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Abstract: There is increasing evidence that human movement facilitates the global spread of resistant
bacteria and antimicrobial resistance (AMR) genes. We systematically reviewed the literature on the
impact of travel on the dissemination of AMR. We searched the databases Medline, EMBASE and
SCOPUS from database inception until the end of June 2019. Of the 3052 titles identified, 2253 articles
passed the initial screening, of which 238 met the inclusion criteria. The studies covered 30,060 drug-
resistant isolates from 26 identified bacterial species. Most were enteric, accounting for 65% of the
identified species and 92% of all documented isolates. High-income countries were more likely to be
recipient nations for AMR originating from middle- and low-income countries. The most common
origin of travellers with resistant bacteria was Asia, covering 36% of the total isolates. Beta-lactams
and quinolones were the most documented drug-resistant organisms, accounting for 35% and 31%
of the overall drug resistance, respectively. Medical tourism was twice as likely to be associated
with multidrug-resistant organisms than general travel. International travel is a vehicle for the
transmission of antimicrobial resistance globally. Health systems should identify recent travellers to
ensure that adequate precautions are taken.

Keywords: travel; antimicrobial resistance; medical traveller; enteric bacteria; multidrug resistance

1. Introduction

Antimicrobial resistance (AMR) is a growing public health burden that is a serious
threat to global health security [1]. The World Health Organization (WHO) has emphasised
the broad impact that AMR will have on human lives, including on health, economic
prosperity and other livelihoods [2]. A number of reports have now highlighted the
substantially increased levels of AMR bacteria present in many regions of the world [2,3].
For example, the US Centers for Disease Control and Prevention (CDC) have estimated
that there are around 2 million infectious cases in the US annually that are resistant to at
least one antimicrobial, resulting in about 23,000 deaths and costing the US health system
US$20–$35 billion [4]. Importantly, it has been estimated that this increase in the emergence
of AMR organisms can also increase the morbidity and mortality of infectious diseases,
as it hampers the ability of antimicrobial drugs to cure infections [3,5]. AMR infections
currently result in 700,000 global deaths every year, with associated mortality estimated to
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claim 10 million lives per year by 2050 [5]. These high mortality rates associated with AMR
are expected to cause a cumulative loss of around US$100 trillion to the total world gross
domestic product (GDP) in 2050 [5].

The challenges of AMR are complex and multifaceted, with multiple drivers present
and interlinked between different hosts and ecologies, including humans, animals, food
and the environment [6,7]. These multiple links allow for the movement of by-products of
antimicrobial drugs, AMR bacteria, and mobile genetic elements or AMR genes (ARGs),
among and between these ecologies, all of which enhance the dissemination of AMR [8].
At the same time, the continuous movement of people across the globe also plays a
key role in the emergence and dissemination of AMR organisms [9]. Recently, many
studies highlighted the impact of overuse and misuse of antibiotics [10,11], the paucity
of antibiotic development [12], and poor access to quality and affordable antibiotics and
diagnostics [13,14] in promoting the global transmission of AMR bacteria.

In the past few decades, there has been significant increase in the number of interna-
tional travellers, mostly of tourists [15]. The United Nations World Tourism Organization
(UNWTO) has reported that 19% of the world’s population (1.4 billion people) travelled
across international borders in 2018 [16]. It is estimated that 11 million individuals have
travelled for medical tourism to seek affordable healthcare overseas [17]. In addition,
during the past two decades, there has been a very substantial increase in the number
of forcibly displaced people globally, particularly those who have been forced to travel
from conflict regions in Africa and Asia [18]. Recently, there has been growing evidence
that this migration of forcibly displaced people can contribute to the global transmission
of AMR [19–21].

Historically, globalisation and human migration have profoundly contributed to
the emergence and dissemination of infectious diseases [22]. For example, cholera and
meningococcal meningitis outbreaks have been associated with international travellers
returning from affected (endemic) areas [23,24]. Various international regulations and
health protocols have been developed to reduce the burden of such diseases by focusing on
vaccination and/or chemoprophylaxis [25,26]; consequently, the risk of travellers returning
with colonisation of or infection with AMR organisms has also increased during the
past two decades, with the magnitude of this risk varying according to the origin and
destinations of travel [9]. The carriage of AMR bacteria following travel to highly endemic
AMR regions has been shown to persist for up to 12 months post-travel, which amplifies
the risk of introducing AMR organisms into susceptible populations [27].

Here, we systematically review the literature to identify the impact of planned and
desired international travel on the global dissemination of AMR in order to better un-
derstand the key risk factors that promote the transmission of AMR and to assist health
authorities in planning and predicting how to strengthen their health systems in response
to the movement of drug-resistant infections.

2. Materials and Methods
2.1. Search Strategy

Studies and reports were identified by searching electronic databases, including
Medline (PubMed and Ovid), Embase and Scopus, from database inception to the end
of June 2019. The search results are presented as per the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) guidelines [28] in Figure 1. We used
a combination of key words including: “travel” OR “pilgrim*” OR “Hajj” (also alterna-
tive spellings “Hadj” or “Haj”) OR “Olympic” OR “overseas student” OR “international
student” OR “immigrant” OR “world cup” OR “mass gathering” OR “crowding” OR
“tourism” OR “travel medicine” OR “holiday” AND “drug resistance” OR “methicillin-
resistant Staphylococcus aureus” OR “antimicrobial resistan*”. In addition, a manual search
was performed on the reference lists of included studies to identify additional potentially
relevant papers.
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram for the current
systematic review: the methods used for search, identification, screening and the selection process for our review.

2.2. Selection Criteria

Studies that were non-English (language), nonbacterial (organism) or nonhuman
(host) were excluded. After screening, studies that did not address travel and AMR were
excluded. In addition, studies that had the same or partially the same population with
duplicated isolates were included [29–32] (but have had their isolates numbers adjusted)
or completely removed [33,34] (if there was true duplication to the isolate profiles). Isolates
were included if there was no duplication of information [35,36]. Reviews, editorials,
comments and other non-observational articles were also excluded.

Initially, the intent was to include all contexts of human movement. While developing
the manuscript, other systematic reviews were published for some human movement
contexts, such as refugees and Hajj [19,37]; therefore, studies with these special contexts
of human movement were excluded: asylum seekers, immigrants, refugees, non-local
adoption and mass-gathering attendees.

2.3. Study Assessment

Non-randomised studies were assessed based on the Newcastle-Ottawa Scale (NOS) [38]
for cohort and case-control studies. Cross-sectional studies and surveys were assessed
with an adapted version of NOS that was used previously by Modesti and colleagues [39].
Moreover, case reports and case series were assessed using a NOS-adapted method that was
described by Murad and colleagues [40]. Assessment was based on the respective scoring
system, thus setting the maximum score to 9 for cohort and case-control assessments, 10 for
cross-sectional studies and surveys, and 5–8 (depending on the study) for case reports and
case series article assessment. A grade of “A” was given to randomised control trials (RCTs)
of adequate sample size, and it was graded as “B” if the sample size was not adequate.
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Regarding observational and non-randomised studies, grade “A” was given for 75% or
above (in reference to the maximum score), “B” was given for 50–74% and “C” was given
for less than a 50% score on a NOS-based or adapted assessment.

2.4. Data Analysis and Visualisations

The total number of studies identified from the nominated databases was 3719 articles,
of which 667 were duplicates. By skimming the titles, 799 articles were excluded for not
being in English or because they focused on other non-bacterial organisms or on zoonotic
hosts. The remaining 2253 articles were screened via their abstracts. Excluding non-
observational studies and studies not addressing travel and AMR resulted in 326 eligible
studies. The decision to exclude the aforementioned special types of human movement
yielded the final 238 studies that were included in this analysis. All phenotypic and
molecular confirmations for the acquisition of AMR during travel documented in these
studies were included in the analysis. Figures were created using template mapchart.net
(https://mapchart.net/), which are licensed under the “Creative Commons Attribution-
ShareAlike 4.0 International License” (https://creativecommons.org/licenses/by-sa/4.0/).

3. Results
3.1. AMR Associated with Planned Travel

A total of 30,060 AMR bacterial isolates associated with 17,470 instances of planned
international travel (at least one AMR organism documented per instance) was documented
in the 238 studies [27,29–33,35,36,41–270] included in this analysis (Table 1). Most studies
reported the detection of at least one AMR bacterial species after travel, while travelling
or prior to the commencement of travel. There were 2 RCTs, 2 cohort, 13 case-control,
155 cross-sectional (or survey) and 66 case report/series study types. Regarding study
assessment, there were 29 studies scored as grade A, 92 scored as B and 177 scored as C
based on NOS or assessments adapted from it (Table 1).

Table 1. Number of travel-related antimicrobial resistance isolates, documenting studies and year of publication categorised
by decade of isolation: isolates that have isolation time frames that overlap decades were categorised into the earliest decade
of this time frame.

#
Decade Organism Was Isolated Total Travel-Related

AMR Isolates
Total Studies Documenting

Travel-Related AMR Isolates 1

Year of Publication

Start End from to

1 Before 1990 1074 6 1989 1998
2 1990 1999 6570 32 1993 2019
3 2000 2009 16,688 91 2001 2019
4 2010 2019 5003 126 2010 2019

Total Until Jun 2019 (inclusive) 30,060 2 238 2 1989 2019
1 Some studies may document multiple isolates from different decades. Therefore, they may not add up to the total given. 2 Includes
725 isolates with a broad isolation time frame, 1984–2015, from one study; AMR, antimicrobial resistant.

The total pooled population of travellers screened was 632,704, of which 26.33%
(n = 166,615) were female and the gender was not documented in 38.22% (241,829). The
average representative age of case patients from the pooled studies, when available, was
38.9 years (range 0–103.2 years). A subpopulation of travellers experienced exposure to
healthcare systems whilst travelling: hospitalised in, admitted to, repatriated from or seek-
ing treatment (such as medical tourists) from healthcare facilities. Of these 11,089 “medical
travellers”, 23.09% (n = 2560) were female and the gender was not documented in 52.51%
(n = 5823). The average representative age for medical travellers was 51.4 years (range
0–99 years).

The analysis demonstrated that AMR organisms originated from 139 countries and
travelled to 34 countries in total. In general, low- and middle-income countries (124 out

https://mapchart.net/
https://creativecommons.org/licenses/by-sa/4.0/
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of 139) were the source of most AMR organisms, while high-income countries (20 of 34)
constituted the major recipients of resistant bacteria.

The countries and regions given in the articles included in the analysis were cate-
gorised into 11 groups according to their geographical locations (Table S2). The top regions
from which the majority of AMR organisms were sourced or to which people travelled
are provided in Tables S3 and S4, respectively. Briefly, 37.12% (n = 11,157; documented in
174 studies), 12.50% (n = 3757; 104 studies) and 10.66% (n = 3205; 59 studies) of the AMR
organisms reported in the studied articles originated from Asia, Africa, and Central and
South America, respectively (sources). The top source countries of AMR bacteria were
India (n = 3602; 70 studies), Kenya (n = 1176; 12 studies), Thailand (n = 1012; 34 studies),
Mexico (n = 630; 21 studies), Spain (n = 386; 21 studies), Jamaica (n = 363; 4 studies) and
Egypt (n = 292; 28 studies). The source countries of 28.34% (n = 8520; 63 studies) of the
AMR organisms reported were either missing or associated with travellers from multiple
regions; 50.66% (n = 15,229; 138 studies), 30.81% (n = 9261; 57 studies) and 5.49% (n = 1650;
11 studies) of the AMR organisms reported were in travellers to countries located in Europe,
North America and Oceania, respectively. The destination of 9.85% (n = 2962; 4 studies)
of the resistant organisms reported were not provided. The largest recipient countries of
AMR bacteria included the USA (n = 5449; 40 studies), Canada (n = 3812; 17 studies), the
UK (n = 3656; 22 studies), Finland (n = 3382; 10 studies), Spain (n = 1993; 17 studies) and
Australia (n = 1650; 11 studies).

3.2. AMR Bacteria Associated with Planned International Travel

The identified resistant organisms comprised 26 bacterial species that mostly included
Gram-negative bacteria (e.g., Escherichia coli and Salmonella spp.) and other bacterial species
that are commonly associated with hospital- (e.g., Staphylococcus aureus and Acinetobacter
baumanii) or community-acquired infections (Table S5). The bacterial species were not spec-
ified in 17.49% (n = 5258; 29 studies) of the resistant profiles reported, with enteric bacteria
constituting 98.90% (n = 5200; 29 studies) of this group as a generalization. Salmonella spp.
(20.07%, n = 6032; 63 studies), Shigella spp. (23.06%, n = 6931; 29 studies), E. coli (18.17%,
n = 5461; 59 studies), Campylobacter spp. (10.91%, n = 3281; 19 studies) and S. aureus (7.19%,
n = 2162; 35 studies) were the most common AMR bacteria reported.

Many of the drug groups for which resistance was reported are clinically important.
Resistance to quinolones was documented in 9213 isolates, that to sulphonamides and
trimethoprim was documented in 7268 isolates and that to cephalosporins was documented
in 2100 isolates (Table S6). Resistance to beta-lactams was seen in 10,474 isolates, which
includes resistance to penicillins in 6320 isolates and to carbapenems in 1922 isolates. This
means that many of the AMR bacteria detected include species on the WHO list priority
pathogen list of bacteria that pose the greatest threat to human health and resistance to
critically important antibiotics [2]. These include carbapenem-resistant and extended-
spectrum beta-lactamase (ESBL) producers of various Enterobacteriaceae members (e.g.,
E. coli and Klebsiella spp.), methicillin-resistant S. aureus (MRSA), and fluoroquinolone-
resistant Salmonella spp. and Campylobacter spp. Some of the organisms on the WHO list
could be detected over a number of decades, with Table 2 listing the detection rates of these
nominated organisms by time period and location.
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Table 2. Distribution of the number of AMR isolates by decade for nominated species 1 separated by source.

Decade Before 1990 1990–1999 2000–2009 2010–2019 Total

Organism Region BL/CP QR MDR All
AMR BL/CP QR MDR All

AMR BL/CP QR MDR All
AMR BL/CP QR MDR All

AMR BL/CP QR MDR All
AMR

Sub-Saharan Africa 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 4/2 0 1 5 4/2 0 1 5
North Africa and West Asia 0/0 0 0 0 0/0 0 0 0 0/0 0 2 2 7/1 0 10 19 7/1 0 12 21

Asia (except West Asia) 0/0 0 0 0 0/0 0 0 0 2/2 0 1 3 12/11 0 15 28 14/13 0 16 31
Europe 0/0 0 0 0 0/0 0 0 0 0/0 0 6 6 2/0 0 11 13 2/0 0 17 19

North America 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 1/0 0 2 3 1/0 0 2 3
South and Central America 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 1/0 0 1 2 1/0 0 1 2

Oceania 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0

Klebsiella
pneumoniae

Other 0/0 0 0 0 0/0 0 0 0 1/1 0 16 61 12/12 12 21 45 13/13 12 37 106

Campylobacter
spp.

Sub-Saharan Africa 0/0 0 0 0 0/0 52 0 98 0/0 99 0 140 0/0 0 0 0 0/0 151 0 238
North Africa and West Asia 0/0 0 0 0 0/0 8 0 8 0/0 67 0 90 0/0 0 0 0 0/0 75 0 98

Asia (except West Asia) 0/0 0 0 0 0/0 227 0 232 0/0 383 1 502 0/0 17 1 18 0/0 627 2 752
Europe 0/0 0 0 0 0/0 90 0 90 0/0 376 0 402 0/0 0 1 1 0/0 466 1 493

North America 0/0 0 0 0 0/0 0 0 0 0/0 3 0 4 0/0 0 0 0 0/0 3 0 4
South and Central America 0/0 0 0 0 0/0 42 0 76 0/0 274 0 299 0/0 0 0 0 0/0 316 0 375

Oceania 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0
Other 0/0 0 0 19 0/0 0 0 1050 0/0 715 0 240 0/0 218 0 0 0/0 933 0 1309

Sub-Saharan Africa 0/0 0 0 0 0/0 4 187 337 0/0 1 181 426 0/0 0 34 42 0/0 5 402 805
North Africa and West Asia 0/0 0 0 0 0/0 0 1 60 0/0 3 8 66 1/0 0 48 70 1/0 3 57 196

Asia (except West Asia) 0/0 0 0 0 0/0 99 251 434 0/0 143 262 1023 8/0 48 127 240 8/0 280 640 1697
Europe 0/0 0 0 0 0/0 0 100 100 0/0 0 62 67 0/0 1 3 10 0/0 1 165 177

North America 0/0 0 0 0 0/0 0 0 0 0/0 6 0 180 0/0 0 3 4 0/0 6 3 184
South and Central America 0/0 0 31 150 0/0 1 57 201 0/0 8 53 824 2/0 2 28 67 2/0 11 169 1242

Oceania 0/0 0 0 0 0/0 0 0 0 0/0 0 0 11 1/0 0 0 9 1/0 0 4 20

Shigella spp.

Other 0/0 18 37 491 0/0 0 27 170 0/0 22 104 1929 1/0 1 11 20 1/0 41 179 2610

Salmonella
spp.

Sub-Saharan Africa 0/0 0 0 0 0/0 4 3 14 0/0 39 27 96 0/0 1 3 5 0/0 44 33 115
North Africa and West Asia 0/0 0 0 0 0/0 23 1 25 0/0 282 1 287 0/0 9 8 20 0/0 314 10 332

Asia (except West Asia) 0/0 0 16 16 0/0 220 154 403 0/0 1905 354 2344 0/0 50 35 91 0/0 2290
2

1169
3

3579
2,3

Europe 0/0 0 0 0 0/0 24 2 332 0/0 70 0 74 0/0 4 0 4 0/0 98 2 410
North America 0/0 0 0 0 0/0 0 0 0 0/0 0 0 2 0/0 0 0 0 0/0 0 0 2

South and Central America 0/0 0 1 1 0/0 3 2 6 0/0 14 5 35 0/0 1 14 15 0/0 18 22 57
Oceania 0/0 0 0 0 0/0 0 0 0 0/0 0 0 1 0/0 0 0 0 0/0 0 0 1

Other 0/0 0 0 51 0/0 9 167 773 0/0 200 30 710 0/0 1 1 2 0/0 210 198 1536
Sub-Saharan Africa 0/0 0 0 0 0/0 0 4 5 46/0 0 9 55 17/0 1 29 49 63/0 1 42 109

North Africa and West Asia 0/0 0 0 0 0/0 0 13 14 70/0 15 9 178 3/0 23 3 34 73/0 38 25 226
Asia (except West Asia) 0/0 0 0 0 0/0 6 7 14 352/0 134 41 950 106/8 16 68 205 458/8 156 116 1169

Europe 0/0 0 0 0 0/0 0 0 0 19/0 0 0 24 71/1 23 4 108 90/1 23 4 132
North America 0/0 0 0 25 0/0 0 0 0 35/0 0 0 38 4/0 3 0 7 39/0 3 0 70

South and Central America 0/0 0 25 203 0/0 1 12 75 28/0 171 13 1090 5/0 7 12 24 33/0 179 62 1392
Oceania 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0 0/0 0 0 0

Escherichia
coli

Other 0/0 0 0 88 0/0 13 0 483 1/0 60 108 1446 84/2 32 101 346 85/2 105 209 2363

Staphylococcus
aureus

MRSA MRSA MRSA MRSA MRSA
Sub-Saharan Africa 0 0 0 0 0 0 0 0 57 0 1 58 7 2 2 118 64 2 3 176

North Africa and West Asia 0 0 0 0 0 0 0 0 139 0 0 141 16 0 0 16 155 0 0 157
Asia (except West Asia) 0 0 0 0 0 0 0 0 705 0 31 737 56 20 23 201 761 20 54 938

Europe 0 0 0 0 0 0 0 0 426 0 1 431 26 0 2 39 452 0 3 470
North America 0 0 0 0 0 0 0 0 84 0 1 90 5 0 0 5 89 0 1 95

South and Central America 0 0 0 0 0 0 0 0 87 0 0 88 30 3 0 57 117 3 0 145
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Table 2. Cont.

Decade Before 1990 1990–1999 2000–2009 2010–2019 Total

Organism Region BL/CP QR MDR All
AMR BL/CP QR MDR All

AMR BL/CP QR MDR All
AMR BL/CP QR MDR All

AMR BL/CP QR MDR All
AMR

Oceania 0 0 0 0 0 0 0 0 25 0 1 27 1 1 0 6 26 1 1 33
Other 0 0 0 0 0 0 9 12 39 1 1 42 78 14 16 94 117 15 26 148

1 Nominated organisms (Campylobacter spp., Escherichia coli, Klebsiella pneumoniae, Salmonella spp., Shigella spp. and Staphylococcus aureus). 2 Includes 115 isolates with a broad isolation time frame, 1984–2015.
3 Includes 610 isolates with a broad isolation time frame, 1984–2015; AMR: antimicrobial resistance; All AMR: the total number of isolates with any reported AMR; CP: carbapenem resistance, not exclusive from
beta-lactam resistance; BL: beta-lactam resistance, includes carbapenem and/or cephalosporin resistance; MDR: multidrug-resistant organisms, organisms documented as multidrug-resistant, or resistant to three
or more classes of antimicrobials; MRSA: methicillin-resistant Staphylococcus aureus; QR: quinolone resistant, may include co-resistance with beta-lactams or methicillin; Other: unspecified or multiple regions
were documented.
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Some bacterial species have been the focus of previous studies on travel-related
infections. However, some of these species were only occasionally detected in this study,
including Mycobacterium spp. (n = 91; 5 studies), Neisseria gonorrhoeae (n = 120; 3 studies),
Pseudomonas spp. (n = 44; 12 studies), Burkholderia pseudomallei (n = 5; 5 studies), or those
that can cause epidemics (e.g., Vibrio cholerae (n = 5; 3 studies)) (Table S5). Nearly all AMR
M. tuberculosis (n = 88; 4 studies) that were associated with travel originated from Africa
and are resistant to both isoniazid and rifampicin (n = 86; 2 studies). Travel-associated
AMR B. pseudomallei infections were sporadic, with the cases reported usually associated
with travel to tropical areas. All travel-related AMR N. gonorrheae isolates were resistant to
ciprofloxacin (n = 119; 2 studies).

3.3. Trends in the Movements of Travel-Associated AMR Bacteria

Of the recorded AMR movements associated with travel, 91.83% (n = 27,593; 195 stud-
ies) were of enteric bacteria, of which the species was not identified in 18.85% (n = 5200).
Of these unidentified enteric bacteria, 2448 were recorded between 1990 and 1999 (47.08%),
415 were recorded between 2000 and 2009 (7.98%), 2337 were recorded between 2010 and
2019 (44.75%), and none were recorded before 1990; the movements of these unidentified
enteric bacteria are illustrated in Figure 2. A gradual increase was seen in the number of
AMR enteric bacteria overall over time, from 1074 before 1990 (3.89%) to 6427 (1990–1999;
23.29%) and 15,067 AMR enteric bacteria (2000–2009; 54.60%). The majority of these AMR
enteric bacteria were associated with travel originating from Asia (35.24%, n = 9725; ex-
cluding West Asia), and Central and South America (13.13%, n = 3623). Interestingly,
14.91% (n = 4113; 102 studies) of enteric bacteria associated with travel were categorised
as multidrug-resistant (MDR, resistance to three or more antimicrobial classes). The AMR
profiles for 37.66% (n = 1549) of MDR enteric bacteria associated with travel were available;
68.11% of MDR enteric bacteria (n = 1055) were resistant to beta-lactams (including car-
bapenems and cephalosporins) and sulphonamides (including trimethoprim), of which
32.99% (n = 348), 25.78% (n = 272) and 29.38% (n = 310) were co-resistant with amphenicols,
quinolones or both, respectively.
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The analysis demonstrated an increase in the total number of resistant Salmonella
spp. associated with travel from 1553 in 1990–1999 (25.75%) to 3549 in 2000–2009 (58.84%).
Specifically, the rates of reporting quinolone-resistant and MDR Salmonella spp. increased
from 283 and 329 in 1990–1999 (9.52% and 22.94%) to 2510 and 417 in 2000–2009 (84.40%
and 29.08%) (Table 2). The majority of AMR Salmonella spp. isolates originated from Asia
(n = 3579; excluding West Asia). However, an increased number of AMR Salmonella spp.
originating from West Asia and North Africa (n = 287), and sub-Saharan Africa (n = 96) was
reported during 2000–2009. The movements of AMR Salmonella spp. can be seen in Figure 3,
and Figure 4 shows the movements for typhoidal and non-typhoidal Salmonella spp.

The total number of AMR E. coli isolates associated with travel increased from 591 in
1990–1999 (10.82%) to 3781 in 2000–2009 (69.24%). Specifically, beta-lactam-resistant E. coli
isolates started to be documented in 2000–2009 (65.52%), with 551 isolates (Table 2). There
were documented increases in the rates of reporting for quinolone-resistant and MDR E. coli
over two decades, increasing from 20 and 36 in 1990–1999 (3.96% and 7.79%) to 380 and
180 in 2000–2009 (75.25% and 38.96%), respectively. However, carbapenem-resistant E. coli
started to appear in the analysed studies between 2010–2019 (n = 11), with most (72.72%;
n = 8) originating from Asia. Overall, AMR E. coli mostly originated from Central and
South America (n = 1392; 25.49%), and Asia (n = 1169; 21.41%; excluding West Asia). The
documented movements of AMR E. coli in travellers are displayed in Figure 5.
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AMR Shigella spp. isolates associated with travel increased from 641 before 1990
(9.25%) to 1302 in 1990–1999 (18.79%) and 4526 in 2000–2009 (65.30%). Specifically, MDR
Shigella spp. increased from 68 before 1990 (4.05%) to 623 in 1990–1999 (37.08%) and 670 in
2000–2009 (39.88%). There was a documented increase of quinolone-resistant Shigella spp.
from 104 to 183 for the decades 1990–1999 (29.97%) to 2000–2009 (52.74%) (Table 2). Most
of the resistant Shigella spp. isolates originated from Asia (n = 1697; 24.48%; excluding
West Asia), and Central and South America (n = 1242; 17.92%). However, Europe was the
source for 100 and 62 MDR Shigella spp. during the decades 1990–1999 and 2000–2009,
respectively. The movements of AMR Shigella spp. can be seen in Figure 6.

Trop. Med. Infect. Dis. 2020, 5, x FOR PEER REVIEW 4 of 27 

 

Shigella spp. increased from 68 before 1990 (4.05%) to 623 in 1990–1999 (37.08%) and 670 
in 2000–2009 (39.88%). There was a documented increase of quinolone-resistant Shigella 
spp. from 104 to 183 for the decades 1990–1999 (29.97%) to 2000–2009 (52.74%) (Table 2). 
Most of the resistant Shigella spp. isolates originated from Asia (n = 1,697; 24.48%; exclud-
ing West Asia), and Central and South America (n = 1,242; 17.92%). However, Europe was 
the source for 100 and 62 MDR Shigella spp. during the decades 1990–1999 and 2000–2009, 
respectively. The movements of AMR Shigella spp. can be seen in Figure 6. 

 
Figure 6. Travel-related antimicrobial resistant Shigella spp. movements, 1967–2019: data are shown by arrows represent-
ing antimicrobial resistant isolate movements, where the arrowhead represents the destination and the base of the arrow 
represents the source. Thus, double-headed arrows represent movements between the same regions. Different regions are 
represented by different shades. 

The documented isolate numbers for AMR Campylobacter spp. isolates that are asso-
ciated with travel were steady: 1,554 in 1990–1999 (47.54%) and 1,677 in 2000-2009 
(51.30%). However, the rates for quinolone-resistant Campylobacter spp. increased from 
419 to 1917 between 1990–1999 (16.30%) and 2000–2009 (74.56%) (Table 2). The majority 
of any AMR- or quinolone-resistant Campylobacter spp. originated from Asia (n = 752 or n 
= 627, 23.00% or 24.39% respectively; excluding West Asia). 

Travel-associated AMR Klebsiella pneumoniae numbers documented in the literature 
were low in relation to the corresponding number of studies (n = 187; 27 studies) when 
compared with other organisms (Table S5). Interestingly, no documentation of AMR K. 
pneumoniae is present before 2000. Resistant K. pneumoniae numbers increased in the fol-
lowing two decades: with 25 and 57 MDR isolates detected in 2000–2009 (28.74%) and 
2010–2019 (65.52%), respectively, and three and 26 carbapenem-resistant K. pneumoniae 
isolates detected (10.34% and 89.66%), respectively (Table 2). While the countries of origin 
were not specified for 56.68% (n = 106) of isolates, the most documented source was Asia 
(except West Asia): n = 31, 16 and 14 for any AMR, MDR and carbapenem-resistant K. 
pneumoniae, respectively. The movements of K. pneumoniae isolates associated with travel 
are illustrated in Figure S1. 

3.4. AMR Associated with Exposure to Healthcare Systems 
The total number of AMR bacteria isolated from medical travellers was 1342 (49 stud-

ies). Beta-lactam resistance (including carbapenem and cephalosporin resistance) was 

Figure 6. Travel-related antimicrobial resistant Shigella spp. movements, 1967–2019: data are shown by arrows representing
antimicrobial resistant isolate movements, where the arrowhead represents the destination and the base of the arrow
represents the source. Thus, double-headed arrows represent movements between the same regions. Different regions are
represented by different shades.

The documented isolate numbers for AMR Campylobacter spp. isolates that are associ-
ated with travel were steady: 1554 in 1990–1999 (47.54%) and 1677 in 2000–2009 (51.30%).
However, the rates for quinolone-resistant Campylobacter spp. increased from 419 to 1917
between 1990–1999 (16.30%) and 2000–2009 (74.56%) (Table 2). The majority of any AMR-
or quinolone-resistant Campylobacter spp. originated from Asia (n = 752 or n = 627, 23.00%
or 24.39% respectively; excluding West Asia).

Travel-associated AMR Klebsiella pneumoniae numbers documented in the literature
were low in relation to the corresponding number of studies (n = 187; 27 studies) when
compared with other organisms (Table S5). Interestingly, no documentation of AMR
K. pneumoniae is present before 2000. Resistant K. pneumoniae numbers increased in the
following two decades: with 25 and 57 MDR isolates detected in 2000–2009 (28.74%) and
2010–2019 (65.52%), respectively, and three and 26 carbapenem-resistant K. pneumoniae
isolates detected (10.34% and 89.66%), respectively (Table 2). While the countries of origin
were not specified for 56.68% (n = 106) of isolates, the most documented source was
Asia (except West Asia): n = 31, 16 and 14 for any AMR, MDR and carbapenem-resistant
K. pneumoniae, respectively. The movements of K. pneumoniae isolates associated with travel
are illustrated in Figure S1.
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3.4. AMR Associated with Exposure to Healthcare Systems

The total number of AMR bacteria isolated from medical travellers was 1342 (49 stud-
ies). Beta-lactam resistance (including carbapenem and cephalosporin resistance) was
identified in 64.01% (n = 859; 24 studies) of AMR bacteria associated with medical trav-
ellers. Moreover, 6.33% (n = 85; 5 studies) of bacterial isolates from medical travellers
were quinolone-resistant, of which 29.41% of these (n = 24; 3 studies) were beta-lactam
co-resistant. Interestingly, MDR organisms comprised 24.14% (n = 324; 32 studies) of
medical traveller bacterial isolates. Hence, medical travellers have around twice the odds
of detecting MDR bacterial isolates than other travellers (OR = 1.99, p < 0.001; considering
all isolates are independent observations).

AMR S. aureus isolates associated with travel increased from 12 in 1990–1999 (0.56%)
to 1614 in 2000–2009 (74.65%) and 536 in 2010–2019 (24.79%), with no documented cases
before 1990. Interestingly, there were 1781 methicillin-resistant S. aureus (MRSA) isolates
associated with travel, which started to appear between 2000–2009. Most AMR S. aureus
isolates originated from Asia (n = 983, 45.47%; excluding West Asia) and Europe (n = 470,
21.74%), of which 77.42% and 95.74% (n = 761 and n = 452, respectively) were MRSA and
4.58% and 0.64% (n = 45 and n = 3, respectively) were MDR, respectively. In addition,
81 MRSA isolates were associated with medical travel, of which 18.52% and 27.16% were
from Asia (n = 15; excluding West Asia) and Europe (n = 22), respectively. Interestingly,
18.52% of MRSA cases associated with medical travellers originated from North Africa and
West Asia (n = 15). The movements of AMR S. aureus can be seen in Figure 7.
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Nearly all of the AMR strains of A. baumannii (n = 150; 19 studies) and Pseudomonas
aeruginosa (n = 43; 11 studies) that were reported in the analysed articles were associated
with medical travellers; 26.00% (n = 39) of A. baumannii strains were categorised as MDR,
of which 46.15% (n = 18) showed resistance to the combination of beta-lactams, quinolones
and aminoglycosides and 33.33% (n = 50) were categorised as beta-lactam-resistant (all
were carbapenem-resistant); and 34.88% (n = 15) of the P. aeruginosa strains were categorised
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as MDR, of which 53.33% (n = 8) showed resistance to the combination of beta-lactams,
quinolones and aminoglycosides and 34.88% (n = 15) were categorised as beta-lactam resis-
tant (all were carbapenem- and/or cephalosporin-resistant). Moreover, medical travellers
with P. aeruginosa infections usually stayed longer in hospitals when they returned, with a
mean hospital length of stay of over 45 days [80]. Furthermore, studies documented that
P. aeruginosa with the blaNDM-1 resistance gene were first identified in North America and
Europe from medical travellers arriving from Asia and Europe, respectively [103,173].

4. Discussion

Antimicrobial resistance has become a major global health emergency, with human
displacement [271], such as that seen for refugees or travellers, as a facilitative factor [19,20].
While the link between AMR and travel was explored previously, few studies have exam-
ined this over time and across different regions of the world [6]. Here, we have compiled
and analysed the literature recording the detection of travel-related AMR bacteria during
the past three decades.

Prior to 1990, a few studies noted a small number of AMR bacteria being isolated,
with the most frequently recorded being Shigella spp. from Central and South America
or an unspecified location, detected in four studies with 641 isolates. Over time, the
frequency of detection of AMR bacteria has increased; however, the number of studies
performed has also increased, as has the ease of resistance testing. However, it is clear
that there is increasing detection of quinolone-resistant Campylobacter spp., MDR Shigella
spp., quinolone-resistant Salmonella spp., and ESBL-producing and quinolone-resistant
E. coli isolates.

Examining the trends over time and the geographic regions from which AMR appears
to be emerging can help inform on how we should be treating travellers returning from
these at-risk regions. From our results, we can see that quinolone resistance in Shigella
spp. was first detected in travellers returning from Oceania before 1990 and Asia between
1990–1999. During the same time period, quinolone-resistant Salmonella spp. was also being
seen in travellers returning from Asia, with a definite spike in quinolone-resistant and
MDR cases of Salmonella between 2000 and 2009. While MDR Shigella spp. was also seen
in travellers returning from Asia in 1990–1999, a number of isolates were also associated
with West Asia, and North Africa and Europe, with a more distributed picture occurring
between 2000 and 2009.

Gastrointestinal (GI) infections or complaints are commonly associated with travel [272].
Diarrhoea is the most common GI symptom associated with travel and is seen in around
60% of GI cases [273]. Travellers’ diarrhoea occurs less frequently with travel from eco-
nomically developed countries compared with other countries, and bacteria are the most
common microbiologically identified aetiology [273,274]. Unsurprisingly, in our study,
enteric bacteria also make up the most frequently occurring AMR species associated with
travel. Of particular concern is that AMR enteric bacteria, when acting as either a pathogen
or coloniser, can transfer their resistance elements to other commensal or pathogenic bacte-
ria present in the gut [275]. We have found that the number of enteric bacterial isolates that
are resistant to antibiotics has been increasing over the years, with quinolone resistance
in particular being seen more frequently. The WHO raised international concerns over
fluoroquinolone-resistant enteric bacteria in their 2014 report [2]. Also echoed in the WHO
report is the growing frequency with which MRSA as well as carbapenemase- and ESBL-
producing Klebsiella pneumoniae are detected in travellers [6]. As many of the travel-related
quinolone-resistant enteric bacteria originated from Asia, we suggest that clinicians who see
travellers from this region with GI-related illnesses should avoid empirically prescribing
ciprofloxacin or any other quinolones.

The best course of treatment for returning travellers who complain of GI symptoms
suggesting a bacterial aetiology should now be considered. Based on practical observations
from our data, we would caution against or avoid empirical treatment with beta-lactams
and quinolones for bacterial GI travel-related illnesses until an AMR profile or culture and
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sensitivity testing has been performed. For severe cases with a history of travel to Asia,
empirical treatment could start with azithromycin (which was also suggested by other
studies [272]) and then change to the drug of choice once the AMR results are back. For
travellers returning from other destinations, chloramphenicol could also be used as there
are still a low number of documented resistant cases globally (Table S7). For travellers
arriving from Africa, Central America or South America, it is advisable to avoid prescribing
sulphonamides and trimethoprim due to the high levels of resistance seen in bacteria from
these regions. Other general guides for returning travellers with bacterial GI infections
include setting and related translational medicine evaluation and implementation [272].

Medical travel-related AMR produces a significant risk that resistance may be intro-
duced to a specific part of a health system or even into a complete health system [276]. Some
studies mentioned that medical travel-related AMR isolates cause outbreaks within their
receiving institutes [88,268] and suggested protocols for such scenarios [47]. There is a lack
of documentation for developing economies’ health systems on how they should prepare
when receiving such patients. In addition, monitoring medical-related AMR is challenging,
as medical tourism has been increasing in frequency, with associated complications often
not being reported as linked to travel [277].

There are a number of limitations with this retrospective systematic review. There
is significant variation in the ways in which bacterial species are identified (whether via
traditional isolation or PCR) and then undergo antimicrobial susceptibility testing. Often,
studies do not clearly link isolates or bacterial species to AMR profiles, and such data are
not included as Supplementary Information. Travel histories can be vague and incomplete
and are often limited to the destination country because this is the one in which the study
is performed, with the origin country being that of most recent travel. This reflects the,
often retrospective, nature of the studies and clearly does not have pre- and post-travel
samples with a clear itinerary in between, limiting the usefulness and precision of these
data. AMR bacteria acquired through travel are also not just a risk for the traveller; some
isolates may be detected in family members or other close contacts. Finally, MDR bacteria
were properly characterised in the majority of studies (n = 101; 1745 isolates) included in
our analysis. In a few studies (n = 16 studies; 2440 isolates), the authors identified MDR
bacteria based on the number of clinically relevant antibiotics (at least three) to which these
isolates exhibited resistance without specifying these drugs.

A major source of bias in this study is the country in which it was carried out. The
majority of cases of travel-related AMR were presented in someone travelling to an econom-
ically developing region of the world and then returning to their home country (usually
economically developed), being the location where they both fell ill and attended facilities
available for testing. The majority of global travel is within-country rather than inter-
regional. For example, in 2018, in the USA, domestic air travellers were 3.3-fold more
common than international travellers [278]. This means that our findings are necessarily
skewed towards developing countries being the origin and developed countries being the
destination for AMR bacteria. This is unsurprising as the United Nations Educational,
Scientific and Cultural Organization (UNESCO) has found that, between 1996–2015, coun-
tries with developed economics spend an average of 1.5% of their GDP on research and
development, while countries with economies in transition and countries with developing
economies only spend 0.6% of their GDP on research and development [279]. The dispro-
portionate number of studies within different regions therefore limits our understanding
of the global picture of travel-related AMR.

5. Conclusions

More efforts should focus on the global impacts of travel-related AMR and to encour-
age studies originating from developing countries. Establishing enteric bacterial AMR
profiles for regions with the most traffic to or from may help other healthcare systems
address a major part of travel-related AMR. To allow accurate prescription of antimicro-
bials for patients with complaints that are suspected to be travel-related, hospitalised and
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inter-healthcare transfers need to be managed in the same way as tertiary-care referrals,
with preventive methods on both sides of the journey. Similarly, health authorities may
consider the implementation of new guidelines or restrictions for travellers suffering from
bacterial infections or those under antibiotic treatment.
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