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Abstract

Zero-determinant (ZD) strategies, a recently found novel class of strategies in repeated

games, has attracted much attention in evolutionary game theory. A ZD strategy unilaterally

enforces a linear relation between average payoffs of players. Although existence and evo-

lutional stability of ZD strategies have been studied in simple games, their mathematical

properties have not been well-known yet. For example, what happens when more than one

players employ ZD strategies have not been clarified. In this paper, we provide a general

framework for investigating situations where more than one players employ ZD strategies in

terms of linear algebra. First, we theoretically prove that a set of linear relations of average

payoffs enforced by ZD strategies always has solutions, which implies that incompatible lin-

ear relations are impossible. Second, we prove that linear payoff relations are independent

of each other under some conditions. These results hold for general games with public mon-

itoring including perfect-monitoring games. Furthermore, we provide a simple example of a

two-player game in which one player can simultaneously enforce two linear relations, that is,

simultaneously control her and her opponent’s average payoffs. All of these results eluci-

date general mathematical properties of ZD strategies.

Introduction

Game theory is a powerful framework explaining rational behaviors of human beings [1] and

evolutionary behaviors of biological systems [2, 3]. In a simple example of prisoner’s dilemma

game, mutual defection is realized as a result of rational thought, even if mutual cooperation is

more favorable. On the other hand, when the game is repeated infinite times, cooperation can

be realized if players are far-sighted, which is confirmed as folk theorem. Axelrod’s famous

tournaments on infinitely repeated prisoner’s dilemma game [4, 5] also showed that coopera-

tive but retaliating strategy, called the tit-for-tat strategy, is successful in the setting of infinitely

repeated game.

Recently, in repeated games with perfect monitoring, a novel class of strategies, called zero-

determinant (ZD) strategy, was discovered [6]. Surprisingly, ZD strategy unilaterally enforces

a linear relation between average payoffs of players. A strategy which unilaterally sets her

opponent’s average payoff (equalizer strategy) is one example. Another example is extortionate

strategy in which the player can earn more average payoff than her opponent. ZD strategies
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contain the well-known tit-for-tat strategy as a special example. After the pioneering work of

Press and Dyson, stability of ZD strategies has been studied in the context of evolutionary

game theory [7–12], and it was found that some kind of ZD strategies, called generous ZD

strategies, can stably exist. Performance of ZD strategies has also been studied in human exper-

iments [13, 14]. Although ZD strategy was originally formulated in two-player two-action

(iterated prisoner’s dilemma) games, ZD strategy was extended to multi-player two-action

(iterated social dilemma) games [15, 16], two-player multi-action games [17, 18], and multi-

player multi-action games [19]. In addition, ZD strategy was extended to two-player two-

action noisy games [20, 21], which is one example of the repeated games with imperfect moni-

toring. Furthermore, besides these fundamental theoretical studies, ZD strategies are also

applied to resource sharing in wireless networks [22, 23]. See Ref. [24] for a review of ZD

strategies in the context of direct reciprocity.

The contributions of this paper are four-fold. First, we extend ZD strategy for general

multi-player multi-action repeated games with public monitoring, where players know the

structure of games (players, sets of actions of all players, and payoffs of all players) but cannot

observe actions of other players. A typical example of such situation is auction. In a sealed-bid

auction, a player cannot know actions (bids) of other players, but only knows the result of the

game (whether she is the winner or not). Second, we prove, in terms of a linear-algebraic argu-

ment, that linear payoff relations enforced by players with ZD strategies are consistent, that is,

always have solutions. Third, we introduce the notion of independence of ZD strategies, and

prove, again in terms of a linear-algebraic argument, that linear payoff relations enforced by

players with ZD strategies are independent under a general condition. Fourth, as an applica-

tion of linear algebraic formulation, we provide a simple example of a two-player game in

which one player can simultaneously enforce two linear relations. This means that she can

simultaneously control her and her opponent’s average payoffs, which has never been reported

in the context of ZD strategies. All of these results develop deeper understanding of mathemat-

ical properties of ZD strategies in general games.

We remark on discounting. In standard repeated games, discounting of future payoffs is

considered by introducing a discounting factor δ� 1 [1]. In the original work on ZD strategy

by Press and Dyson, only the case without discounting (i.e., δ = 1) was investigated [6]. After

their work, ZD strategy was extended to δ< 1 case [18, 25, 26]. In this paper, we consider only

the non-discounting case δ = 1.

Setup

We consider an N-player multi-action repeated game, in which player n 2 {1, � � �, N} has Mn

possible actions, where Mn is a positive integer. Let s � ðs1; � � � ; sNÞ 2 S �
QN

n¼1
f1; � � � ;Mng

denote a state of the game, which is the combination of the actions taken by the N players. Let

M �
QN

n¼1
Mn be the size of the state space S. We assume that player n decides the next action

stochastically according to her own previous action σ0n and common information τ 2 B with

the conditional probability T̂ nðsnjσ
0
n; tÞ, where B is some set. We also define the conditional

probability that common information τ arises when actions of players in the preceding round

are σ0 by W(τ|σ0). (An example of τ is the winner in each round; see S1 Text) Then the

sequence of states of the repeated game forms a Markov chain

Pðσ; t þ 1Þ ¼
X

σ0
Tðσjσ0ÞPðσ0; tÞ ð1Þ
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with the transition probability

Tðσjσ0Þ �
X

t

Wðtjσ0Þ
YN

n¼1

T̂ nðsnjσ
0

n; tÞ; ð2Þ

where P(σ, t) denotes the state distribution at time t. We assume that all players know the func-

tion W(τ|σ0) but cannot directly observe σ0. When B = S and W(τ|σ0) = δτ,σ0, the above formu-

lation reduces to that of perfect monitoring games. Otherwise, it represents games with public

monitoring, where players cannot directly observe actions of other players. The model treated

here can therefore be regarded as an extension of repeated games with perfect monitoring to

those with imperfect monitoring, and the extension includes the former as a special case.

For each state σ, a payoff of player n is defined as sn(σ). Let sn� (sn(σ0))σ02S be the M-

dimensional vector representing the payoffs of player n, which we call the payoff vector of

player n. It should be noted that in the following analysis we do not assume the payoffs to be

symmetric, unless otherwise stated.

Results

Zero-determinant strategies

Because a discounting factor δ is one, the payoffs of players are the average payoffs with respect

to the stationary distribution of the Markov chain. Let P(s)(σ) denote the stationary distribu-

tion, which may depend on the initial condition when the Markov chain is not irreducible. It

satisfies

PðsÞðsÞ ¼
X

σ0
Tðσjσ0ÞPðsÞðσ0Þ: ð3Þ

Taking summation of both sides of Eq (3) with respect to σ−n� σnσn with an arbitrary n, we

obtain

0 ¼
X

σ0
½Tnðsnjσ

0Þ � dsn;σ0n �P
ðsÞðσ0Þ; ð4Þ

where we have defined

Tnðsnjσ
0Þ �

X

t

Wðtjσ 0ÞT̂ nðsnjσ
0

n; tÞ: ð5Þ

Regarding dsn ;σ0n as representing the strategy “Repeat”, where player n repeats the previous

action with probability one, one can readily see that Eq (4) is an extension of Akin’s lemma

[15, 18, 27, 28], relating a player’s strategy with the stationary distribution, to the multi-player

multi-action public-monitoring case. Letting

~Tnðsnjσ
0Þ � Tnðsnjσ

0Þ � dsn ;σ0n ; ð6Þ

Eq (4) means that the average of ~Tnðsnjs
0Þ with respect to the stationary distribution is zero

for any n and σn. We remark that all players are assumed to know the functional form of

W(τ|σ0), and that T̂ nðsnjσ
0
n; tÞ, and thus Tn(σn|σ0) as well, are solely under control of player n.
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Because of the normalization condition
PMn

sn¼1
Tnðsnjs

0Þ ¼ 1, the relation

XMn

sn¼1

~Tnðsnjσ
0Þ ¼ 0 ð7Þ

holds.

Let ~TnðsnÞ � ð
~Tnðsnjσ

0ÞÞσ02S, which we call the strategy vector of player n associated with

action σn. (Another name for ~TnðsnÞ is the Press-Dyson vector [27].) A strategy of player n is

represented as an M ×Mn matrix Tn � ð
~Tnð1Þ; � � � ;

~TnðMnÞÞ composed of the strategy vectors

for her actions σn 2 {1, . . ., Mn}. For a matrix A, let span A be the subspace spanned by the col-

umn vectors of A. Let 0m and 1m denote the m-dimensional zero vector and the m-dimen-

sional vector of all ones, respectively. From Eq (7), one has

T n1Mn
¼
XMn

sn¼1

~T nðsnÞ ¼ 0M ð8Þ

for any player n, implying that the dimension of span Tn is at most (Mn − 1).

Let ρ� (P(s)(σ))σ2S be the vector representation of the stationary distribution P(s)(σ). When

player n chooses a strategy Tn, for any vector u 2 span Tn, one has r>u ¼ 0 due to Eq (4). In

other words, the expectation of v with respect to the stationary distribution ρ vanishes.

Let r � ð1M; s1; � � � ; sNÞ and Vn � span Tn \ span S. The following definition is an exten-

sion of the notion of the ZD strategy [6, 27] to multi-player multi-action public-monitoring

games.

Definition 1. A zero-determinant (ZD) strategy is defined as a strategy Tn for which dim Vn
� 1 holds.

To see that this is indeed an extended definition of the ZD strategy, note that any vector u 2

span S is represented as u ¼ Sa, where a � ða0; a1; � � � ; aNÞ
>

is the coefficient vector. Let e �

ð1; e1; � � � ; eNÞ
>
¼ S>r be the vector with element en equal to the expected payoff en� hsn(σ)is

of player n in the steady state. When player n employs a ZD strategy, it amounts to enforcing

linear relations e>a ¼ r>Sa ¼ 0 on e with α satisfying Sa 2 Vn.

Consistency

A question naturally arises: When more than one of the players employ ZD strategies, are they

“consistent”, that is, do linear payoff relations enforced by the players always have solutions?

For example, in a two-player game, when player 1 enforces
P2

n¼1
anen ¼ g by a ZD strategy

and player 2 enforces
P2

n¼1
a0nen ¼ g

0 by a ZD strategy, do the simultaneous equations of (e1,

e2) have a solution? Let N0 be the set of players who employ ZD strategies. The set E �
fe 2 f1g � RN : e>a ¼ 0;8a; Sa 2 spanðVnÞn2N0 g consists of all combinations of the expected

payoffs that satisfy the enforced linear relations by the players in N0. If E is empty, then it

implies that the set of ZD strategies is inconsistent in the sense that there is no valid solution of

the linear relations enforced by the players.

Definition 2. ZD strategies are said to be consistent when E is not empty.

In the multi-player setting, one may regard N0 as a variant of a ZD strategy alliance [15],

where the players in N0 agree to coordinate on the linear relations to be enforced on the expected

payoffs. The above question then amounts to asking whether it is possible for a player to serve as

a counteracting agent who participates in the ZD strategy alliance with a hidden intention to

invalidate it by adopting a ZD strategy that is inconsistent with others.

The following proposition is the first main result of this paper.
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Proposition 1. Any set of ZD strategies is consistent.
Proof. We first note that the following property holds for strategy vectors, whose proof is

given in Methods.

Lemma 1. Let T ¼ ðT1; � � � ;TNÞ. Then 1M=2span T.

For any set span(Vn)n2N0 of ZD strategies, let K be the dimension of span(Vn)n2N0, and let

u1 ¼ Sa1; � � � ; uK ¼ SaK be a basis of span(Vn)n2N0. The expected payoff vector e ¼ ð1; �e>Þ
>

should be given by a non-zero solution of the linear equation �e> �A þ b
>
¼ 0>K in �e, where we

define A, b, and �A as

A ¼
bT

�A

0

@

1

A � ðα1;α2; � � � ;αKÞ: ð9Þ

One has

SA ¼ ðu1; u2; � � � ; uKÞ ¼ 1Mb
T
þ �S �A; ð10Þ

where �S � ðs1; � � � ; sNÞ.

The Rouché-Capelli theorem [29] tells us that rank �A ¼ rankA is a necessary and sufficient

condition for the linear equation �e> �A þ b
>
¼ 0>K in �e to have a solution, that is, for span

(Vn)n2N0 to be consistent (because A is augmented matrix). An equivalent expression of this

condition is that there is no vector c 2 RK
such that �Ac ¼ 0N and b

>
c 6¼ 0 hold (which ensures

that there is no elementary operations which make the rank of augmented matrix larger than

that of the original matrix). Assume to the contrary that there exist c 2 RK such that �Ac ¼ 0N
and b

>
c 6¼ 0 hold. One would then have

SAc ¼ 1Mb
Tcþ �S �Ac ¼ ðbTcÞ1M: ð11Þ

On the other hand, SAc ¼
PK

k¼1
ckuk is a linear combination of

u1; � � � ; uK 2 spanðVnÞn2N0 � span T, so that Lemma 1 states that it should be zero if it is pro-

portional to 1M, leading to contradiction.

Proposition 1 states that it is impossible for any player to serve as a counteracting agent to

invalidate ZD strategy alliances. This statement is quite general in that it applies to any instance

of repeated games covered by our formulation.

In Ref. [19], it was shown that every player can have at most one master player, who can

play an equalizer strategy on the given player (that is, controlling the expected payoff of the

given player), in multi-player multi-action games. Indeed, our general result on the absence of

inconsistent ZD strategies (Proposition 1) immediately implies that more than one ZD players

cannot simultaneously control the expected payoff of a player to different values. Therefore,

our result generalizes their result on equalizer strategy to arbitrary ZD strategies.

Since the dimension of span Tn is at most (Mn − 1), depending on S, it should be possible

for player n with Mn� 3 to adopt a ZD strategy for which dim Vn� 2 holds. The dimension of

Vn corresponds to the number of independent linear relations to be enforced on the expected

payoffs of the players, so that it implies that one player may be able to enforce multiple inde-

pendent linear relations. On the other hand, our result on the absence of inconsistent ZD strat-

egies implies that for any set N0 of ZD players the dimension of span(Vn)n2N0 should be at most

N, the number of players, since any set of ZD strategies should contain at most N independent

linear relations if it is consistent. This in turn implies that if the dimension of span(Vn)n2N0 is

equal to N for a subset N0 of players then players not in N0 cannot employ independent ZD

strategy any more.
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Independence

Another naturally-arising question would be regarding independence for a set of ZD strategies,

which we define as follows:

Definition 3. A set fTngn2N0 of ZD strategies is independent if any set {vn}n2N0 of non-zero
vectors vn in Vn is linearly independent. Otherwise, fTngn2N0 is said to be dependent.

If a set of ZD strategies is dependent, then there exists a ZD player whose ZD strategy adds

no linear constraints other than those already imposed by other ZD players. One of the sim-

plest example of a dependent set of ZD strategies is the case where two players enforce exactly

the same linear relation to the expected payoffs. Our second main result is to show that any set

of ZD strategies is independent under a general condition.

Proposition 2. Let N0 be a subset of players. Assume that ~TnðsnÞ does not have zero elements
for any n 2 N0 and any σn 2 {1, . . ., Mn}. Then, any set fTngn2N0 of ZD strategies of players in N0

is independent.
See Methods for the proof.

It should be noted that when ~TnðsnÞ has zero elements then one might have dependent ZD

strategies. A simple example can be found in a two-player two-action perfect-monitoring (iter-

ated prisoner’s dilemma) game: Let the payoff vectors s1 and s2 for players 1 and 2 be s1 ¼

ðR; S;T; PÞ> and s2 ¼ ðR;T; S; PÞ
>

, with T 6¼ S. If player 1 adopts the strategy

~T 1ð1Þ ¼ ð0; � 1; 1; 0Þ
T
¼

1

T � S
s1 �

1

T � S
s2; ð12Þ

then it enforces the linear payoff relation e1 = e2. This strategy is a well-known tit-for-tat strat-

egy [6]. By symmetry, player 2 can also adopt the same strategy ~T2ð1Þ ¼ �
~T1ð1Þ, implying

that these two strategies are indeed dependent.

Simultaneous multiple linear relations by one player

As mentioned above, when the number Mn of possible actions for player n is more than two,

player n may be able to employ a ZD strategy with dim Vn� 2 to simultaneously enforce more

than one linear relations. (We note that this is impossible for public goods game [15, 16]

because the number of action for each player is two.) Such a possibility has never been

reported in the context of ZD strategies. Here, we provide a simple example of such a situation

in a two-player three-action symmetric game.

We consider the 3 × 3 symmetric game

s1 ¼ ð0; r1; 0; r2; 0; 0; 0; 0; 0Þ
T

s2 ¼ ð0; r2; 0; r1; 0; 0; 0; 0; 0Þ
T
:

ð13Þ

We remark that s1, s2, and 19 are linearly independent when r1 6¼ r2 and r1 6¼ −r2. We choose

strategies of player 1 as

T1ð1Þ ¼ ð1; 1 � p; 1; p0; 0; 0; 0; 0; 0ÞT

T1ð2Þ ¼ ð0; q; 0; 1 � q0; 1; 1; 0; 0; 0ÞT

T1ð3Þ ¼ ð0; p � q; 0; q0 � p0; 0; 0; 1; 1; 1ÞT
ð14Þ
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with 0� p� 1, 0� q� 1, 0� p0 � 1, 0� q0 � 1, q� p, and p0 � q0. Then we obtain

q0r1 þ qr2

p0q � pq0
~T 1ð1Þ þ

p0r1 þ pr2

p0q � pq0
~T 1ð2Þ ¼ s1 ð15Þ

q0r2 þ qr1

p0q � pq0
~T 1ð1Þ þ

p0r2 þ pr1

p0q � pq0
~T 1ð2Þ ¼ s2: ð16Þ

Therefore, player 1 can simultaneously control average payoffs of both players, e1 and e2, as e1

= e2 = 0. Note that σ with s1(σ) = 0 is an absorbing state regardless of the strategy of player 2 in

this case.

In general, when one player simultaneously enforces two linear relations in two-player

multi-action symmetric games, only e1 = e2 = C is allowed with some C. This is explained as

follows: Assume that player 1 can simultaneously enforce e1 = C1 and e2 = C2 with C1 6¼ C2 by

one ZD strategy. Because the game is symmetric, player 2 can also simultaneously enforce e1 =

C2 and e2 = C1 independently by one ZD strategy. This contradicts the consistency of ZD strat-

egies (Proposition 1). Therefore, the only possibility is e1 = e2 = C.

The above argument can be extended straightforwardly to the multi-player case. For that

purpose, we introduce some notions of symmetric multi-player games. The following defini-

tion of a symmetric multi-player game is due to von Neumann and Morgenstern [30, Section

28].

Definition 4. A game is symmetric with respect to a permutation π on {1, . . ., N} if Mn = Mπ

(n) holds for any n 2 {1, . . ., N} and if π preserves the payoff structure of the game, that is,

spðnÞðσÞ ¼ snðσpÞ ð17Þ

holds for any σ 2 S and for any n 2 {1, . . ., N}, where σπ� (σπ(1), . . ., σπ(N)).

The following definition is due to Ref. [31].

Definition 5. A game is weakly symmetric if for any pair of players n and �n there exists some
permutation π on {1, . . ., N} satisfying pðnÞ ¼ �n such that the game is symmetric with respect to
π.

Consider an N-player weakly symmetric game. Assume that one player simultaneously

enforces N independent linear relations on the average payoffs {en}n 2 {1, . . ., N} of N players via

adopting an N-dimensional ZD strategy. (Note that for this to be possible the number Mn of

actions should satisfy Mn� N + 1). Then, the average payoffs {en}n2{1,. . .,N} should be simulta-

neously controlled, but they should satisfy e1 = e2 = � � � = en due to the consistency of ZD

strategies.

The difficulty of construction of a ZD strategy of one player with dimension N in weakly

symmetric N-player games can be seen in the following two propositions, whose proofs are

given in Methods.

Proposition 3. In a weakly symmetric N-player game, if the strategy vectors of one player con-
tain no zero element, then a ZD strategy of the player with dimension N is impossible.

Proposition 4. In a weakly symmetric N-player game, if payoffs sn(σ) of player n are different
from each other for all σ, then a ZD strategy with dimension N is impossible.

Discussion

In this paper, we have derived ZD strategies for general multi-player multi-action public-mon-

itoring games, in which players cannot observe actions of other players. By formulating ZD

strategy in terms of linear algebra, we have proved that linear payoff relations enforced by ZD

players are consistent. Furthermore, we have proved that linear payoff relations enforced by
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players with ZD strategies are independent under a general condition. We emphasize that

these results hold not only for imperfect-monitoring games but also for perfect-monitoring

games. We have also provided a simple example in which one player can simultaneously

enforce more than one linear constraints on the expected payoffs. These results elucidate con-

straints on ZD strategies in terms of linear algebra.

Although we have discussed mathematical properties of ZD strategies if exist, we do not

know the criterion for whether ZD strategies exist or not when a game is given. For example,

we can easily show that ZD strategy does not exist for the rock-paper-scissors game, which is

the simplest two-player three-action symmetric zero-sum game. (See S1 Text for the proof.)

Whereas, we can also show that there is a two-player three-action symmetric zero-sum game

for which ZD strategy exists, which is also provided in S1 Text. Generally, the dimension of

span S is smaller than N + 1 for zero-sum games, and construction of ZD strategies for zero-

sum games is expected to be more difficult compared to non-zero-sum games. Consistency

together with constraints on payoffs such as symmetry and linear dependence may be useful to

specify the space of ZD strategies which can exist. Specifying a general criterion for the exis-

tence of ZD strategies is an important future problem.

In addition, it should be noted that ZD strategies are not always “rational” strategies, which

have been a main subject of game theory. Therefore, investigation of ZD strategies in terms of

bounded rationality [32] may be needed. Specifying the situation where ZD strategies are

adopted is another important problem.

Another remark is related to memory of strategies. In this work, we considered only

memory-one strategies. In Ref. [6], it has been proved that a player with longer memory

does not have advantage over a player with short memory in terms of average payoff in two-

player games. In Ref. [16, 19], it has been shown that this statement also holds for multi-

player games. Therefore, considering only memory-one strategies should be sufficient even

in our public-monitoring situation. Longer memory strategies attract much attentions in

repeated games with implementation errors [33, 34]. Extension of ZD strategies to longer

memory case may lead to different evolutionary behavior compared to memory-one

strategies.

We remark on the effect of imperfect monitoring. In perfect monitoring case, the strategy

vectors are arbitrary as long as they satisfy the conditions for probability distributions. In con-

trast, in imperfect monitoring case, forms of the strategy vectors are constrained by Eq (5).

Therefore, the space of ZD strategies for imperfect-monitoring games is generally smaller than

that for perfect-monitoring games. In S1 Text, we provide examples of ZD strategies in simple

imperfect-monitoring games.

Methods

Proof of Lemma 1

Assume to the contrary that u � g1M 2 span T with γ 6¼ 0. Taking the inner product of v with

the stationary distribution ρ, one has r>u ¼ 0 since u 2 span T is represented as a linear com-

bination of the strategy vectors and since the inner product of a strategy vector and the station-

ary distribution is zero. On the other hand, gr>1M ¼ g holds because of the normalization of

the stationary distribution. Therefore we obtain γ = 0, leading to contradiction.

Proof of Proposition 2

We first show the following lemma.
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Lemma 2. Let N0 be a subset of players. Assume that ~TnðsnÞ does not have zero elements for
any n 2 N0 and any σn 2 {1, . . ., Mn}. For n 2 N0, let vn be an arbitrary non-zero vector in
span Tn. Then {vn}n2N0 are linearly independent.

Proof. We assume to the contrary that {vn}n2N0 are linearly dependent. Then there is a set of

coefficients {an}n2N0 with which ∑n2N0anvn = 0M holds. Without loss of generality we assume an
6¼ 0 for n 2 N0.

Since un 2 span Tn, it is expressed as un ¼ Tncn with a non-zero vector cn ¼ ðcn;1; . . . ; cn;Mn
Þ
>

.

Let ~sn � arg minsn2f1;...;Mng
fancn;sng, where ties may be broken arbitrarily, and ~cn � cn;~sn . With

Eq (8), one obtains

vn ¼ T nðcn � ~cn1Mn
Þ; ð18Þ

and thus

anvnðσ0Þ ¼
XMn

sn¼1

anðcn;sn � ~cnÞ~Tnðsnjσ
0Þ: ð19Þ

We show that the inequality

anðcn;sn � ~cnÞ~Tnðsnjσ
0Þ � 0 ð20Þ

holds for any n, any σn 2 {1, . . ., Mn}, and any σ0 2 S satisfying σ0n ¼ ~sn. We first note that for

any strategy vector ~TnðsnÞ with action σn 2 {1, � � �, Mn}, one has, from Eq (6),

~Tnðsnjσ
0Þ

(
� 0; σ0n ¼ sn;

� 0; σ0n 6¼ sn:
ð21Þ

Fix any σ0 2 S satisfying σ 0n ¼ ~sn for a moment. Then, for sn ¼ ~sn one has cn;sn ¼ ~cn by defini-

tion, making the left-hand side of Eq (20) equal to zero. For sn 6¼ ~sn, on the other hand, one

has anðcn;sn � ~cnÞ � 0 by definition. Also, since σ0n ¼ ~sn 6¼ sn, from Eq (21) one has

~Tnðsnjs
0Þ � 0. These imply that the inequality (20) holds for sn 6¼ ~sn. Putting the above argu-

ments together, we have shown that the inequality (20) holds for any n, any σn 2 {1, . . ., Mn},

and any σ0 2 S satisfying σ0n ¼ ~sn.

Fix any σ0 2 S satisfying σ 0n ¼ ~sn for all n 2 N0. The above argument has shown that the

inequality (20) holds for any n and any σn 2 {1, . . ., Mn}. On the other hand, at the beginning

of the proof we have assumed that

X

n2N0
anvnðσ

0Þ ¼
X

n2N0

XMn

sn¼1

anðcn;sn � ~cnÞ~Tnðsnjσ
0Þ ¼ 0 ð22Þ

holds, implying that the summand anðcn;sn � ~cnÞ~Tnðsnjs
0Þ is equal to zero for any n 2 N0 and

any σn 2 {1, . . ., Mn}. By assumption, an 6¼ 0 and ~Tnðsnjs
0Þ 6¼ 0, so that one has cn;sn ¼ ~cn, and

consequently, un ¼ ~cnTn1Mn
¼ 0M , leading to contradiction.

The proof of Proposition 2 is straightforward by taking vn as belonging to S in Lemma 2.

Proof of Proposition 3

We first show the following lemma.

Lemma 3. Consider an N-player game which is symmetric with respect to a permutation π on
{1, . . ., N}. Assume that the column vectors of S are linearly independent. For any pair of players
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n and �n satisfying n 6¼ pð�nÞ, if the strategy vectors of these players contain no zero element, then
it is impossible for these players to adopt ZD strategies with which player n enforces linear rela-
tion e>a ¼ 0 with α 6¼ 0N+1, and where player �n enforces e>ap ¼ 0, where
ap � ða0; apð1Þ; . . . ; apðNÞÞ

>
.

Proof. We assume to the contrary that there exists α 6¼ 0N+1 satisfying the properties stated

in Lemma 3. By assumption, Sa 2 Vn ¼ span Tn \ span S and Sap 2 V�n ¼ span T�n \ span S.

There then exist cn and �c�n satisfying Tncn ¼ Sa and T�n�c�n ¼ Sap. One has

ðSαpÞðσ
0
p
Þ ¼ a0 þ

XN

n¼1

apðnÞsnðσ
0

p
Þ

¼ a0 þ
XN

n¼1

apðnÞspðnÞðσ
0Þ ¼ ðSaÞðσ 0Þ;

ð23Þ

where the second equality is due to the assumed symmetry of the game with respect to π. Letting

~T �n ;pðs�n js
0Þ � ~T �nðs�n js

0
p
Þ, ~T�n ;pðs�nÞ � ð

~T �n ;pðs�n js
0ÞÞ, and T�n ;p � ð

~T�n ;pð1Þ; . . . ; ~T�n ;pðM�nÞÞ, one

has

ðT �n ;p�c�nÞðσ
0Þ ¼ ðT �n�c�nÞðσ

0
p
Þ ¼ ðSapÞðσ0pÞ

¼ ðSaÞðσ0Þ ¼ ðT ncnÞðσ0Þ;
ð24Þ

implying that T�n ;p�c�n ¼ Tncn holds. Let u ¼ Tncn ¼ T�n ;p�c�n .

Let sn;max ¼ arg maxsn cn;sn and �s�n ;min ¼ arg mins�n
�c�n ;s�n

, where ties may be broken arbitrarily,

and cn;max ¼ cn;sn;max
and �c�n ;min ¼ �c�n ;�sn;min

. One then has

v ¼ T nðcn � cn;max1Mn
Þ ¼ T �n ;pð�c�n � �c�n ;min1M�n Þ: ð25Þ

Recalling that we have assumed n 6¼ pð�nÞ, let σ0 2 S be an arbitrary state satisfying σ0n ¼ sn;max

and s0
pð�nÞ ¼ �s�n ;min. Then, in view of Eq (21), one has

vðσ0Þ ¼
XMn

sn¼1

ðcn;sn � cn;maxÞ
~Tnðsnjσ

0Þ � 0;

¼
XM�n

s�n¼1

ð�c�n ;s�n
� �c�n ;minÞ

~T �nðs�n jσ
0

p
Þ � 0;

ð26Þ

implying that v(σ0) = 0 holds. Since ðcn;sn � cn;maxÞ
~Tnðsnjs

0Þ � 0 for all σn 2 {1, . . ., Mn}, they

are all equal to zero. Since ~Tnðsnjs
0Þ is assumed non-zero, one has cn;sn ¼ cn;max for all σn 2 {1,

. . ., Mn} and consequently cn / 1Mn
. One similarly has �c�n / 1M�n

. Therefore, from Eq (8) one

has Tncn ¼ T�n�c�n ¼ 0M. Due to the assumption of linear independence of the columns of S, it

in turn implies that α = 0N+1 holds, leading to contradiction.

It should be noted that Lemma 3 holds even if one takes �n ¼ n, in which case the Lemma

implies that, if the game is symmetric with respect to π, player n with π(n) 6¼ n cannot enforce

linear relations e>a ¼ e>ap ¼ 0 simultaneously. It should also be noted that Lemma 3 further-

more implies that it is impossible for that player to enforce a linear relation e>a ¼ 0 satisfying

απ = α 6¼ 0N+1. In other words, in a symmetric game no player to whom the game is symmetric

can enforce a linear relation with the same symmetry as the game itself.

Proposition 3 is a direct consequence of Lemma 3 in weakly symmetric multi-player games.
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Proof of Proposition 4

Without loss of generality, we assume that player k takes an N-dimensional ZD strategy deter-

mining the average payoffs en for n = 1, � � �, N. Due to the above discussion, only e1 = � � � = eN

= C is allowed. Letting aðnÞ � ð� C; 0; � � � ;
1

n̂
; � � � ; 0Þ for n 2 {1, . . ., N}, one can take

fSaðnÞgn2f1;...;Ng as a basis of the N-dimensional ZD strategy. Let c(n) be defined as

T kcðnÞ ¼ SαðnÞ ¼ sn � C1M; n 2 f1; . . . ;Ng: ð27Þ

By the assumption of weak symmetry, for any player n 6¼ k, there exists a permutation π satis-

fying π(n) = k such that the game is symmetric with respect to π. Noting that aðnÞ
p
¼ aðkÞ, from

Eq (23) one has

ðT kcðkÞÞðσ0pÞ ¼ ðT kcðnÞÞðσ0Þ: ð28Þ

For n 2 {1, . . ., N}, define sðnÞmax � arg maxsk c
ðnÞ
sk

and s
ðnÞ
min � arg minsk c

ðnÞ
sk

, where ties may be

broken arbitrarily provided that sðnÞmax 6¼ s
ðnÞ
min holds, and cðnÞmax ¼ cðnÞ

smax
and cðnÞmin ¼ cðnÞ

smin
. From Eq

(7), one has

T kcðnÞ ¼ T kðcðnÞ � cðnÞmax1Mk
Þ

¼ T kðcðnÞ � cðnÞmin1Mk
Þ:

ð29Þ

Then, from Eqs (28) and (21), we obtain for an arbitrary σ� satisfying σ�k ¼ s
ðnÞ
max and σ�n ¼ s

ðkÞ
min

snðσ�Þ � C ¼ ðT kðcðnÞ � cðnÞmax1Mk
ÞÞðσ�Þ � 0 ð30Þ

¼ ðT kðcðkÞ � cðkÞmin1Mk
ÞÞðσ�

p
Þ � 0 ð31Þ

implying sn(σ�) = C. On the other hand, we also obtain for an arbitrary σ�� satisfying σ��k ¼

s
ðnÞ
min and σ��n ¼ s

ðkÞ
max

snðσ��Þ � C ¼ ðT kðcðnÞ � cðnÞmin1Mk
ÞÞðσ��Þ � 0 ð32Þ

¼ ðT kðcðkÞ � cðkÞmax1Mk
ÞÞðσ��

p
Þ � 0 ð33Þ

implying sn(σ��) = C. Then, because we have assumed that all elements of the payoff vector sn

are different from each other, we have arrived at a contradiction.
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