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Abstract
Background: Retinal photoreceptors are highly specialised cells, which detect light and are central to
mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone
photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of
the many genes specifically or highly expressed in these cells. Over the last decades, different experimental
approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA
analysis technology has generated large amounts of gene expression data relevant to retinal development.
This paper assesses a machine learning methodology for supporting the identification of photoreceptor
enriched genes based on expression data.

Results: Based on the analysis of publicly-available gene expression data from the developing mouse retina
generated by serial analysis of gene expression (SAGE), this paper presents a predictive methodology
comprising several in silico models for detecting key complex features and relationships encoded in the
data, which may be useful to distinguish genes in terms of their functional roles. In order to understand
temporal patterns of photoreceptor gene expression during retinal development, a two-way cluster
analysis was firstly performed. By clustering SAGE libraries, a hierarchical tree reflecting relationships
between developmental stages was obtained. By clustering SAGE tags, a more comprehensive expression
profile for photoreceptor cells was revealed. To demonstrate the usefulness of machine learning-based
models in predicting functional associations from the SAGE data, three supervised classification models
were compared. The results indicated that a relatively simple instance-based model (KStar model)
performed significantly better than relatively more complex algorithms, e.g. neural networks. To deal with
the problem of functional class imbalance occurring in the dataset, two data re-sampling techniques were
studied. A random over-sampling method supported the implementation of the most powerful prediction
models. The KStar model was also able to achieve higher predictive sensitivities and specificities using
random over-sampling techniques.

Conclusion: The approaches assessed in this paper represent an efficient and relatively inexpensive in
silico methodology for supporting large-scale analysis of photoreceptor gene expression by SAGE. They
may be applied as complementary methodologies to support functional predictions before implementing
more comprehensive, experimental prediction and validation methods. They may also be combined with
other large-scale, data-driven methods to facilitate the inference of transcriptional regulatory networks in
the developing retina. Furthermore, the methodology assessed may be applied to other data domains.

Published: 08 March 2006

BMC Bioinformatics2006, 7:116 doi:10.1186/1471-2105-7-116

Received: 04 October 2005
Accepted: 08 March 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/116

© 2006Wang et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16524483
http://www.biomedcentral.com/1471-2105/7/116
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7:116 http://www.biomedcentral.com/1471-2105/7/116
Background
Retinal photoreceptor cells, the specialized cells involved
in light detection and phototransduction, are essential for
mammalian vision. Many retinal diseases occur as a result
of inherited dysfunction of the rod and cone photorecep-
tor cells. Photoreceptor degeneration, for example, consti-
tutes an important cause of visual impairment affecting all
age groups and ethnic backgrounds [1]. Development and
maintenance of photoreceptor function in the retina
requires appropriate regulation of gene expression, espe-
cially for genes specifically or highly expressed in photore-
ceptor cells during retinal development (photoreceptor-
enriched genes). Comprehensive identification of pho-
toreceptor-enriched gene expression patterns may have
important implications in neurobiology, leading to a bet-
ter understanding of molecular mechanisms of retinal
development, the improvement of diagnosis of complex
retinal diseases, and the identification of potential thera-
peutic targets [2].

Over the last decades, different experimental approaches
have been developed to identify retinal disease genes.
Using microarray data analysis, for example, Yoshida et al.
[3] revealed that 43 genes, which are differentially
expressed in the absence of Nrl (neural retina leucine zip-
per protein), are either associated with or are candidates
for retinal diseases involving rod or cone photoreceptor
dysfunction. Katsanis et al. [4] positioned 925 expressed
sequence tags (ESTs) likely to be specifically or preferen-
tially expressed in the retina. They also identified posi-
tional candidate genes for 42 of 51 uncloned
retinopathies. The quality of the results was assessed by
reverse transcriptase-polymerase chain reaction (RT-PCR).
Recently, Blackshaw et al. [2] presented a comprehensive
genomic analysis of mouse retinal development using
serial analysis of gene expression (SAGE), followed by in situ
hybridization (ISH) validation. Libraries were obtained
from microdissected mouse photoreceptors from the reti-
nal outer nuclear layers (ONL), retina from various mouse
developmental stages and retina from the paired-homeo-
domain transcription factor Crx knockout mouse (Crx-/-)
and its wild type counterpart (Crx+/+) at postnatal day
(P)10, and from NIH3T3 mouse fibroblasts.

The SAGE-based expression analysis performed by Black-
shaw et al. [2] has advantages over other RNA analysis
methods. This technique uses a unique sequence tag of 13
or more bases isolated from a defined position within
each transcript [5]. The basic concept of SAGE rests on two
principles: (1) a short nucleotide sequence tag contains
sufficient information to uniquely identify a transcript
and (2) concatenated short sequence tags can be cloned to
facilitate efficient sequencing analysis. Unlike RNA blot-
ting and RT-PCR, SAGE is not limited to examining only a
few known genes at a time. Unlike DNA microarray tech-

nology, the SAGE approach allows the simultaneous anal-
ysis of a large number of transcripts without prior,
complete knowledge of the sequence of the genes [6].

In the study by Blackshaw et al. [7], the candidate photore-
ceptor-specific genes were selected by comparative analy-
sis between SAGE libraries on the basis of four chosen
criteria (see Results Section). This method, however, has
shown relatively low true positive and true negative pre-
diction rates. For example, out of 196 newly-identified
photoreceptor-enriched (PR-enriched) tags, only approxi-
mately 20% meet all the four classification criteria and
about 44% meet more than three of the four criteria. To
further identify true PR-enriched tags, Blackshaw et al.
experimentally validated the candidate tags through
exhaustive ISH analysis. In this paper, we explore the fea-
sibility of using computational approaches to support
large-scale analysis of photoreceptor gene expression data.
The main purpose of this study is to implement several in
silico models to detect complex features and relationships
encoded in the SAGE data, which may be used to predict
functional associations. By way of illustration, this paper
focuses on the classification of two functional classes of
genes, which were studied and experimentally validated
by Blackshaw et al. [7]: PR-enriched and non-PR-enriched
genes. The main question was: Can machine learning-
based classifiers be built to accurately distinguish PR-
enriched from non PR-enriched genes solely based on pat-
terns in the SAGE data? The potential benefits of this
approach are two-fold. In situations for which there is
insufficient biological knowledge, machine learning-
based classifiers could be used to predict functional
classes of genes. Secondly, if classifiers are demonstrated
to effectively predict specific gene types, these empirically
derived relationships could be used to derive biological
significance.

In order to study temporal patterns of photoreceptor gene
expression during retinal development, a two-way cluster
analysis: clustering of tags and clustering of libraries were
performed. While SAGE libraries were clustered using tra-
ditional hierarchical clustering method, SAGE tags were
analysed by a newly developed Poisson model-based k-
means algorithm (PoissonC) specifically designed for
SAGE data [8]. To address one of the limitations of Pois-
sonC, a Figure of Merit (FOM)-based approach [9] to esti-
mating the number of clusters was proposed. The FOM is
computed by first removing one experiment (library in
our case), clustering genes based on the remaining data,
and then measuring how the left-out library fits the
expression patterns obtained from the other libraries.
Such adaptations represent one of the aspects distinguish-
ing our investigation from traditional clustering-based
analyses. To explore the feasibility of machine-learning
approaches to predicting functional associations encoded
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in the SAGE data generated from different developmental
stages in mouse retina, three supervised classification
methods were tested to predict the two functional classes
investigated by Blackshaw et al. [7]: PR-enriched and non-
PR-enriched genes. To deal with the problem of func-
tional class imbalance occurring in the dataset, two data
re-sampling techniques were studied. To adequately eval-
uate the performance of the supervised classifiers in
imbalanced dataset, three predictive quality indicators
that are independent of the class prior probabilities were
implemented. To further assess the statistical significance
of the computational approaches, a 100-run permutation
test was implemented. The reader is referred to the section
of Methods for a more detailed description of the data sets
and techniques studied. The following section summa-
rises relevant results.

Results
Clustering of SAGE libraries
Figure 1 depicts a hierarchical tree for 14 SAGE libraries
based on all 1118 tags highly expressed in the ONL library
generated by agglomerative method with Pearson correla-
tion as a similarity measure. In general, it reflects the rela-
tionship between the libraries based on their gene
expression levels. As expected, libraries within the same
developmental period are more closely related than librar-
ies representing gene expression from other time points.
Four embryonic libraries (E12.5, E14.5, E16.5, and E18.5)
and four postnatal libraries (P0.5, P2.5, P4.5, and P6.5)
are all grouped together. When we cut the dendrogram at
the level A, five clusters are obtained. Two libraries
belonging to non-retinal tissues (3t3 and hypo) are clearly
separated from other clusters, which confirm that the
SAGE libraries reflect tissue specificity. The embryonic
libraries are split from the postnatal libraries, most likely

A hierarchical tree for 14 SAGE libraries based on analysis of 1118 tagsFigure 1
A hierarchical tree for 14 SAGE libraries based on analysis of 1118 tags. The hierarchical tree was generated based 
on 1118 tags highly expressed in the ONL library using Pearson correlation-based hierarchical clustering method. Five clusters 
are obtained when cutting the dendrogram at level A.

A hierarchical tree for 14 SAGE libraries based on analysis of 261 PR-enriched tagsFigure 2
A hierarchical tree for 14 SAGE libraries based on analysis of 261 PR-enriched tags. This hierarchical tree provides 
further insights. The split at birth is less marked. The P10.5 Crx-/- library is clustered with the P6.5 library rather than with its 
wild type counterpart.
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reflecting the effect of the physiological changes occurring
at birth on gene expression. Moreover, the 8 postnatal
libraries are clustered into two groups, 4 of which are
grouped together after P6.5. This might suggest that a crit-
ical time point occurs between P6.5 and P10.5 for the
development of photoreceptor cells. In order to focus on
photoreceptor cells, 14 SAGE libraries were clustered
using the 261 PR-enriched tags, as shown in Figure 2. This
provides further insights, for example the split at birth is
less marked, which is consistent with evidence showing
that terminal differentiation and functional activation of
photoreceptor cells occurs at later stages [7]. The P10.5
Crx-/- library now clusters with the P6.5 library rather
than with its wild type counterpart, as would be predicted
from the essential function of Crx in photoreceptor cell
type specification. This suggests that its loss has a greater
effect on PR-enriched genes and their profile more closely
resembles that of the immature P6.5 wild type retina.

Clustering of SAGE tags
Figure 3 shows 5-runs adjusted FOM values for the k-
means algorithm with Euclidean distance on normalised
SAGE data from 1 to 20 clusters. The value of adjusted
FOM steeply decreases until the number of clusters is
equal to 10. Afterwards the rate of decline with respect to
the number of clusters is reduced. The results for a 10-clus-
ter analysis using the PoissonC algorithm are shown
graphically in Figure 4. Table 1 lists the number of tags
within each cluster, the number of tags previously known
to be PR-enriched/non-PR enriched, as well as the number
of tags identified as PR-enriched/non-PR enriched by
Blackshaw et al. [7]. The description of the cluster profiles
is also given in Table 1. The clustering results from a Eucli-
dean-based clustering model are given in the supplemen-
tary materials.

In general, the temporal expression patterns observed in
this SAGE data reflect previously characterized photore-
ceptor gene expression patterns in the developing retina.
For example, genes associated with tags in Clusters 2 and

The mean values of 5-runs adjusted FOM calculations against the number of clustersFigure 3
The mean values of 5-runs adjusted FOM calculations against the number of clusters. An open-source implemen-
tation of FOM provided by the Institute for Genomic Research (TIGR) [22] was used to calculate the adjusted FOM for k-
means algorithm with Euclidean distance on normalised SAGE data. For a given tag, the abundance in each SAGE library was 
rescaled to make the sum of tag counts across all 14 libraries equal to one.
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6, whose expression consistently increases throughout
postnatal development and reaches their highest value in
the adult retina, are highly likely to be expressed in devel-
oping photoreceptors. Sixty out of 63 tags previously
known to be PR-enriched and 134 out of 197 tags identi-
fied to be PR-enriched by Blackshaw et al. [7] fell within
these two clusters, highlighting that this is an important
feature which can be used to identify PR-enriched genes.
A closer examination of these two clusters revealed that
many tags were mapped to genes with known functions
relevant to phototransduction and visual formation. For
example, 8 tags associated with rhodopsin gene and 2 tags
linked to rod photoreceptor were grouped together in
Cluster 6. Four tags mapped to guanine nucleotide bind-
ing proteins (G-protein) [10], which are involved as mod-
ulators or transducers in various transmembrane
signalling systems, were all found in Cluster 2. Apart from
those tags directly related to the visual process, some tags
associated with genes with other functions such as
peripherin-2 and rod outer segment membrane protein 1
(ROM1) were also found. It has been shown that these
genes are involved in maintaining the integrity of pho-

toreceptor outer segment and are therefore critical for rod
photoreceptor viability and regulation of disk morpho-
genesis [11].

Interestingly, 8 out of the 10 known non-PR-enriched tags
were found in Cluster 9, having peak expression values
occurring within 3T3 fibroblast cells. This might confirm
that those genes that have higher expression levels in non-
retina tissues are unlikely to become PR-enriched genes.
Cluster 7 exhibits similar expression profiles of genes
strongly expressed in adult hypothalamus. Although the
characteristics of all 27 tags in this cluster were not inves-
tigated by Blackshaw et al. [7], our analysis indicates that
these genes are unlikely to be selectively expressed in pho-
toreceptors based on the observations derived from Clus-
ter 9.

Clusters 3 and 5, whose peak expression values occurred
during embryonic development, also offered relevant
insights. Genes that fell within these two clusters generally
have higher expression levels in the mouse retina before
P6.5 with expression gradually decreasing throughout

Poisson model-based clustering analysis for photoreceptor gene expression using 10 clustersFigure 4
Poisson model-based clustering analysis for photoreceptor gene expression using 10 clusters. SAGE libraries are 
plotted on the x-axis. Numbers one to fourteen represent the fourteen SAGE libraries mentioned in Method Section, i.e. 1: 
hypo; 2: 3t3; 3: E12.5; 4: 14.5; 5: E16.5; 6: E18.5; 7: P0.5; 8: P2.5; 9: P4.5; 10: P6.5; 11: P10.5Crx-/-; 12: P10.5Crx+/+; 13: Adult; 
14: ONL. Tag abundance is shown on the y-axis. Data were normalized before plotting. Each tag from the 14 libraries was 
rescaled to make the sum of the expression values equal to one. Different colors represent different tags.
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later postnatal development. Examples includes macro-
phage migration inhibitory factor gene in Cluster 5, which
plays an important role in T-cell activation and may con-
tribute to regulation of retinal inflammation and its local
immunity [12]. Its expression starts at E12.5, peaks at
E16.5, and significantly decreases in the adult. In clusters
3 and 5, a total of 12 tags were examined by Blackshaw et
al. [7], ten out of 12 resulted non-PR enriched. The expres-
sion profile exhibited by these two clusters may serve as
template for the detection of non-PR enriched genes.

Unlike the other gene clusters, the expression levels of
genes within Clusters 1, 4, 8 and 10 did not follow a con-
sistent trend throughout retinal development. Forty-six
tags associated with various PR-enriched genes were
found in these four different clusters, reflecting the heter-
ogeneity of photoreceptor gene expression patterns on the
basis of the onset and peak time of expression [2]. Unlike
most of the photoreceptor genes (e.g. Rhodopsin) whose
expression values are very low at birth and dramatically
increase throughout postnatal retinal development, some
of the PR-enriched genes exhibit totally different expres-
sion patterns. In Cluster 10, for example, expression of
NeuroD is high at early embryonic stages, peaking at P4.5
and decreases significantly in the adult. This might reflect
a dual function of NeuroD in cell specification and in reg-
ulation of rod photoreceptor survival [13]. In Cluster 8,
Mertk, a c-mer proto-oncogene tyrosine kinase, exhibits an
embryonic expression profile with peak at E14.5 and is
selectively expressed in mature photoreceptor cells. Previ-
ous studies have shown that mutations in Mertk are
responsible for retinal dystrophy [14]. The diversity of
photoreceptor expression profiles may reflect the fact that
some of PR-enriched genes are involved in more than one
biological process.

Supervised functional classification of tags
The goal was to determine whether a tag represents a PR-
enriched or a non-PR-enriched gene given a set of SAGE
libraries associated with each tag. Among the 1118 tags
representing at least 0.01% of the total expression in the
ONL library, 261 tags have been identified as PR-enriched
genes, which exhibit diverse and complex expression pat-
terns. This highlights the difficulties in using in silico
methods to detect key relationships encoded in the SAGE
data. Such complexities are further stressed when the orig-
inal data are projected on 3-dimensional space using well-
known mapping methods, i.e. Principal Component Analy-
sis and Sammon's mapping, which clearly indicate that the
two classes are not linearly separable from each other [see
Additional file 1].

Based on a comprehensive analysis of the expression of
tags previously known to be PR-enriched, Blackshaw et al.
[7] introduced four criteria for the selection of candidate
PR-enriched genes:

1. Tissue specific (criterion 1): the number of tags in either
the hypothalamus or 3T3 libraries is less than 2.

2. Developmentally regulated (criterion 2): the sum of
tags in the P10.5 crx+/+ (wild type), adult and ONL librar-
ies divided by the sum of tags in the E12.5, E14.5, and
E16.5 libraries is greater than 10-fold.

3. Crx dependent (criterion 3): tags are present at a level
greater than 1.6-fold higher in the P10.5 crx+/+ library
compared to the library of crx-/- mice.

Table 1: Summary of Poisson-based analysis for the SAGE data.

Cluster No. of Tags Description of cluster profile No. of Tags validated prior to 
Blackshaw et al. [7]

No. of Tags validated by Blackshaw 
et al. [7]

PR-enriched non-PR-enriched PR-enriched non-PR-enriched

1 105 Varying expression 0 0 5 1
2 196 Increasing during postnatal development 26 1 114 13
3 53 Peak expression occurred during embryonic 

development
0 1 1 6

4 280 Flat 1 0 19 11
5 63 Peak expression occurred during embryonic 

development
0 0 0 4

6 102 Increasingly sharp during late postnatal 
development

34 0 20 4

7 27 Peak expression in adult hypothalamus 0 0 0 0
8 55 Peak expression occurred around P4.5 and 

ONL
1 0 4 2

9 132 Peak expression in NIH-3T3 fibroblast cells 1 8 16 5
10 132 Varying expression 1 0 18 7
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4. ONL enriched (criterion 4): tags are present at an equal
or greater number in the ONL library compared to the
whole adult retina library.

We encoded the SAGE dataset using these criteria to study
significant associations between the two functional
classes and these criteria. The Apriori algorithm was applied
to extract association rules from the SAGE data. This algo-
rithm, which was proposed by Agrawal and Skrikant [15],
is a well-known association rule learning algorithm.
Given a dataset the Apriori algorithm is able to generate
association rules that have support and confidence levels
greater than user-specified values. A list of all association
rules induced from the 324 tags, together with their sup-
port and confidence levels, are given in Table 2. The distri-
bution of these 324 tags on the basis of their compliance
with the four criteria is given in the additional file [see
Additional file 1].

The results obtained showed that a high rate of true posi-
tives was observed for genes corresponding to tags meet-
ing more than two of the four criteria. However, when
applying these criteria to perform supervised classifica-
tion, poor prediction results were obtained. For example,
only 57 out of 261 PR-enriched tags met all four criteria.
From the 196 tags identified by Blackshaw et al. [7] as PR-
enriched, only about 20% met all four criteria and around
44% met more than three criteria. When applying the four
criteria to the data individually, a relatively low rate of
true negatives was obtained. For instance, 22 out of 63
non-PR-enriched genes met criterion 1, 11 met criterion 2,
28 met criterion 3, and 40 met criterion 4. Therefore, these

classification criteria do not represent accurate and robust
rules for the classification.

Tables 3 and 4 show the prediction results from 10-fold
cross validation for three supervised classifiers using ran-
dom over- and under-sampling methods respectively. The
section of Methods provides a description of these mod-
els. For each classifier, the overall classification accuracy
(Ac), along with the precision (Pr), Se and Sp for each
class, were calculated. Precision is defined as the propor-
tion of predictions that are correct. The mathematical def-
initions of these metrics are given in the additional file
[see Additional file 1]. The corresponding ROC graphs are
depicted in Figure 5. For each ROC graph, the area under
ROC curve (AUC) was calculated. The AUC has been sug-
gested as a reliable and robust measure for classification
performance [16]. A higher value of AUC is associated
with a classifier that is both effective and robust, i.e. it
presents a better average classification performance across
different prediction (decision) thresholds.

Tables 3 and 4 indicate that the classifiers built on data
derived from over-sampling methods provided better
results than those derived from under-sampling methods
in terms of Ac, Se and Sp. The advantages of random over-
sampling techniques can be further demonstrated by the
AUC values shown in Figure 5. This may be explained by
the fact that a random under-sampling strategy may throw
away potentially useful data. In addition, we found that
the relatively simple KStar [17] algorithm can outperform
more complex models such as MLP.

Table 2: A list of rules extracted from 324 tags using the Apriori algorithm.

Enriched in PR? <= criterion 4 (234:72.2%, 0.829)
Enriched in PR? <= criterion 1 (218:67.3%, 0.899)
Enriched in PR? <= criterion 3 (177:54.6%, 0.842)
Enriched in PR? <= criterion 2 (175:54.0%, 0.937)
Enriched in PR? <= criterion 4 & criterion 1 (165:50.9%, 0.909)
Enriched in PR? <= criterion 4 & criterion 3 (129:39.8%, 0.884)
Enriched in PR? <= criterion 4 & criterion 2 (117:36.1%, 0.949)
Enriched in PR? <= criterion 1 & criterion 3 (126:38.9%, 0.929)
Enriched in PR? <= criterion 1 & criterion 2 (143:44.1%, 0.944)
Enriched in PR? <= criterion 3 & criterion 2 (105:32.4%, 0.943)
Enriched in PR? <= criterion 4 & criterion 1 & criterion 3 (92:28.4%, 0.946)
Enriched in PR? <= criterion 4 & criterion 1 & criterion 2 (100:30.9%, 0.96)
Enriched in PR? <= criterion 4 & criterion 3 & criterion 2 (70:21.6%, 0.971)
Enriched in PR? <= criterion 1 & criterion 3 & criterion 2 (90:27.8%, 0.944)
Enriched in PR?<= criterion 4 & criterion 1 & criterion 3 & criterion 2 (59:18.2%, 0.966)

Each rule is shown in the following format: Enriched in PR? <= criterion 1 & criterion 2 & ... &criterion n where the rule is interpreted as "for tags that 
meet criterion 1 through criterion n, they are likely to be PR-enriched genes." The numbers shown at the end of each rule indicate the number of tags 
to which the rule applies (Support) and the proportion of those tags for which the rule is true (Confidence). Support is reported both as 
number of tags and percentage of total tags, separated by a colon.
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To investigate the effect of class distribution on the classi-
fier, we varied the class distribution using the data over-
sampling technique. Table 5 shows prediction results for
the KStar classifier with different class distributions. A 10-
fold cross validation procedure was carried out to estimate
the true classification error. The corresponding ROC
curves are given in the additional file [see Additional file
1]. The KStar with balanced class sample distribution
achieved the best results.

To further assess the statistical significance of our compu-
tational approaches and their predictive performance, a
100-run permutation test was implemented. For each per-
mutated dataset, the results were significantly worse than
the one generated using the original data in terms of Ac,
Se, and Sp, strongly indicating that the relationship
between the data and the labels may be reliably learned by
the proposed classifiers. For example, when implement-
ing the permutation test for the KStar model on a bal-
anced dataset and 10-fold cross validation, the random
classifiers never performed better than the (original) pre-
diction model built. The obtained average values of Ac, Se
and Sp (for class PR-enriched) were significantly lower
than the results shown in Table 3 (p < 0.01). Similar
results were obtained when we performed a permutation
test for other classifiers on the dataset with different class
distributions. The complete results of our permutation
test can be found in the additional file [see Additional file
2].

Discussion
As the most accessible part of the central nervous system
(CNS) and as a highly ordered laminar structure, the ret-

ina offers unique opportunities to study both the develop-
ment and physiology of the CNS. This paper described
several in silico approaches, including unsupervised and
supervised models, to supporting large-scale analysis of
photoreceptor gene expression by SAGE.

By clustering SAGE libraries, a hierarchical tree reflecting
the relationship between the libraries was obtained.
Libraries from adjacent developmental periods were gen-
erally grouped together as expected. However, significant
discontinuities were identified at the time of birth and
between P6.5 and P10.5, highlighting important develop-
mental periods. By clustering SAGE tags, a more compre-
hensive expression profile for photoreceptor cells was
revealed. It confirmed that most of the PR-enriched genes
may be successfully clustered. These genes have lower
expression levels before birth with expression dramati-
cally increasing throughout postnatal development. Nev-
ertheless, a closer examination of the clustering results
revealed that photoreceptor expression patterns are highly
heterogeneous and not separable by linear methods. The
diversity of photoreceptor expression profiles reflects the
variability in onset of expression which can occur early in
development or when photoreceptors undergo terminal
differentiation.

With regard to the clustering of SAGE tags, different algo-
rithms with different distance metrics have been previ-
ously proposed. For example, it has been suggested that
by modelling SAGE data with Poisson statistics better
results can be achieved. However, it is relatively computa-
tionally expensive and Poisson-based distance has only
been assessed as part of the k-means algorithm, which

Table 3: Prediction results of 10-fold cross validation for three classifiers using random over-sampling method. The total number of 
SAGE tags analyzed is 522, in which 261 are PR-enriched. Each tag is represented by 14 SAGE libraries.

Method Ac (%) PR-enriched non-PR-enriched

Pr (%) Se (%) Sp (%) Pr (%)

KStar 91.2 99.5 82.8 99.6 85.2
C4.5 91.0 97.3 84.3 97.7 86.1
MLP 66.5 61.6 87.4 45.6 78.3

Table 4: Prediction results of 10-fold cross validation for three classifiers using random under-sampling method. The total number of 
SAGE tags analyzed is 126, in which 63 are PR enriched. Each tag is represented by 14 SAGE libraries.

Method Ac (%) PR-enriched non-PR-enriched

Pr (%) Se (%) Sp (%) Pr(%)

Kstar 61.9 61.5 63.5 60.3 62.3
C4.5 66.7 66.7 66.7 66.7 66.7
MLP 65.1 60.9 84.1 46.0 74.4
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exhibits several limitations that hinder its performance. In
this study, we proposed a framework to estimate the
number of clusters for PoissonC based on the calculation
of an adjusted FOM value. Nevertheless, there is a need to
further expand clustering-based studies for SAGE data. For
instance, an important question is how to incorporate
Poisson-based distance into other clustering methods
such as hierarchical clustering and self-organizing maps.

To demonstrate the usefulness of machine learning-based
models in predicting functional associations from the
SAGE data, a comprehensive comparative assessment of
three supervised classification models was presented. The
results indicated that a relatively simple instance-based
model (KStar model) performed significantly better than
relatively more complex algorithms, e.g. neural networks.
This may be partly explained by the fact that neural net-
work-based prediction models typically require larger
amounts of high quality training data. Given the limited

The ROC curves for three classifiers using random over-sampling and under-sampling methodsFigure 5
The ROC curves for three classifiers using random over-sampling and under-sampling methods. Figure (a1) 
KStar with over-sampling method; (a2) KStar with under-sampling method; (b1) C4.5 with over-sampling method; (b2) C4.5 
with under-sampling method; (c1) MLP with over-sampling method; (c2) MLP with under-sampling method. The blue and yel-
low lines in ROC curves represent the different threshold values which are used to generate ROC.
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amount of SAGE data available, neural network-based
algorithms may not be recommended. Nevertheless, the
application of different types of machine learning
approaches, including state-of-the-art classifiers such as
Support Vector Machine, deserves further investigations.

Due to the imbalanced class distribution of the SAGE
data, two re-sampling techniques: random over-sampling
and under-sampling methods were studied. The results
indicated that over-sampling strategies may provide more
accurate predictions than under-sampling methods. This
result seems to contradict some studies previously pub-
lished in the literature [18]. However, other studies have
suggested that when there is a significant disproportion in
the number of samples belonging to each class, random
under-sampling methods could actually ignore many
potentially relevant data. Investigations of more sophisti-
cated re-sampling techniques [16] will be part of our fur-
ther research. We also intend to further address some of
the limitations exhibited by such techniques, such as the
predictive bias imposed by the incorporation of partially
disjoint data sets during cross-validation.

The results suggest that, machine learning approaches
such as KStar model may be useful for many purposes. For
example, it can be applied as an inexpensive, user-friendly
technique to support functional predictions in the retina
before applying more comprehensive validation meth-
ods. It can be used to effectively select candidate genes for
studies of retinal development and function.

Conclusion
The methodology assessed represents an efficient and rel-
atively inexpensive approach for supporting functional
predictions. The techniques discussed in this paper can be
in principle regarded as a generic framework, scalable to
other types of data and biological functions. They can sup-
port functional predictions prior to the application of
more comprehensive, integrative validation methods.

They can be used to effectively select candidate genes for
further studies and may also be combined with other
large-scale, data-driven methods to facilitate the inference
of transcriptional regulatory networks in the developing
retina.

Methods
The dataset under study
The database under study was generated by the Cepko
group at Harvard Medical School [7]. This database com-
prises a total of 14 murine SAGE libraries from different
tissues and developmental stages, including mouse NIH-
3T3 fibroblast cells, adult hypothalamus, developing ret-
ina at 2 day intervals from embryonic day (E) 12.5 to post-
natal day (P) 6.5, P10.5 retinas from the paired-
homeodomain gene crx knockout mouse (crx-/-) and
from wild type (crx+/+) littermates, adult retina and
microdissected outer nuclear layer (ONL). A total of
50000 – 60000 tags were sequenced from each tissue
library, resulting in a dataset large enough to encompass
all genes expressed at moderate or high levels in photore-
ceptor cells.

In order to control for sampling variability and to allow
expression examination via ISH, we focused on 1118 tags
whose abundance levels represent at least 0.01% of the
total mRNA expression in the ONL library as done by
Blackshaw et al. [7]. The distribution of these tags within
the two retinal functional classes is given in Table 6.
Under the Class column, TRUE and FALSE stand for genes
validated by Blackshaw et al. using ISH; KNOWN and
KNOWN FALSE represent genes validated prior to Black-
shaw et al. 's study; N.D. stands for tags not validated in
Blackshaw et al.'s study; and UNKNOWN includes tags
which did not correspond to any identifiable transcript
[7].

Table 5: The effect of class distribution on the performance of the classifier.

Class distribution (PR-
enriched : non-PR-

enriched)

Ac (%) PR enriched non-PR enriched

Pr (%) Se (%) Sp (%) Pr (%)

1:1 91.2 99.5 82.8 99.6 85.2
2:1 89.8 95.7 85.8 94.9 83.6
3:1 89.1 94.3 88.9 89.6 80.7
4:1 84.1 88.8 91.2 58.3 64.6

Original (261:63) 81.2 86.2 91.2 39.7 52.1

The class distribution is obtained based on random over sampling method. A 10-fold cross validation was carried out to estimate the true 
classification error. Class distribution is represented as the number of PR-enriched tags against the number of non-PR-enriched tags. There are 261 
PR-enriched and 63 non-PR-enriched tags in the original dataset. In all resampled datasets, the number of PR-enriched tags is as also equal to 261.
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Clustering methods
A central problem in the design of clustering models is the
selection of a distance function to measure differences
between expression profiles. Traditional approaches
include the Euclidean distance and Pearson correlation
coefficient. It has been shown that with regard to classifi-
cation of SAGE libraries, Pearson correlation-based clus-
tering analysis may detect significantly similar groups of
genes [19]. On the other hand, for clustering of SAGE tags,
different algorithms with different distance metrics have
been proposed. Buckhaults et al. [20] adopted hierarchical
cluster analysis with centered correlation similarity metric
to support the identification of diagnostic SAGE tags. Bec-
quet et al. [21] used self-organising tree algorithm to per-
form clustering analysis on human SAGE data. Based on
the implementation of several distance metrics into the k-
means procedure, Cai et al. [8] argued that Poisson-based
distances are more appropriate and reliable for analysing
SAGE data than traditional approaches. Thus, in the
present study, SAGE libraries were clustered by hierarchi-
cal clustering with Pearson correlation as a measure of
similarity, while SAGE tags were clustered using a k-means
clustering algorithm based on the Poisson distance func-
tion (PoissonC) specifically designed for SAGE data [8].
The reader is referred to [8] for a detailed description of
this algorithm.

Like other k-means models, one limitation of the Pois-
sonC algorithm is that it requires users to specify a priori
the number of clusters to be detected in the data. To deal
with this problem, we used the FOM to estimate the opti-
mal number of clusters encoded in the data [9]. The lower
the FOM value is, the higher the predictive power of the
algorithm. To compensate for a possible statistical bias
when using many clusters, an adjusted FOM was imple-
mented. A detailed description of the calculation of the
adjusted FOM can be found in [9].

Due to the computational cost and characteristics of the
PoissonC algorithm, the calculation of the adjusted FOM
based on PoissonC may be a time-consuming process. It
has been suggested that the patterns encoded in the SAGE
data revealed by the clusters under different algorithms
roughly agree with each other. Moreover, the performance
(i.e. classification effectiveness) of clustering algorithms
can be improved when the algorithms are applied to nor-
malized data [8]. Thus, we proposed the following frame-
work to estimate the appropriate cluster numbers for
PoissonC:

1. Calculate the adjust FOM value using traditional k-
means algorithm, in which the Euclidean distance was
used to measure similarity on normalised SAGE data. For
a given tag, the abundance in each SAGE library was
rescaled to make the sum of tag counts across all 14 librar-
ies equal to one. In our application the adjusted FOM was
calculated for a range of numbers of clusters, from 1 to 20.

2. Draw the FOM value against the number of clusters
graph.

3. Estimate the optimal number of clusters based on the
graph

4. Use the number obtained in last step as an input to per-
form PoissonC-based clustering analysis.

We adopted an open-source implementation of FOM pro-
vided by the Institute for Genomic Research (TIGR) [22]

Supervised classification methods
Three different classification models were implemented
using the freely available Weka package [23]: KStar, C4.5
decision tree, and multilayer perceptron (MLP) neural net-
work model. KStar is an instance-based classifier [17].
Based on information theory, it uses an entropy-based
distance function to compute the similarity between two
cases. The use of entropy as a distance measure provides a
robust approach to handling different types of attributes
such as symbolic and real-valued data [17]. We tested
MLP models with different architectures without observ-
ing prediction performances significantly different to the
results reported in this paper. The representative MLP
results included here were obtained from a model with
one hidden layer consisting of 8 neurones. The learning
epochs for MLP was set to 500. For C4.5 algorithm, the
minimum number of instances per leaf was equal to 2. A
more detailed description of learning parameters for these
models can be found in additional file [see Additional file
1].

These three models were assessed as classifiers for PR-
enriched genes on the basis of SAGE data. To estimate the

Table 6: Distribution of tags under study in terms of functional 
classification

Class Number of tags

PR-enriched TRUE 197 261
KNOWN 64

non-PR-enriched FALSE 53 63
KNOWN FALSE 10

N.D. 708
UNKNOWN 86
Total 1118

Under the Class column, TRUE and FALSE stand for genes validated 
by Blackshaw et al. using ISH; KNOWN and KNOWN FALSE 
represent genes validated prior to Blackshaw et al. 's study; N.D. 
stands for tags not validated in Blackshaw et al.'s study; and 
UNKNOWN includes tags which did not correspond to any 
identifiable transcript [7].
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true classification error rate, a 10-fold cross validation was
applied. To further assess the statistical validity of our
computational approaches, 100-run permutation tests
were performed in this study, i.e.: the labels for each tag
were randomly shuffled, classifiers were then imple-
mented, their prediction quality was assessed and this
process was repeated for a number of permuted datasets.
By counting the times the permuted datasets produced
better results than the classifier built on the original data-
set, the statistical significance was then established.

A key challenge was to address the class imbalance exhib-
ited by the dataset available – as demonstrated by the
highly skewed distribution of tags (Table 6). The predic-
tive performance of traditional machine learning models
may be significantly compromised when dealing with this
type of data [24]. The problem is how to effectively distin-
guish patterns belonging to the minority class, i.e. non-PR-
enriched class, from the majority class under considera-
tion. To deal with this problem, two data re-sampling
techniques were studied: random under-sampling and ran-
dom over-sampling. The former method randomly elimi-
nates majority class tags to achieve a balanced dataset. The
latter randomly replicates minority class samples until a
balanced class distribution is reached [25].

Another crucial problem is how to evaluate the perform-
ance of classifiers in imbalanced dataset. Traditional tech-
niques include the calculation of classification accuracy
based on a confusion matrix. However, it is known that
when classes are imbalanced, these two metrics may offer
misleading conclusions because they are strongly biased
to favour the majority class [16]. For example, if we sup-
pose that all non-PR-enriched tags were incorrectly classi-
fied as PR-enriched, a classifier would still be able to
achieve a high classification accuracy (around 80%). Such
a classifier, however, would be irrelevant. Thus, what is
needed is a classification quality indicator that is inde-
pendent of the class prior probabilities. It has been sug-
gested that the true negative rate (also known as specificity,
Sp), true positive rate (also known as sensitivity, Se), and
Receiver Operating Characteristic (ROC) graphs are three
appropriate metrics to assess the quality of a classifier in
the presence of class imbalances [16]. It is evident that a
true-positive prediction in the PR-enriched category is a
true-negative in the non-PR-enriched category. Therefore,
the values of Se and Sp for non-PR-enriched were omitted
in Tables 3 to 5.
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