
hormones at somewhat supraphysiological concentrations)
was able to restore insulin secretion to values similar to
those of the controls in response to glucose alone (48). In
further studies, involving coinfusions of GIP and GLP-1,
adding GIP to the GLP-1 infusion abolished the inhibition
of glucagon secretion with GLP-1 (49), and when GIP infu-
sions were given during chronic treatment with a GLP-
1RA, glycemic control was impaired and glucagon concen-
trations elevated (50). The effect of GLP-1 on b-cell func-
tion in type 2 diabetes was studied in detail by Kjems
et al. in 2003 (51), who demonstrated that the effect of
GLP-1 is to dose-dependently increase b-cell sensitivity to
glucose. As expected, this parameter (the slope of the rela-
tionship between elevations in plasma glucose established
by step-wise increases in infusion rates and b-cell secre-
tion rate) was severely impaired in the patients but could
be improved by GLP-1, so that their b-cell responsiveness

to glucose could be restored to normal values in the pres-
ence of GLP-1. Because the study also included multiple
doses of GLP-1, it was possible to determine the dose-
response relationship regarding this effect, which was sig-
nificantly reduced. Part of this was undoubtedly due to
the reduced b-cell capacity of the diabetic pancreases
(functional b-cell mass), but even after correction for this,
the ability of GLP-1 to improve the b-cell sensitivity to
glucose was impaired. Thus, although the effect of GLP-1
may be to improve the b-cells’ ability to respond to glu-
cose, there is a limit to what can be obtained, because of
1) decreased sensitivity to GLP-1 and 2) decreased b-cell
secretory capacity. It follows that the effects of GLP-1 will
depend on the residual b-cell capacity in each case (52).

On this background, it came as a surprise when it was
demonstrated that the GIP/GLP-1 coagonist, tirzepatide,
had antidiabetic activities that exceeded those of GLP-
1RA comparators (dulaglutide and semaglutide) (53,54).
As is already well known and was widely presented at the
ADA scientific sessions of 2021, the antidiabetic effects of
tirzepatide are truly remarkable, with about 50% of
patients with type 2 diabetes reaching A1C values at or
below 5.7% (39 mmol/mol), which are, of course, normal
values. The interest clearly focuses on the specific agent
tirzepatide, since other GIP/GLP-1 coagonists investigated
in previous clinical trials did not show results that were
distinguishable from those obtained with comparator
GLP-1RAs (e.g., see Frias et al. [55]). The unusual features
of tirzepatide are currently under intense investigation
(see below). Recent rodent studies suggested that one
important mechanism was a massive increase in insulin
sensitivity (44), in large part due to increased glucose
uptake in brown adipose tissue (BAT). Humans do not
have large amounts of BAT, and in infusion studies, GIP
did not seem to influence insulin sensitivity (56), ques-
tioning the relevance of this mechanism for humans.
Remarkably, the side effect profile of tirzepatide is highly
reminiscent of that of the GLP-1RAs, and, judging from
the frequency of these mainly gastrointestinal side effects
and also the discontinuation rates in the phase 3 SUR-
PASS studies, they correspond to what would be expected
from high doses of GLP-1RAs (53,54). Indeed, it has not
been excluded that tirzepatide is mainly a very powerful
GLP-1.

Appetite and Food Intake
Regarding extrapancreatic actions of the two hormones,
they also differ markedly, at least when judging from the
results obtained in humans. GLP-1 profoundly influences
upper gastrointestinal functions and appetite (57), and
for endogenous GLP-1 this apparently occurs again via
activation of sensory afferents of the vagus (58,59). In
contrast, exogenous GLP-1 and GLP-1RAs may predomi-
nantly access the leaks in the blood-brain barrier (the
area postrema, the median eminence, and the subfornical
organ), where the underlying neuronal tissue shows a
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dense expression of GLP-1 receptors (60). At any rate,
GLP-1 powerfully inhibits efferent vagal activity with
marked consequences for gastrointestinal motility and
gastropancreatic secretion in general and gastric emptying
in particular (57). For instance, GLP-1 infusion in humans
powerfully inhibits gastric acid secretion (particularly
together with PYY); it also abolishes vagally induced secre-
tion (in sham feeding experiments), whereas there is no
effect on stimulated secretion after truncal vagotomy
(reviewed in Gregersen et al. [61]). In contrast, exogenous
GIP does not have any effect on these parameters in
humans (62).

Infusions of GLP-1 were demonstrated to inhibit appe-
tite and food intake in humans in 1998 (63), and the first
GLP-1RA (liraglutide) was approved for treatment of obe-
sity in 2013. The most recent data have shown that a
related GLP-1RA, semaglutide given weekly at 2.5 mg,
may provide an 18% weight loss after 68 weeks (64).
Thus, GLP-1RAs are the most powerful weight-losing
agents available. GLP-1RA administration is often accom-
panied by initial mild-moderate nausea, and it has been
speculated how much of the appetite effect is due to the
nausea. However, it is clear that the majority of patients
experience the effect without feeling nausea. In animal
experiments, the effect of GLP-1RAs on food intake is
entirely dependent on central nervous system mecha-
nisms (65), and in humans this is supported by numerous
imaging experiments (66). Importantly, GLP-1 has effects
on the reward system (67). If overeating in obesity is
viewed as a disturbance of appetite regulation, related to
other forms of abuse, the GLP-1RAs might also be useful
in other forms of abuse (68), and this is currently being
investigated.

Serious attempts to identify effects of GIP on appetite
in humans have only been carried out in a few acute stud-
ies and with negative results, and in a recent investigation
of the effects of GIP infusion in patients with type 2 dia-
betes alone or in combination with GPL-1, the inhibitory
effect of GLP-1 was even abolished by coinfusion of GIP
(69). In further studies, GIP was infused to patients dur-
ing chronic treatment with a GLP-1RA, but again this did
not result in changes in food intake (50). These data con-
trast strikingly with those obtained with the GIP/GLP-1
coagonist tirzepatide (53). Unfortunately, human studies
with long-acting GIP agonist are not available; such stud-
ies are presumably underway, but no results have been
revealed so far. In rodents, long-acting GIP agonists were
reported to inhibit food intake and cause weight reduc-
tions, although the effect is small (70,71), and recently
GIP receptors have been identified in neurons of the hypo-
thalamus of mice, the activation of which resulted in
reduced food intake and weight loss (71,72). Again, the
effects of GIP agonists are small compared with those that
can be elicited by GLP-1, but in several studies the addi-
tion of a GIP agonist to a GLP-1RA potentiated the
weight-losing effect. Indeed, in a recent study, the effect

of tirzepatide was lost in mice with central deletion of the
GLP-1 receptor (44). The simplest interpretation of this
result would be that tirzepatide mainly acts on the GLP-1
receptor. It is also possible that there is an interplay
between the GLP-1 and GIP receptors, which may set in if
and when the two receptors are expressed on the same
cell. Very few cells in the rodent hypothalamus seem to
coexpress these receptors (44), and it is not known if the
few cells that apparently do so are responsible for the
effect of the coagonist. In the islets, the b-cells express
both the GIP and the GLP-1 receptor, and here some of
the consequences of activation with tirzepatide have been
studied. It is well documented that tirzepatide is an ago-
nist of both receptors, not only by design but also as dem-
onstrated in direct experiments, and in fact is more
potent on the GIP receptor than on the GLP-1 receptor
(73). Activation of GPCRs of this family has several conse-
quences, one of them being receptor internalization, often
associated with arrestin recruitment. Both natural GLP-1
and GIP cause internalization of their receptors, in the
case of the GIP receptor in an arrestin-dependent manner
(8), whereas the GLP-1 receptor may internalize arrestin
independently (74). Moreover, it has been demonstrated
that the responsiveness of cells expressing GIP receptors
decreases as a consequence of the internalization (41,75).
GIP exposure therefore desensitizes the target cell, and it
has been proposed that this downregulation in fact would
be indistinguishable from the actions of a GIP-RA (76).
Therefore, downregulation by internalization might exp-
lain that GIP-RA and antagonists sometimes appear to
behave identically; this is also true in terms of regulation
of food intake. However, in cells expressing GLP-1 and
GIP receptors, arrestin recruitment and internalization of
the GIP receptor were completely identical after tirzepa-
tide and native GIP administration (77). This contrasted
with the interaction with the GLP-1 receptor, where arrestin
recruitment and internalization were almost completely
abolished with tirzepatide. This might result in permanently
high expression of the GLP-1 receptor on the cell surface,
allowing stronger and durable activation of receptor signal-
ing. This would support tirzepatide as a particularly power-
ful GLP-1 receptor agonist, consistent with the side effects
observed during clinical treatment with high doses of tirze-
patide in the clinical studies (whereas such side effects have
never been observed with GIP) and with the results of the
knockout studies referred to above. Note that the particu-
larly powerful actions of tirzepatide are not observed with
other GIP–GLP-1 coagonists and, therefore, must depend
on the specific features of tirzepatide.

Summary
Physiologically there is little doubt that GIP is an impor-
tant first-in-line incretin hormone, whereas GLP-1 may
serve mainly as a hormone of the ileal brake mechanism,
limiting food intake and upper gastrointestinal motility
and secretion in situations of nutritional abundance. For
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reasons that are still not understood, GLP-1 but not GIP
is capable of restoring some of the b-cell responsiveness
to glucose in patients with type 2 diabetes, which,
together with the inhibition of glucagon secretion by
GLP-1 (while GIP stimulates glucagon secretion), explains
its effectiveness to improve glucose control in type 2 dia-
betes. In agreement with its ileal brake function, GLP-1 is
a powerful suppressor of appetite and, hence, of food
intake, and modern GLP-1RAs are the strongest appetite
and food intake suppressors developed so far. GIP is tra-
ditionally viewed as an obesity hormone, but expression
of GIP receptors in the rodent hypothalamus associated
with regulation of food intake has revived interest in the
possible role of this peptide in regulation of food intake,
although differences between species may exist. More-
over, different molecular mechanisms in the regulation of
receptor expression and internalization patterns may con-
tribute to the differences between the two systems. A
recently developed coagonist, tirzepatide, has provided
unprecedented results concerning not only glucose regula-
tion in type 2 diabetes but also weight reduction, raising
questions regarding the possible mechanism of action
that remain unresolved. The remarkable effects of tirzepa-
tide and the newer GLP-1RAs, however, suggest that we
are entering a new era with hitherto unprecedented treat-
ment effects of both type 2 diabetes and obesity.
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