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A B S T R A C T

Background: Telomeres play important roles in cancer initiation and progression. The aim of this study is to
investigate whether leukocyte telomere length (LTL) is associated with aggressive prostate cancer (PCa).
Methods: We measured relative LTL in a cohort of 1,889 white PCa patients who were treated and followed
up at the University of Texas MD Anderson Cancer Center and assessed its associations with aggressive dis-
ease characteristics at diagnosis and biochemical recurrence (BCR) after active treatments (radical prostatec-
tomy and radiotherapy). We further used a Mendelian randomization (MR) approach to compute a weighted
genetic risk score (GRS) predictive of LTL using 10 established LTL-associated genetic variants and deter-
mined whether this GRS is associated with aggressive PCa.
Findings: LTL was significantly shorter in patients with higher Gleason scores at diagnosis. Dichotomized at
the median value of LTL, patients with short LTL exhibited a 2.74-fold (95% confidence interval, 1.79�4.18,
P = 3.11 £ 10�6) increased risk of presenting with GS�8 disease than those with long LTL in multivariate
logistic regression analysis. Moreover, shorter LTL was significantly associated with an increased risk of BCR
(hazard ratio = 1.53, 95% confidence interval, 1.01�2.34) compared to longer LTL in localized patients receiv-
ing prostatectomy or radiotherapy with a significant dose-response association (P for trend = 0.017) in multi-
variate Cox proportional hazards regression analysis. In MR analysis, genetically predicted short LTL was also
associated with an increased risk of BCR (HR=1.73, 95% CI, 1.08�2.78).
Interpretation: Our results showed for the first time that LTL was shorter in PCa patients with high Gleason
scores and that short LTL and genetically predicted short LTL are associated with worse prognosis in PCa
patients receiving prostatectomy or radiotherapy.
Funding: Cancer Prevention and Research Institute of Texas (CPRIT) grant (RP140556), National Cancer Insti-
tute Specialized Program of Research Excellence (SPORE) grant (CA140388), and MD Anderson Cancer Center
start-up fund.
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1. Introduction

Prostate cancer (PCa) is the most prevalent cancer and the second
leading cause of cancer death among US men [1]. Prostate-specific
antigen (PSA) test is widely adopted as a PCa screening tool that resulted
in the vast majority of patients being diagnosed at early, locoregional
stages [2]. The five-year survival rate for locoregional PCa is nearly
100%, for distant stage is 30%, and for all stages combined is 98.2% in U.
S. [2]. Most of the screening-detected PCa patients are indolent, but still
receive aggressive treatment, including radical prostatectomy and
radiotherapy, which could cause significant morbidity in patients [3].
Clinical variables such as blood PSA levels, Gleason Scores (GS), and clin-
ical stages provide strong prognostic values but are not sufficient to dis-
criminate between aggressive and indolent diseases in diagnosis [4�7].
Patients with similar clinical features at diagnosis often have quite het-
erogeneous prognoses. Independent biomarkers are needed to improve
risk stratification of localized PCa at diagnosis before treatment and pre-
dict the risk of prognosis after treatment, and allow better-informed
clinical decision-making.

Telomeres are protective nucleoprotein complexes with repetitive
nucleotide sequences TTAGGG at each end of human chromosomes [8].
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Research in context

Evidence before this study

Prostate cancer (PCa) is the most prevalent cancer and the second
leading cause of cancer death among US men. Clinical variables
such as blood PSA levels, Gleason Scores (GS), and clinical stages
are not sufficient to discriminate between aggressive and indolent
diseases at diagnosis. Telomeres play multiple important cellular
functions. Telomere length has been linked to cancer develop-
ment and progression. No study has evaluated the role of leuko-
cyte telomere length (LTL) as a predictor of aggressive PCa in
localized patients receiving definitive therapy.

Added value of this study

Using one of the largest single center PCa patient cohorts, we
measured LTL from 1,889 PCa patients and evaluated its associa-
tions with aggressive disease features at diagnosis and biochemi-
cal recurrence (BCR) after active treatments. We found that short
LTL was associated with high-grade PCa at diagnosis, and was
also an independent predictor of prognosis in localized PCa
patients receiving active therapy (radical prostatectomy and
radiotherapy). Furthermore, we applied a Mendelian randomiza-
tion approach to show that genetically predicted short LTL was
an independent predictor of worse prognosis in localized PCa
patients receiving active therapy.

Implications of all the available evidence

Our results showed for the first time that LTL can predict aggres-
sive PCa at diagnosis and prognosis in localized patients receiving
definitive therapy. LTL may improve risk stratification of localized
PCa patients for better-informed clinical decision making.
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Telomeres play a critical role in maintaining chromosome’s integrity
and stability whereas telomere dysfunctions are frequent events during
the process of age-related diseases including tumors [8�10]. Shortened
telomeres are found in most tumor tissues and are one of the hallmarks
of human cancers [10]. In addition, numerous studies have shown
that leukocyte telomere length (LTL) is associated with the risks of dif-
ferent cancers. Earlier retrospective case control studies suggested that
short LTL was a risk factor for a few cancers [11�16], but later prospec-
tive studies and recent Mendelian randomization studies using geneti-
cally predicted LTL have increasingly found that long LTL was a risk
factor for a number of cancers, including B-cell lymphoma, melanoma,
lung adenocarcinoma, neuroblastoma, adult glioma, meningioma, renal
cell carcinoma, and osteosarcoma [17�31].

Mendelian randomization (MR) uses genetic determinants of an
exposure or intermediate biomarker to investigate the potential causal
relationship between the interested exposure or biomarker with a dis-
ease outcome [32]. Because genetic variants are distributed randomly at
conception across the whole genome and precede both exposures and
diseases, they are less susceptible to confounding, reverse causation and
measurement errors [31,32]. There are three main assumptions for MR
analysis: 1) the genetic variants are associated with the exposure/bio-
marker of interest; 2) the genetic variants are not related to other con-
founders of exposure-outcome relationship; and 3) the genetic variants
affect outcome only through the exposure/biomarker of interest. Single
nucleotide polymorphisms (SNPs) in 10 independent genomic regions
have been unequivocally identified as genetic determinants of LTL by
genome-wide association studies (GWAS) [33,34] and these SNPs have
not been found to be related to other traits. Increasing number of MR
studies are using these SNPs as instrumental variables for LTL to investi-
gate the effects of LTL on disease risks and outcomes [26,27,31].
Prospective studies and large MR analysis did not observe significant
associations between LTL and the risk of developing PCa [26, 35, 36].
There were a few small studies evaluating the association of LTL with the
mortality of PCa, but the results were inconsistent [36�39]. No study has
determined the prognostic role of LTL in localized PCa patients receiving
definitive treatment. In this current study, we measured relative LTL in a
large PCa patient cohort and analyzed the association of LTL with the risk
of biochemical recurrence (BCR) in patients receiving radical prostatec-
tomy or radiotherapy. Furthermore, we used a two sample Mendelian
randomization design to assess genetically predicted LTL and the risk of
BCR. We found consistent association of relative LTL and genetically pre-
dicted GRS with the risk of BCR in this patient population. Our study pro-
vides the first evidence that short LTL is associated with aggressive PCa in
localized patients receiving radical prostatectomy or radiotherapy.

2. Materials and methods

2.1. Study population and data collection

This study consisted of a total of 1,889 non-Hispanic Caucasian men
with histologically confirmed adenocarcinoma of prostate from the
University of Texas MD Anderson Cancer Center. The patients were
newly registered patients who were diagnosed and treated at MD
Anderson for localized diseases between the years of 2003 and 2013.
Patients were consecutively recruited and there were no selection bias.
Standardized epidemiological information, including demographics,
smoking, exposures, co-morbidities, family history, prior medical his-
tory and quality of life, were collected through the Patient History Data-
base (PHDB), an electronic core institutional resource to collect data for
all new patients at MD Anderson. Patients’ blood specimens were col-
lected before any treatments. Clinical and follow-up data, including
date of diagnosis, performance status, clinical stage, histological grade
and pathological stage, PSA measurements, treatment (active surveil-
lance, prostatectomy, radiotherapy and hormone therapy) and progres-
sion (clinical recurrence and metastasis), were abstracted from patient
medical records. MD Anderson Tumor Registry conducts annual vital
status follow-ups for all cancer patients. The clinical endpoint of this
study was the occurrence of BCR, which is the most commonly used
clinical endpoint in localized PCa patients receiving radical prostatec-
tomy or radiotherapy. Patients were followed up by PSA monitoring
every 3�6 months. BCR was defined as a serum PSA level of at least
0.2 ng/ml with a second confirmatory PSA level of at least 0.2 ng/ml for
patients who underwent a radical prostatectomy or with a rise in PSA
level by at least 2 ng/mL above the nadir PSA for patients receiving
external-beam radiotherapy. Imaging was performed if PSA arose to
confirm clinical recurrence. This study was approved by the University
of Texas MD Anderson Cancer Center Institutional Review Board (IRB),
and written informed consent forms were obtained from each patient.

2.2. Relative LTL assessment by real-time quantitative polymerase chain
reaction

Genomic DNA was isolated from peripheral blood leukocytes
using the QIAamp blood DNA extraction kit (Qiagen, Valencia, CA).
Relative LTL was measured using a modified real-time quantitative
polymerase chain reaction (PCR) method originally developed by
Cawthon [40]. Detailed descriptions of the laboratory procedures and
quality controls have been published previously [12,41�43]. Briefly,
the relative LTL for each sample was determined through two sepa-
rate PCR reactions (telomere amplification and globulin amplifica-
tion). The ratio of the telomere repeats copy number (T) to the single
gene (human globulin) copy number (S) was determined for each
sample using standard curves. The derived T/S ratio was proportional
to the overall LTL. The PCR (15mL) for telomere amplification con-
sisted of 1xSYBR Green Master Mix (Applied Biosystems), 200 nmol/L
Tel-1 primer, 200 nmol/L Tel-2 primer, and 5 ng of genomic DNA. The
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PCR for human globulin (Hgb) amplification consisted of 1x SYBR
Green Master Mix, 200 nmol/L Hgb-1, 200 nmol/L Hgb-2 primer, and
5 ng of genomic DNA. The thermal cycling conditions were at 95 °C
for 10 min followed by 40 cycles at 95 °C for 15 s and at 56 °C (for
telomere amplification) or 58 °C (for Hgb amplification) for 1 min.
The PCRs were done on separate 384-well plates including with the
same samples in the same well positions. In each run, corresponding
negative and positive controls, a calibrator DNA sample, and a stan-
dard curve were included. The positive controls contained a 1.2-kb
telomere and a 3.9-kb telomere from a commercially available telo-
mere length assay kit (Roche Applied Science). For each standard
curve, 1 reference DNA sample (the same DNA sample for all runs)
was diluted 2-fold serially to produce a 6-point standard curve
between 20 ng and 0.625 ng of DNA in each reaction. The same refer-
ence DNA was used consistently for all plates. The coefficient of
determination (R2) for each standard curve was �0.99, with an
acceptable standard deviation (SD) set at 0.25 (for the Ct values). If
the result was outside the acceptable range, the sample was repeated.
Duplicates for each sample were done. The intra assay coefficient of
variation was <3% and the inter assay coefficient of variation was
<5% for telomere length assay in our laboratory. The intraclass corre-
lation coefficient was 0.959 (95% CI 0.954�0.962) for telomere assay
and 0.986 (95% CI 0.985�0.988) for Hgb assay.

2.3. Genotyping and imputation

Custom Infinium OncoArray-500 K Beadchip was used to genotype all
the samples on the Illumina iScan system in the Genotyping Core of MD
Anderson Cancer Center. Genotyping data were analyzed and exported
using the Genome Studio software (Illumina). We randomly selected 2%
of samples for duplicate genotyping and the mean concordance rate of
replicated samples was 99.2%. All patient samples had an overall SNP call
rate >95%. Individual SNPs with minor allele frequency (MAF) <1%
(n = 83,738) and call rate <90% (n = 2,945) were excluded for analysis. A
total of 412,487 SNPs on the OncoArray-500 K Beadchip passed these
strict quality control steps and were subjected to imputation. Imputation
was performed using theMichigan Imputation Server (https://imputation
server.sph.umich.edu/), an online server that generates phased and
imputed genotypes using the Haplotype Reference Consortium (HRC Ver-
sion r1.1) reference panels [44]. The individual level data of the 10 LTL-
associated SNPswere extracted from the genotyped and imputed dataset.
Among these SNPs, four SNPs (rs10936599, rs2736100, rs9420907, and
rs755017) were directly genotyped on OncoArray-500 K, and the other
six were imputed with an imputation accuracy (mean R2) of 0.96.

2.4. Mendelian randomization (MR) analysis and genetic risk scores for
LTL

A two-sample MR design was used to assess the associations
between genetically predicted LTL and the risk of BCR. The SNP-LTL
effects (b estimate for each SNP) were derived from published GWAS of
LTL [33, 34] and the SNP-PCa effects were estimated using individual-
level genotype data from the patient population in this study. Genetic
risk scores (GRS) calculation for 10 LTL- associated SNPs was done
according to the following formula:

GRSi ¼
X10

j¼1

¼ wjxij

in which xij is the number of telomere-length associated risk alleles for
the j-th SNP in the i th subject (xij=0, 1 or 2) andwj is the weight or coef-
ficient for the j-th SNP. Weighted GRS counted the number of alleles
associated with longer LTL that an individual carried across all 10 SNPs,
with the addition of published LTL-associated b estimates aswj for each
SNP. Weighted GRS produces higher specificity than unweighted GRS
by assigning more weight to SNPs with stronger effects.
2.5. Statistical analysis

We first applied analysis of variance (ANOVA) to compare the
mean LTL among patients with different clinical characteristics at
baseline. We then analyzed the associations between LTL and pre-
senting with high grade PCa (GS�8) at diagnosis using a multivariate
logistic regression model adjusting for age, smoking status, pack
year, body mass index (BMI), clinical stage and PSA. Low-grade
(GS=6) patients at diagnosis were used as the reference group for this
logistic regression analysis. We also determined the association
between LTL and the risk of BCR by calculating the hazard ratio (HR)
and corresponding 95% confidence interval (95% CI) using multivari-
ate Cox proportional hazards model, adjusting for age, smoking sta-
tus, pack year, BMI, D’Amico risk groups and initial treatment. The
proportional hazards assumption was verified by plotting and testing
the Schoenfeld’s residuals and through inclusion of time varying
covariates in the models and no violation was identified. LTL was
dichotomized at the median value of LTL or classified into three and
four groups based on the tertile and quartile distributions of LTL. For
each LTL-associated SNP, we evaluated its association with the risk of
BCR using Cox analysis. To analyze the association between GRS and
the risk of BCR, we dichotomized GRS at the median value or catego-
rized into three and four groups based on the tertile and quartile dis-
tribution, and used multivariate Cox proportional hazards model to
calculate HR and corresponding 95% CI, adjusting for age, smoking
status, pack year, BMI, D’Amico risk groups and initial treatment. We
used Kaplan�Meier survival function and log-rank test to compare
BCR-free survival time among patients with different GRS. The miss-
ing data for each variable were grouped into one category in the
regression models. All data were analyzed using R software (v3.4.1)
and STATA (v13, STATA Corp). All P values were two-sided with
P<0.05 considered statistically significant.

3. Results

3.1. Patient characteristics

The distribution of selected characteristics of the 1,889 PCa patients
and the relative LTL stratified by their characteristics are shown
in Table 1. Nearly 80% of patients were diagnosed at ages 55 and older.
As expected, there was a strong inverse relationship between LTL and
age (P < 0.001, ANOVA). There were 873 (46.5%) never-smokers, 846
(45.0%) former smokers and 159 (8.5%) current smokers. LTL was not
different by smoking status (P = 0.818, ANOVA). The majority of
patients were either overweight (45.9%) or obese (36.6%). It appeared
that LTL was inversed associated with BMI (P = 0.08, ANOVA). Accord-
ing to the total Gleason score, 660 (35.1%) had GS of 6, 909 (48.4%) had
GS of 7 and 309 (16.5%) had GS of 8 or above. Notably, LTL was signifi-
cantly shorter in higher GS patients (P = 0.013, ANOVA). LTL was not
associated with clinical stage (P = 0.672, ANOVA) or PSA at diagnosis
(P = 0.432, ANOVA). For their initial primary treatments, 49.1% received
definitive radical prostatectomy (RP) and 20.4% received definitive
radiotherapy. LTL was significantly longer in patients receiving RP
compared to other treatments (P = 0.010, ANOVA), which was due to
the significantly younger age of patients receiving RP (mean age [SD]:
59.56 [7.00]) compared to other treatments (64.96 [7.70], P<0.001,
t-test) because one the major criteria for selecting patients for RP is
longer life expectancy.

3.2. Associations between LTL and high grade tumors at diagnosis

We then evaluated the association of LTL with the risk of present-
ing with high grade, aggressive disease at diagnosis using multivari-
ate logistic regression analysis adjusting for age, smoking status, BMI,
clinical stage, and PSA at diagnosis (Table 2). Dichotomized into low
and high LTL groups by the median (50th percentile) value of LTL,

https://imputationserver.sph.umich.edu/
https://imputationserver.sph.umich.edu/


Table 1
LTL by selected characteristics of the study patients.

Characteristics N (%) Relative LTL
Mean (SD)

P value

All, Mean (SD) 1889 (100) 0.93 (0.30) N/A
All, Median (IQR*) 1889 (100) 0.89 (0.37) N/A
Age at diagnosis, years

< 55 425 (22.5) 0.98 (0.31)
55�65 834 (44.2) 0.93 (0.30)
> 65 630 (33.4) 0.89 (0.28) 4.18 £ 10�7

Smoking status at diagnosis
Never-smoker 873 (46.2) 0.93 (0.29)
Former smoker 846 (44.8) 0.93 (0.30)
Current smoker 159 (8.4) 0.93 (0.30)
Missing 11 (0.6) 0.93 (0.30) 0.818

BMI at diagnosis, kg/m2

< 25 273 (14.5) 0.96 (0.31)
25�29.99 (overweight) 718 (38.0) 0.92 (0.29)
� 30 (obese) 573 (30.3) 0.91 (0.29)
Missing 325 (17.2) 0.93 (0.30) 0.081

Total Gleason score
6 660 (34.9) 0.95 (0.31)
7 909 (48.1) 0.92 (0.28)
� 8 309 (16.4) 0.92 (0.32)
Missing 11 (0.6) 0.82 (0.27) 0.014

Clinical tumor stage
T1 1492 (79.0) 0.93 (0.29)
T2 142 (7.5) 0.92 (0.29)
T3-T4 255 (13.5) 0.95 (0.34) 0.672

PSA at diagnosis
< 10 ng/ml 1589 (84.1) 0.93 (0.29)
10�20 ng/ml 170 (9.0) 0.92 (0.29)
>20 ng/ml 125 (6.6) 0.94 (0.38)
Missing 5 (0.3) 1.08 (0.37) 0.433

D’Amico risk group
Low 604 (32.0) 0.95 (0.32)
Intermediate 847 (44.8) 0.92 (0.26)
High 438 (23.2) 0.93 (0.33) 0.103

Initial primary treatment
Radical prostatectomy 927 (49.1) 0.95 (0.31)
Radiotherapy 386 (20.4) 0.91 (0.27)
Surveillance or unknown 436 (23.1) 0.91 (0.29)
Other treatment 140 (7.4) 0.91 (0.25) 0.011

* IQR: interquartile range.
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patients with short LTL exhibited a 2.74-fold (95% CI, 1.79�4.18,
P = 3.11 £ 10�6, logistic regression analysis) increased risk of present-
ing with GS�8 disease than those with long LTL. There was a signifi-
cant dose-response relationship between LTL and presenting with
aggressive diseases at diagnosis. In tertile analysis, compared to
patients in the longest LTL tertile group, the ORs for patients in the
medium and shortest tertile groups were 1.63 (95% CI, 0.97�2.74)
and 2.79 (95% CI, 1.68�4.63), respectively (P for trend = 6.54 £ 10�5).
In quartile analysis, compared to patients in the 4th quartile group
Table 2
Association of LTL with high-grade PCa at diagnosis.

LTL GS=6N (%) GS�8N (%) Crude OR(95

Dichotomize
Long 336 (50.91) 120 (38.83) Reference
Short 324 (49.09) 189 (61.17) 1.63 (1.24�2

Tertile
3rd (longest) 227 (34.39) 90 (29.13) Reference
2nd 218 (33.03) 89 (28.80) 1.02 (0.73�1
1st (shortest) 215 (32.58) 130 (42.07) 1.53 (1.10�2
P for trend

Quartile
4th (longest) 167 (25.30) 67 (21.68) Reference
3rd 169 (25.61) 53 (17.15) 0.78 (0.51�1
2nd 161 (24.39) 84 (27.18) 1.30 (0.88�1
1st (shortest) 163 (24.70) 105 (33.98) 1.61 (1.10�2
P for trend

* Adjusted by age, smoking status, BMI, clinical stage and PSA.
(longest LTL), the ORs for patients in the 3rd, 2nd, and 1st (shortest)
quartile groups were 0.71 (95% CI, 0.38�1.34), 2.09 (95% CI,
1.17�3.71), and 2.60 (95% CI, 1.47�4.59), respectively (P for
trend = 2.82 £ 10�5) (Table 2).

3.3. Associations between LTL and prognosis of patients receiving
radical prostatectomy or radiotherapy

We further assessed the association of LTL with the risk of BCR in
patients receiving radical prostatectomy or radiotherapy using multi-
variate Cox proportional hazards model adjusting for age, smoking
status, BMI, GS, stage, PSA and primary treatment (Table 3). Dichoto-
mized into long and short LTL groups by the median value of LTL,
patients with short LTL exhibited a 1.53-fold (95% CI, 1.01�2.34,
P = 0.044, Cox analysis) increased risk of BCR compared to those with
long LTL. In tertile analysis, compared to patients in the longest LTL
tertile group, the HRs for patients in the medium and shortest tertile
groups were 1.95 (95% CI, 1.13�1.37) and 1.70 (95% CI, 1.00�2.91),
respectively. In quartile analysis, compared to patients in the 4th
quartile group (longest LTL), the HRs for patients in the 3rd, 2nd, and
1st (shortest) quartile groups were 1.37 (95% CI, 0.72�2.64), 1.78
(95% CI, 0.97�3.31), and 1.84 (95% CI, 1.00�3.36), respectively (P for
trend = 0.034) (Table 3).

3.4. Mendelian randomization analysis

To further investigate the associations of LTL with aggressive PCa,
we applied a two-sample Mendelian randomization approach using
10 GWAS-identified SNPs predictive of LTL. Table 4 shows the features
of these 10 SNPs and their individual associations with BCR of PCa
patients receiving RP or radiotherapy. The b estimates (Table 4) for
SNP-LTL association were obtained from published GWAS [33, 34].
Individually, one SNP, rs8105767 on ZNF208, was significantly associ-
ated with the risk of BCR, which remained significant after Bonferroni
correction of multiple testing. Patients carrying the effect allele (longer
LTL) exhibited a significantly reduced risk of BCR (HR=0.58, 95% CI,
0.42�0.80, P = 0.001, Cox analysis).

We then constructed a weighted genetic risk score (GRS) for
each patient based on the direction and strength of association of
these 10 SNPs with LTL. There was a significant correlation between
GRS and measured LTL with a correlation coefficient of 0.112
(P = 0.0002, Spearman’s correlation analysis), confirming the valid-
ity of this genetic instrument in estimating TLT. We subsequently
tested the association between the GRS and risk of BCR. The GRS
was significantly shorter in patients experiencing BCR than in
patients who did not have BCR (mean § SD, 0.69 § 0.15 vs. 0.71§
0.14, P = 0.0006, t-test). In multivariate Cox analysis adjusting for
age, smoking status, BMI, stage, GS, PSA, and primary treatment,
% CI) P value Adjusted OR (95% CI)* P value

N/A Reference N/A
.15) 0.0004 2.74 (1.79�4.18) 3.11 £ 10�6

N/A Reference N/A
.46) 0.869 1.63 (0.97�2.74) 0.063
.12) 0.011 2.79 (1.68�4.63) 7.22 £ 10�5

0.010 6.54 £ 10�5

N/A Reference N/A
.19) 0.249 0.71 (0.38�1.34) 0.291
.92) 0.183 2.09 (1.17�3.71) 0.013
.34) 0.013 2.60 (1.47�4.59) 0.001

0.001 2.82 £ 10�5



Table 3
Association of LTL with BCR in localized PCa patients receiving radical prostatectomy or radiotherapy.

LTL No BCRN (%) BCRN (%) Crude HR(95% CI) P value Adjusted HR (95% CI)* P value

Dichotomize
Long 602 (91.77) 54 (8.23) Reference N/A Reference N/A
Short 719 (91.13) 70 (8.87) 1.41 (0.94�2.12) 0.093 1.54 (1.01�2.34) 0.044

Tertile
3rd (long) 398 (91.92) 35 (8.08) Reference N/A Reference N/A
2nd 455 (91.55) 42 (8.45) 1.42 (0.85�2.37) 0.180 1.95 (1.13�3.37) 0.016
1st (short) 468 (90.87) 47 (9.13) 1.52 (0.91�2.52) 0.110 1.70 (1.00�2.91) 0.048
P for trend 0.117 0.065

Quartile
4th (longest) 308 (93.05) 23 (6.95) Reference N/A Reference N/A
3rd 294 (90.46) 31 (9.54) 1.20 (0.65�2.24) 0.558 1.37 (0.72�2.64) 0.333
2nd 358 (91.79) 32 (8.21) 1.49 (0.83�2.66) 0.181 1.78 (0.97�3.31) 0.064
1st (shortest) 361 (90.48) 38 (9.52) 1.63 (0.91�2.91) 0.100 1.84 (1.00�3.36) 0.049
P for trend 0.074 0.034

* Adjusted by age, smoking status, BMI, stage, GS, PSA, and primary treatment.

Table 4
Individual LTL-associated SNPs and BCR in localized PCa receiving radical prostatectomy or radiotherapy.

SNP ID Chr. Position Gene Allele* EAF* b* No BCR (n) BCR (n) HR** (95% CI) P value

rs11125529 2 54475866 ACYP2 A/C 0.14 0.07 84\19\1 793\255\24 0.81(0.50�1.30) 0.385
rs6772228 3 58376019 PXK T/A 0.94 0.04 0\7\98 4\120\951 1.70(0.79�3.67) 0.177
rs10936599 3 169492101 TERC C/T 0.75 0.1 10\37\58 56\419\600 0.79(0.57�1.10) 0.163
rs7675998 4 164007820 NAF1 G/A 0.77 0.05 7\36\59 46\369\618 0.86(0.61�1.20) 0.372
rs2736100 5 1286516 TERT C/A 0.51 0.09 34\50\21 254\569\251 0.86(0.63�1.18) 0.348
rs9420907 10 105676465 OBFC1 C/A 0.13 0.14 80\22\3 808\249\18 0.82(0.53�1.28) 0.384
rs3027234 17 8136092 CTC1 C/T 0.78 0.1 2\40\60 49\372\631 0.85(0.59�1.22) 0.377
rs8105767 19 22215441 ZNF208 G/A 0.29 0.06 13\39\44 81\414\531 0.58(0.42�0.80) 0.001
rs6028466 20 38129002 DHX35 A/G 0.06 0.06 93\12\0 947\125\3 0.93(0.47�1.83) 0.824
rs755017 20 62421622 ZBTB46 G/A 0.12 0.02 87\16\2 832\221\22 0.76(0.45�1.26) 0.279

* Alleles are short allele/long allele. Short alleles are used as the reference allele and long allele as effect allele. EAF: effect allele frequency;
Beta estimates of SNP-LTL association were from published GWAS;.
** Adjusted by age, smoking status, BMI, stage, GS, PSA, and primary treatment.
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when patients were dichotomized into low and high GRS groups by
the median (50th percentile) value of GRS, patients with low GRS (i.
e., short LTL) exhibited a 1.73-fold (95% CI, 1.08�2.78, P = 0.021,
Cox analysis) increased risk of BCR compared to those with high
GRS (long LTL). A significant dose-response relationship between
lower GRS and higher risks of BCR was observed in fertile and quar-
tile analysis (P for trend=0.011 and 0.004, respectively, Table 5).
Patients with the lowest tertile and quartile GRS exhibited 2.13-
fold (95% CI, 1.18�3.84) and 2.57-fold (95% CI, 1.31�5.09) increased
risks of BCR, respectively, compared to those with the highest ter-
tile and quartile GRS. In Kaplan�Meier survival analyses, patients
with lower GRS exhibited significantly shorter BCR-free survival
time than those with higher GRS in dichotomous, tertile and
Table 5
GRS predictive of LTL is associated with BCR in localized PCa.

LTL No BCRN (%) BCRN (%) Crude HR(

Dichotomize
Long 531 (93.65) 36 (6.35) Reference
Short 548 (90.13) 60 (9.87) 1.90 (1.19�

Tertile
3rd (long) 368 (94.12) 23 (5.88) Reference
2nd 359 (91.58) 33 (8.42) 1.66 (0.91�
1st (short) 352 (89.80) 40 (10.20) 2.08 (1.16�
P for trend

Quartile
4th (longest) 277 (94.54) 16 (5.46) Reference
3rd 254 (92.70) 20 (7.30) 1.29 (0.60�
2nd 288 (91.72) 26 (8.28) 1.86 (0.92�
1st (shortest) 260 (88.44) 34 (11.56) 2.48 (1.27�

P for trend

* Adjusted by age, smoking status, BMI, stage, GS, PSA, and p
quartile analyses, with long-rank P values of 0.0006, 0.042, and
0.026, respectively (Fig. 1).

4. Discussion

In the present study, we investigated the association of LTL with
aggressive PCa. The LTL was measured at baseline before any treat-
ment. We found that short LTL was associated with high-grade PCa at
diagnosis, and was also an independent predictor of prognosis in
localized PCa patients receiving radical prostatectomy and radiother-
apy. Furthermore, we applied a two-sample MR approach to show
that genetically predicted short LTL was also an independent predic-
tor of worse prognosis in localized PCa patients receiving radical
95% CI) P value Adjusted HR (95% CI)* P value

N/A Reference N/A
3.01) 0.007 1.73 (1.08�2.78) 0.021

N/A Reference N/A
3.03) 0.099 1.54 (0.84�2.84) 0.162
3.71) 0.013 2.13 (1.18�3.84) 0.012

0.013 0.011

N/A Reference N/A
2.75) 0.513 1.40 (0.65�3.02) 0.386
3.74) 0.081 1.63 (0.81�3.31) 0.172
4.84) 0.008 2.57 (1.31�5.09) 0.006

0.003 0.004

rimary treatment.



Fig. 1. Kaplan�Meier curve comparing the probability of the BCR-free survival in PCa patients based on genetic risk scores (GRS) that predict leukocyte telomere length. A. Dichoto-
mized at the median value of GRS; B. Tertile analysis; C. Quartile analysis.
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prostatectomy and radiotherapy. To our knowledge, this is the first
study to evaluate LTL, either directly measured by real time quantita-
tive PCR or genetically predicted, as a predictor of BCR in patients
receiving radical prostatectomy and radiotherapy. Our data provided
compelling evidence supporting that short LTL is a predictor of
aggressive PCa.

A few small studies evaluated the association of LTL with overall
mortality in PCa patients, but the results were inconsistent [36�39]. A
large prospective study of 47,102 Danish general population partici-
pants with a follow-up of up to 20 years for cancer diagnosis and death
found that short LTL was associated with increased risks of early death
for all cancers, but not for PCa (418 patients, 157 deaths) with an HR of
1.04 (95% CI, 0.87, 1.25) [36]. One recent Australia study of 533 PCa
patients (188 deaths) with a median follow-up of 149 months reported
longer LTL were significantly associated with higher overall mortality
(HR = 1.22; 95% CI, 1.07�1.39) [38]. The reasons for the heterogeneous
results may be due to modest sample size, heterogeneity of patient pop-
ulation, technical variability of LTL measurement by real time PCR, and
different causes of overall mortality. No study to date has specifically
evaluated the association of LTL with BCR in localized PCa patients
receiving radical prostatectomy or radiotherapy. The sample size of
patients in our study more than doubled those of previous studies
assessing LTL in the context of PCa risk and prognosis [36�39, 45]. The
large sample size from a single institution with comprehensive clinical,
treatment, and follow-up information allowed us to perform stratified
analyses and observed significant associations between baseline LTL
and clinically defined aggressive disease at diagnosis as well as BCR in
localized PCa patients receiving definitive therapies.

MR utilizes genetic variants as a proxy for an exposure or an
intermediate biomarker to investigate their potential to have a
causal association with a disease [31]. Large MR studies did not find
significant associations between genetically predicted LTL and the
risk of PCa [21, 26]. Our study is the first to use an MR approach to
assess LTL with the risk of BCR. Consistent with the results of real
time PCR-measured LTL, genetically predicted short LTL was a sig-
nificant predictor of worse prognosis in patients receiving radical
prostatectomy and radiotherapy, providing compelling evidence for
the causal relationship between short LTL and aggressive disease in
localized PCa patients.

A number of studies have evaluated the association of LTL with
the prognosis of other cancers and most showed that shorter LTL was
associated with increased risks of death in cancer patients, including
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bladder cancer [46], stage I and II cutaneous melanoma [47], gastric
cancer [48], colorectal cancer [49], renal cell carcinoma [50], pancre-
atic cancer [51], and lung adenocarcinoma [52]. Interestingly, a recent
large study of nasopharyngeal carcinoma in Hong Kong found that
suboptimal LTL (both too short and too long) was associated with
poor survival compared to patients with normal range LTL [53]. Only
a couple of studies reported that shorter LTL increased risk of relapse
[48, 49]. These literature reports are consistent with our observation
of increased risk of BCR associated with short LTL.

Biologically, numerous studies have shown that telomere dysfunc-
tion plays a critical function in genetic instability and carcinogenesis
[54�58]. Telomere shortening increases end-to-end chromosome
fusion and genomic instability [54�58]. LTL may serve as a surrogate
for telomere length in normal prostate tissues. LTL is under strong
genetic control with an estimated heritability of up to 80% from classic
twin studies [59, 60]. Telomere length is highly correlated between dif-
ferent tissues and blood cells among newborns [61]. For adults, previ-
ous studies also found a high correlation of telomere length between
different tissues [62, 63]. Moreover, the rates of telomere shortening
are similar in different tissues, such as proliferative (blood and skin)
and minimally proliferative tissues (muscle and fat) [63]. These data
suggest that telomere length is established during early life and main-
tained through adulthood, and the genetic determinants of telomere
length are tissue-independent [62]. Therefore, relative telomere length
in easily accessible tissues such as blood could serve as a surrogate for
that in other tissues and the association of short LTL with aggressive
PCa could infer the association of short telomere length in normal
prostate tissues. Indeed, a previous study found that short telomere
length in stromal cells of PCa tumor tissues was strongly associated
with progression to metastasis and prostate cancer death [64]. The
Mendelian randomization analysis of our study further supported the
causal effect of short telomeres in malignant progression of PCa.

Another potential mechanism that may partially contribute to the
association between short LTL and worse prognosis of PCa patients
may be due to accelerated senescence of immune cells and altered
immune functions. For instance, a previous study showed that colorec-
tal patients with short LTL exhibited higher percentage of CD4(+) T cell
and the lower percentage of B cell in peripheral blood mononuclear
cells (PBMC), as well as lower concentration of plasma transforming
growth factor-b1, suggesting reduced immune response [49]. Another
study reported that gastric cancer patients with short LTL had a higher
CD4(+) T cell percentage in PBMCs, CD19(+)IL-10(+) Breg percentage in
B cells and plasma IL-10 concentration, indicating an enhanced immu-
nosuppressive status with short LTL [48]. In both of these studies, short
LTL was associated with poorer prognosis (recurrence and survival) of
colorectal and gastric cancer patients, respectively [48, 49]. The exact
mechanisms underlying the associations between short LTL and worse
prognosis of PCa warrant further investigation.

There are several strengths for our study. This is the largest study of
LTL in PCa patients and the first study to report significant associations
between shorter LTL and increased risks of BCR in localized PCa patients
using real-time PCR measured relative LTL and genetically predicted LTL.
The reported association is biologically plausible. The blood samples
were collected prior to any treatments. All patients were treated at MD
Anderson Cancer Center with comprehensive clinical data and follow-up
data. There are also a couple of limitations. First, we only investigated
BCR, but not clinical recurrence mortality, as a prognosis endpoint due to
the excellent prognosis and the small number of clinical recurrence and
death events in our localized patients receiving definitive therapy. Sec-
ond, all the patients were European Americans and the prognostic roles
of LTL in PCa of other ethnicities warrant further study.

In summary, by measuring LTL using real time PCR or using a Men-
delian randomization approach, our study reported for the first time
that shorter LTL is associated with a significantly increased risk of bio-
chemical recurrence in localized PCa patients receiving radical prosta-
tectomy and radiotherapy. Future studies are warranted to confirm our
observations in PCa patient cohorts of diverse ethnicities and investigate
the underlying biological mechanisms of the association between short
LTL and worse prognosis in PCa patients. LTL may have clinical utility in
the risk stratification of localized prostate cancer.
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