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ABSTRACT: Molecular self-assembly is ubiquitous in nature, yet prediction of assembly
pathways from fundamental interparticle interactions has yet to be achieved. Here, we
introduce a minimal self-assembly model with two attractive and two repulsive beads bound
into a tetrahedron. The model is associated with a single parameter η defined as the
repulsive to attractive interaction ratio. We explore self-assembly pathways and resulting
assembly morphologies for different η values by discrete molecular dynamics. Our results
demonstrate that η governs the assembly dynamics and resulting assembly morphologies,
revealing an unexpected diversity and complexity for 0.5 ≤ η < 1. One of the key processes
that governs the assembly dynamics is assembly breakage, which emerges spontaneously at
η > 0 with the breakage rate increasing with η. The observed assembly pathways display a
broad variety of assembly structures characteristic of aggregation of amyloidogenic proteins,
including quasi-spherical oligomers that coassemble into elongated protofibrils, followed by
a conversion into ordered polymorphic fibril-like aggregates. We further demonstrate that η
can be meaningfully mapped onto amyloidogenic protein sequences, with the majority of amyloidogenic proteins characterized
by 0.5 ≤ η < 1. Prion proteins, which are known to form highly breakage−prone fibrils, are characterized by η > 1, consistent with
the model predictions. Our model thus provides a theoretical basis for understanding the universal aspects of aggregation
pathways of amyloidogenic proteins relevant to human disease. As the model is not specific to proteins, these findings represent
an important step toward understanding and predicting assembly dynamics of not only proteins but also viruses, colloids, and
nanoparticles.

■ INTRODUCTION
Molecular self-assembly, a spontaneous association of disor-
dered components into an ordered supramolecular structure, is
responsible for the formation of complex biological systems and
is becoming increasingly important in material sciences striving
to develop novel biomaterials with a great diversity of
biochemical and physical properties. Very little is known
about the mechanisms underlying the emergence of ordered
structures from disordered components. Recently, a remarkable
diversity of polyhedra that self-assemble through excluded
volume interactions at high packing fractions into entropic
crystals with various degrees of crystalline order was reported.1

At the opposite spectrum of a high packing fraction is protein
aggregation, which typically occurs in vivo at nanomolar and in
vitro at micromolar concentrations and must be consequently
facilitated by attractive intermolecular interactions. Aberrant
protein aggregation is at the core of many age-triggered
diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s
disease, amyotrophic lateral sclerosis, type II diabetes, systemic
amyloidoses, and others.2 These amyloid proteins do not share
any obvious aspects of the primary structure yet they self-
assemble into cytotoxic low-molecular weight oligomers and
form fibrils with a common cross-β structure.3 Inherent toxicity
of amyloid assemblies that cause the disease implies a common
assembly mechanism;4 however, assembly pathways are not
well understood.5 Here, we introduce a minimal model of self-
assembly that unifies common features of protein amyloido-
genesis and can be meaningfully mapped onto sequences of

amyloid proteins. Because the model is not protein specific, the
model predictions extend to self-assembly systems beyond the
aggregation of amyloidogenic proteins.

■ METHODS

Model Construction. A self-assembly model with a
minimal number of beads and interparticle interactions is
constructed as following. A one-bead molecule does not allow
for the implementation of both attractive and repulsive
interactions simultaneously. A two- or three-bead molecule is
either anisotropic or planar, which imposes a priori geometric
restrictions on self-assembling molecules. A three-dimensional
molecule can be formed by a minimum of four beads, which we
place at the four vertices of a tetrahedron (Figure 1A). Each
tetrahedron molecule thus represents a molecule (protein
monomer) comprising four beads each of a diameter D
connected by four covalent bonds of identical lengths d (Figure
1A,B). Each bead within a tetrahedron molecule is assigned
either an attractive (hydrophobic) or repulsive (hydrophilic)
character, resulting in three possible model variants: (i) one
hydrophilic and three hydrophobic beads, (ii) three hydrophilic
and one hydrophobic bead, and (iii) two hydrophobic and two
hydrophilic beads. Consistent with discrete molecular dynamics
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(DMD) requirements (see below), the effective intermolecular
hydrophobic attraction among hydrophobic beads and effective
intermolecular hydrophilic repulsion among hydrophilic beads
of different molecules are modeled by square-well potentials
with a depth Eh and a height Ep, respectively, (Figure 1C). A
hydrophobic and a hydrophilic bead interact through an
excluded volume only. The ratio of the two potential energies, η
= Ep/Eh, is hereafter referred to as the hydropathy ratio. In
variant (i), molecules aggregate into a single densely packed
quasi-spherical assembly (data not shown). In variant (ii),
molecules form stable dimers and trimers that do not assemble
further (data now shown). In variant (iii) (Figure 1A),
molecules exhibit complex assembly dynamics, which we
examine for several values of the hydropathy ratio.
Discrete Molecular Dynamics. When interparticle

potentials are approximated by a square-well or a combination
of square-well potentials, molecular dynamics can be reduced to
an efficient, event-driven discrete molecular dynamics (DMD).
DMD was initially applied to simulate a system of hard
spheres.6,7 More recently, several low, intermediate, and high
resolution protein models combined with DMD provided
important insights into protein folding and assembly.8−17

Here, we apply DMD to examine pathways of self-assembly
of the tetrahedron model. In each simulation, 1000 tetrahedron
molecules occupy the simulation box with an edge length of
111D, which corresponds to a volume fraction of 2.80 ± 0.13 ×
10−3. Periodic boundary conditions are used and temperature is
controlled by the Berendsen thermostat.18 We examine self-
assembly at five hydropathic ratios η = Ep/Eh = 0, 0.5, 0.75, 1,
1.25. For each η, 1000 tetrahedron molecules are placed into a
cubic lattice in the simulation box, followed by high-
temperature (kBT ≫ Eh) DMD simulations, which produce
five distinct initial ensembles of randomly distributed non-
interacting tetrahedron molecules. Thus obtained ensembles,
five for each of the five η values, resulting in 25 ensembles in
total, are then used as initial configurations for the production
runs. Here, a configuration is defined as an ensemble of
coordinates of all tetrahedron molecules in a given trajectory at
a given simulation time. Production runs are 10 × 106 (η = 0)
or 50 × 106 (η > 0) simulation steps long, and configurations
are recorded every 104 simulation steps, resulting in 5 × 1000 =

5000 configurations (η = 0) or 5 × 5000 = 25 000
configurations (η > 0).
The time scale of one simulation step, Δt, can be expressed

in terms of the spatial resolution, Δx ∼ D ≈ 10−9 m (thus
approximating a protein by a tetrahedron with a circumsphere
radius of ∼1 nm), and thermal energy using the equipartition
theorem,

Δ = Δ ≈t
x

v
D

m
k T

B

B

where we chose for the mass of one bead mB ∼ 10−22 kg,
equivalent to a sequence of ∼50 amino acids or a ∼ 200-residue
protein corresponding to each tetrahedron molecule. We use
the thermal energy at a physiological temperature 310 K, kBT ≈
4 × 10−21 J, resulting in Δt ≈ 16 × 10−9 s and the total
simulation time per trajectory at nonzero η values (50 × 106

simulation steps) of ∼8 × 10−3 s. Note that the unit of length,
D, and the mass of each bead, mB, can be adjusted to the size
and molecular mass of the protein of interest, which
consequently affects the time scale, Δt ∝ D(mB)

1/2, such that
without considering the actual protein sequences, self-assembly
of a larger protein occurs on a longer time scale than self-
assembly of a smaller protein.

Probability Distribution of Assembly Sizes. The
assembly size is defined as the number of molecules within a
connected cluster. A recursive algorithm is used to identify
tetrahedron molecules that belong to each cluster. A
tetrahedron molecule is identified as a part of the cluster if
any of its four beads is at a distance ≤2.22D from at least one of
the beads of the molecules within the cluster. To derive three-
dimensional plots displaying the time evolution of assembly
sizes for each trajectory, assembly size distributions are
calculated by using a binning interval of 5 × 105 simulation
steps. The probability distribution of assembly sizes is
calculated by using a 106 simulation steps-wide window,
resulting in 100 ensembles, each comprising 1000 tetrahedron
molecules in various assembly states. Then, the average over
the five probability distributions is taken, and the corresponding
standard error of the mean (SEM) values are calculated. If an
assembly size appears only once in a single trajectory, the
corresponding SEM value is set to zero. By moving the 106

simulation steps-wide window along the assembly trajectories
between 0 and 50 × 106 simulation steps, time evolution of the
size distribution for each η is derived.

Order Parameter. To quantify the degree of orientational
order within the assemblies of different sizes acquired for
different η values, we calculate the order parameter S of each
assembly. Each molecule in the assembly is characterized by an
axis that connects its two hydrophobic (red) beads. The angle θ
between the axis of each molecule and the long axis of the
elongated assembly, determined by the principal component
analysis,19 is then used to calculate S as the average:

θ= ⟨ − ⟩S
1
2

3 cos 12
(1)

over all molecules in the assembly. Note that due to periodic
boundary conditions, some assemblies are split in two or more
clusters, which are separated by the linear size of the cubic
simulation box in either of the three directions. To accurately
calculate the order parameter, these split clusters are merged
into a single cluster prior to the order parameter calculation.
The order parameter calculation is performed for each assembly

Figure 1. Definition of the tetrahedron model. (A) A tetrahedron
molecule comprises two hydrophobic (red) and two hydrophilic
(blue) beads of a diameter D located at the vertices of a tetrahedron
with the edge length d. (B) An “infinite” square-well intramolecular
potential models covalent bonds among the four beads in the
tetrahedron molecule. The bond length d can vary between r1 = 1.56D
and r2 = 1.61D. (C) Effective attractive (red) and repulsive (blue)
intermolecular potentials between pairs of hydrophobic and hydro-
philic beads, respectively. The distance rmin = D corresponds to a sum
of the van Der Waals radii of the two interacting beads and rmax =
2.22D is the interaction range distance. The strengths of the effective
hydrophobic attractive and hydrophilic repulsive potential are denoted
by Eh and Ep, respectively.
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of size larger than 5 within 5000 (η = 0) or 25 000 (η > 0)
recorded configurations, each containing 1000 tetrahedron
molecules. For each ensemble of assemblies of a size ≥6, the
average order parameter and SEM values are calculated by
taking into account the order parameter values of all assemblies
of a given size. For assemblies comprising 100 or more
tetrahedron molecules, a running window along the assembly
axis containing 50 molecules is used to calculate the local order
parameter, followed by an average over all local order
parameters.

■ RESULTS

Here a minimal model of self-assembling molecules, each
characterized by a combination of attractive and repulsive
interactions, is examined. Generally, any molecule prone to
aggregation is characterized by attractive and repulsive
interactions due to van der Waals and electrostatic interactions.
We adopt in the following protein folding and aggregation
terminology when discussing the origin of attractive and
repulsive interactions. In proteins, attractive and repulsive
interactions stem from the hydropathic (polar versus nonpolar)
and electrostatic (charged versus uncharged) nature of
individual residues. We posit that in addition to the effective
hydrophobic attraction, the effective hydrophilic and/or
electrostatic repulsion due to solvation of polar side chains by
water molecules plays a critical role in prediction of protein
assembly pathways and structures. We then construct a
tetrahedron model with two hydrophobic and two hydrophilic
beads as described in the Model Construction section
(Methods), in which the hydropathy ratio η = Ep/Eh between
the repulsive Ep and attractive Eh potential energies is
introduced as the only model parameter (Figure 1).
Self-assembly of the tetrahedron model is studied in the

absence of repulsion among the hydrophilic beads (η = 0) and
at four different hydropathy ratios (η = 0.5, 0.75, 1, and 1.25).
To avoid a comparison of the assembly pathways of proteins
with vastly different solubilities, the energy scale Eh is adjusted
for each η to keep the final monomer concentration within the
range of 10−16% (Table 1). For each η, five trajectories of self-
assembly from initially monomeric ensembles of 1000
tetrahedron molecules are acquired and analyzed. For each
trajectory, time evolution of assembly sizes is monitored and
displayed as a three-dimensional plot (Figure 2), in which each
assembly is also characterized by an order parameter as

described in the Order Parameter section (Methods),
measuring a degree of the orientational order of molecules
within the assembly (Figure 2). Below, we refer to small, quasi-
spherical assemblies as oligomers to distinguish them from
elongated, curvilinear assemblies (protofibrils) and more
ordered assemblies (fibrils).

Amorphous Assembly at η = 0. Figure 3A shows time
evolution of assembly sizes for four representative trajectories
corresponding to η = 0, 0.5, 1, and 1.25, respectively. At η = 0,
the initial hydrophobic collapse driving the assembly occurs
rapidly, bringing the monomer concentration from the initial
100% to the final value of ∼14% (Table 1). Within the first 106

simulation steps (Figure 4A), initial monomers rapidly
assemble into an aggregate comprising of 800−900 molecules,
which remains in a steady-state equilibrium with monomers
(Figure 3A, left) and small populations of dimers and trimers
(Table 1). All assemblies have a relatively low order parameter
as color-coded in Figure 3A (left). The assembly proceeds
through formation of quasi-spherical oligomers, further
elongating into larger curved tubules, which collapse onto
themselves, exposing nonhydrophobic (blue) and shielding
hydrophobic (red) beads from the “solvent”, and eventually
form a large quasi-spherical aggregate with an overall porous
morphology (Figure 3A, right). The high bending propensity of
these aggregates is reflected in their low order parameter for all
five trajectories, which display almost identical assembly
pathways (Figure 2).

Transient Oligomers and Protofibril-like Assemblies
at η = 0.5. Simulations at η = 0.5 can be characterized by two
assembly stages. The initial assembly stage lasts ∼10 − 20 ×
106 simulation steps (Figure 3B, left), which is an order of
magnitude longer than the hydrophobic collapse observed for η
= 0. During this initial stage, smaller quasi-spherical oligomers
coexist with larger elongated aggregates and a rapid elongation
of large aggregates is mostly driven by oligomer addition. The
assembly size distribution averaged over all five trajectories
(Figure 2) reveals a large number of oligomers comprising 30−
70 tetrahedron molecules forming within ∼106 simulation steps
(Figure 4B, black curve). These oligomers then coalesce into
larger assemblies comprising 100−140 tetrahedron molecules
at 1−2 × 106 simulation steps (Figure 4B, blue curve). After
this initial assembly stage (at ∼20 × 106 simulation steps),
oligomers disappear, marking the onset of the late assembly
stage. In the late assembly stage, the elongated aggregates either
increase or decrease in length at a rate distinctly lower than the
aggregation rate of the initial assembly stage, while persisting in
a steady-state equilibrium with the monomer population and
minor populations of dimers and trimers (Table 1). Large
aggregates at this late stage increase or decrease in size
predominantly by monomer association and dissociation. In
addition to this predominant growth dynamics, two additional
albeit less frequent processes are noted: (a) merging of two
elongated assemblies into a single larger elongated assembly
and (b) breaking of an elongated aggregate into two smaller
aggregates, which continue to either increase or decrease in
length. The second process of aggregate breakage results in
smaller assemblies of various sizes (Figure 4B, cyan, green,
orange, and red curves). The morphology of the assemblies
observed in simulation at η = 0.5 differs from those observed
for η = 0. All assemblies at η = 0.5 have a considerably larger
order parameter than those observed in simulations at η = 0.
The order parameter of assemblies increases with their size
(Figure 3B, left). Elongated aggregates are considerably less

Table 1. Energy Unit and Steady-State Monomer, Dimer,
and Trimer Concentrationsa

η = Ep/
Eh

Eh
[kBT] [monomer] [%] [dimer] [%] [trimer] [%]

0.00 0.97 14.027 ± 0.229 0.408 ± 0.028 0.014 ± 0.004
0.50 1.16 11.000 ± 0.383 0.272 ± 0.024 0.007 ± 0.003
0.75 1.27 10.737 ± 0.412 0.249 ± 0.016 0.007 ± 0.001
1.00 1.37 12.768 ± 0.268 0.430 ± 0.031 0.025 ± 0.005
1.25 1.45 15.687 ± 0.095 0.886 ± 0.016 0.052 ± 0.009

aThe potential energy Eh, associated with the effective hydrophobic
attraction, which represents a unit energy in our model is adjusted for
each hydropathy ratio η to yield comparable steady-state monomer
concentration (solubility). For each η, steady-state monomer, dimer,
and trimer concentrations and their SEM values are calculated by
averaging over monomer, dimer, and trimer concentrations for each
trajectory within 9−10 × 106 steps (η = 0) or 49−50 × 106 steps (η >
0), followed by averaging over the five trajectories.
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prone to bending than those observed for η = 0, but display
kinks and can be slightly bent (Figure 3B, right). Unlike
trajectories at η = 0, trajectories at η = 0.5 display significant
variations (Figure 2).
Breakage-Dominated Assembly at η ≥ 1. A two-stage

assembly process observed for η = 0.5 is absent from
simulations at η = 1. All trajectories acquired at η = 1 reach a
steady state rapidly within 106 simulation steps. The assembly
pathways appear to be characterized by a single assembly
growth rate (Figure 2). This rate is slightly lower than the one
characterizing the initial assembly stage but notably larger than
the elongation rate observed in the late assembly stage at η =
0.5. Importantly, the assembly dynamics at η = 1 is dominated
by assembly breakage, which critically reduces the size of the
largest aggregate. Consequently, the largest aggregate in the
trajectory shown in Figure 3C (left) comprises ∼400
tetrahedron molecules. Time evolution of the assembly size
distributions reveals an abundance of quasi-spherical oligomers
made of 20−30 molecules that form within the first 106

simulation steps (Figure 4C, black curve). The corresponding
peak in the assembly size distribution decreases and broadens at
longer simulation times (Figure 4C, blue, cyan, green, orange,
and red curves). Unlike in simulations at η = 0.5, where the
oligomer assemblies disappear after the initial assembly stage,
the assemblies of ∼20−30 molecules persist at all simulation
times, and give rise to assemblies of ∼60 − 80 and ∼100 − 120
tetrahedron molecules, respectively (Figure 4C, red curve).
This multimodal character of the assembly size distribution
indicates that larger assemblies form through coalescence of

smaller oligomers rather than through monomer addition. The
steady−state pool of assemblies smaller than ∼120 is a cause of
a rapid growth of larger aggregates. A large breakage rate
characteristic for η = 1 results in a broad distribution of
assembly sizes up to ∼550 (Figure 4C, green, orange, red
curves). Similar to simulations at η = 0 and η = 0.5, molecules
self-assemble initially into smaller quasi-spherical oligomers,
followed by formation of elongated aggregates. The largest
elongated aggregates show several kinks (Figure 3C, right).
Some trajectory-to-trajectory variability is observed at η = 1,
reflected in a variable size of the largest aggregate (Figure 2).
Simulations at η = 1.25 are characterized by a steady state

dynamics, which is reached within ≤106 simulation steps
(Figure 3D, left). The rate of breakage is significantly higher
than at η = 1, thus abolishing aggregates larger than ∼120.
Consequently, a steady-state assembly size distribution
centered at the assembly size 25 with additional broader and
less significant peaks centered at sizes ∼50 and ∼90,
respectively, is observed (Figure 4D, red curve). The assembly
proceeds through formation of smaller oligomers, followed by
formation of elongated aggregates without any notable kinks or
bending (Figure 3D, right). No significant trajectory-to-
trajectory variability is observed (Figure 2).

Complex and Diverse Assembly Pathways at η = 0.75.
The most variable assembly kinetics is observed for 0.5 ≤ η ≤ 1,
where the competition between the effective hydrophobic
attraction and hydrophilic repulsion combined with thermal
fluctuations results in a complex competing dynamics, as
demonstrated by simulations at η = 0.75, which display the

Figure 2. Assembly pathways of all trajectories. Three-dimensional plots showing probability distributions P(n) of different assembly sizes n as a
function of the simulation time t during the process of assembly starting from an ensemble of spatially separated (monomeric) tetrahedron
molecules. Three−dimensional plots for each of the five trajectories, labeled as S1, S2, S3, S4, and S5, for each of the five η values are displayed. The
average order parameter S that characterizes each assembly is color coded as shown on the color scale.
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largest trajectory-to-trajectory variability (Figure 2). Assembly
dynamics shows characteristics of a two-stage aggregation
process (observed for η = 0.5) as well as a relatively high
breakage rate (observed for η = 1). Unique to simulations at η
= 0.75 is a simultaneous occurrence of the fast and slow
assembly dynamics, where one aggregate displays a fast growth
through oligomer addition and the other aggregate displays a
slow dynamics through monomer association and dissociation
(Figure 5A, black double-sided arrow). Although the fast
aggregation is more frequent earlier in the assembly process, it

is sporadically observed at later assembly stages as well,
depending on the amount of oligomers available for
coalescence with larger elongated aggregates (Figure 2). Figure
6 shows a merging process, during which the smaller assembly
attaches itself to the end of the larger aggregate (C),
temporarily forms a kink (D), and is subsequently integrated
into the larger aggregate, eventually eliminating the kink (F).
In the early assembly stage, we observe oligomers comprising

∼30 molecules (Figure 5B, top graph), which gradually
decrease in abundance at later assembly stages at the expense
of assemblies comprising up to 150 molecules as well as
considerably larger aggregates comprising up to ∼750
molecules (Figure 5B, bottom graph). This broad distribution
of assembly sizes is caused by breakage, which is more frequent
than for η = 0.5 but less frequent than for η = 1. Assembly into
smaller quasi-spherical oligomers is followed by formation of
elongated curvilinear protofibrils that eventually evolve into
large multi-domain aggregates, separated by kinks (Figure 5C).
Figure 5D shows four structurally distinct domains of a
polymorphic aggregate that forms following the pathway
described above. Domains I, III, and IV are cylindrically
symmetric yet display variable degrees of lateral order from the
most disordered (IV) to the most ordered (I), as shown in the
corresponding profiles (Figure 5D, bottom). Domain II, which
is not cylindrically symmetric, appears to be the most ordered
of the four domains and displays a sandwich-like profile.
Molecules in domain II are arranged into a double layer of 6−8
molecules in width. This highly structured domain emerges
from a less ordered domain and spreads to neighboring regions
in the course of the simulation (Figure 5E).

Morphology of the Assemblies Depends on the
Hydropathy Ratio. The assembly kinetics in our model is

Figure 3. Time evolution of assembly pathways. Three-dimensional plots showing the assembly size distribution or probability (z-axis) of all
assembly sizes (x-axis) at different times (y-axis) for representative trajectories (left) and their assembly pathways with characteristic morphologies
(right) for simulations at (A) η = 0; (B) η = 0.5; (C) η = 1; and (D) η = 1.25. The color code in (A) is used to characterize the order parameter of
each assembly in the three−dimensional plots. Note that the conformations are not displayed on the same scale: The final aggregates along assembly
pathways for η = 0, 0.5 (A,B, right) are considerably larger than those for η = 1 and 1.25 (C,D, right), however, their lateral dimensions are
comparable.

Figure 4. Time evolution of assembly size distributions. The average
assembly size distributions at η equal to (A) 0, (B) 0.5, (C) 1, and (D)
1.25 steadily evolve from the initial to the later assembly stages. Note
that for η = 0, the size distribution reaches steady state within the
initial 106 simulation steps. The error bars correspond to SEM values.
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driven by a competition between spontaneous aggregation and
disaggregation, controlled by the hydropathic ratio η, which
affects the assembly size distribution, breakage rate, and
assembly morphologies. The orientational order parameter of
assemblies increases with the assembly size for each η (Figure
7A). In addition, pentacosamer (25-mer) conformations are
more ordered and less prone to bending as η increases (Figure
7B).
Mapping to Natively Unfolded Amyloid Proteins.

Complex and diverse self-assembly dynamics observed for 0.5 <
η < 1 results in multi-domain aggregates, consistent with in
vitro observed molecular-level polymorphism of amyloid
fibrils,20 with bends and kinks (Figure 8A) that strongly
resemble the morphology of in vitro amyloid fibers (Figure
8B). Can our minimal protein model thus provide insights into

in vitro amyloid formation? Amyloid proteins assemble into
cross-β fibrils, stabilized by intermolecular hydrogen bonding

Figure 5. Characterization of the assembly at η = 0.75. (A) A three-dimensional plot showing the assembly size distribution or probability (z-axis) of
all assembly sizes (x-axis) at different times (y-axis) of the assembly process at η = 0.75. The color code on the right denotes the order parameter of
each assembly. (B) Assembly size distributions at several early (top) and later (bottom) assembly stages are displayed. (C−E) The assembly pathway
and corresponding morphologies observed in simulations at η = 0.75. (C) Initially, tetrahedron molecules form small quasi-spherical oligomers,
which further assemble into elongated protofibril-like aggregates. Finally, a large elongated assembly with distinct structural domains (I−IV),
including a sandwich-like ordered structure (II), emerges. (D) A closeup of the four distinct domains with the respective cross sections, displaying
distinct degrees of lateral ordering. (E) Time evolution of the sandwich-like ordered structure (II).

Figure 6. Time evolution of two merging assemblies for η = 0.75. (A−
C) Large elongated multi-domain assembly and a small aggregate
(inside a green circle) that are initially spatially separated, (D−F)
merge into a single aggregate. The time frames correspond to (A)
42.33 × 106; (B) 42.34 × 106; (C) 42.35 × 106; (D) 42.36 × 106; (E)
42.38 × 106; and (F) 44.37 × 106 simulation steps. Note that within
the 2 × 106 simulation steps between the last two time frames (E and
F), the initially formed kink between the two merged assemblies
smooths out as the smaller assembly integrates into the structure of
the larger aggregate.

Figure 7. Order parameter and characteristic pentacosamer con-
formations. (A) The average order parameter as a function of the
assembly size for the five different hydropathy ratios η. For each
assembly size, the order parameter is calculated for a window
containing a connected cluster of 50 tetrahedron molecules and then
averaged over all windows along the assembly axis. The error bars
correspond to SEM values. (B) Characteristic pentacosamer (25-mer)
conformations at different values of η.
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along the fibril axis.21−23 Yet, protein aggregation can occur in
the absence of hydrogen bonding. In sickle cell anemia, sickle
hemoglobin aggregates into polymers, causing a characteristic
sickle-cell shape of red blood cells.24 Whereas free energy
calculations need to account for hydrogen bonding, our model
reveals that a multi-stage assembly process that proceeds
through formation of quasi-spherical and elongated meso-
scopic-size aggregates, which eventually undergo a structural
conversion into polymorphic aggregates, occurs also in the
absence of hydrogen bonding.
The multi-stage assembly mechanism observed in our model

is consistent with previously reported theoretical and
experimental findings on amyloidogenic proteins. A recent
theoretical study postulated both association and breakage
processes to predict a variety of distinct aggregation pathways
in agreement with experimental data.25 Experimental studies on
amyloid β-protein (Aβ), one of the most studied proteins due

to its relevance to Alzheimer’s disease, which is the leading
cause of dementia in elderly, showed that its two predominant
alloforms, Aβ40 and Aβ42, form oligomers, which further
assemble into protofibrils and finally convert into fibrils.26,27

The existence of a nucleated conversion from prefibrillar into
fibrillar assemblies was recently confirmed through FlAsH
monitoring of Cys-Cys-Aβ aggregation.28 A structural con-
version from within a molten collapsed intermediates into a
structurally ordered fibril was also shown to be consistent with
experimental data on yeast Sup35 prion protein.29

A large group of amyloidogenic proteins is natively
unfolded.30 A tetrahedron molecule in our model represents
a monomer that retains its tertiary structure throughout the
assembly process. As such, it can be identified as an
aggregation-prone monomeric state of a natively unfolded
protein. Whereas the internal degrees of freedom associated
with intrinsically disordered nature of natively unfolded protein
monomers are not incorporated in our model, the existence of
such disorder implies that most amino acids in the sequence
will be for some time exposed to the solvent, analogous to the
four beads in the tetrahedron model. Consequently, it is
reasonable to map the ratio of hydrophilic to hydrophobic
amino acids, Np/Nh, in the sequence of natively unfolded
amyloidogenic proteins to the hydropathy ratio η of our model.
In this mapping, we implicitly assume that hydrophobic
collapse dominates protein self-assembly and that hydrogen
bonds, which are strongly directional, form among peptide
regions only after these regions have been driven into proximity
by effective hydrophobic interactions. This mapping also does
not distinguish between charged and noncharged hydrophilic
amino acids and thus all charged hydrophilic amino acids
effectively contribute to repulsive interactions. In aqueous
solutions, electrostatic interactions among charged amino acids
depend on pH and ionic concentrations that may under specific
conditions modify the overall repulsive to attractive interaction
ratio. However, most protein sequences are dominated by
noncharged amino acids and salt bridges between oppositely
charged amino acids tend to be exposed to the solvent and
rarely stabilize protein structures in water.31,32 Thus, attractive

Figure 8. Comparison of in silico and in vitro morphologies. (A) A
long in silico aggregate before (upper) and after (lower) the breakage
occurring at the position marked by black arrows (DMD simulations at
η = 0.75). Cross-sections to the left and to the right of the breakage
with mismatched morphologies are displayed at the bottom. (B)
Transmission electron micrograph of Aβ42 fibers characterized by
several kinks (green arrows) and breakages (red arrows). The image is
a courtesy of Drs. Louise C. Serpell, Julian Thorpe, and Thomas L.
Williams.

Table 2. Natively Unfolded Amyloidogenic Proteins and Their Np/Nh Values
a

protein ID length Chothia33 Janin34 Kyte-Doolittle35 Eisenberg36 Engleman37 average

ABri45 − 34 0.60 0.93 1.00 1.08 1.00 0.92
ADan46 − 34 0.56 0.75 0.88 0.86 0.88 0.79
α-Synuclein 1XX843 140 0.68 0.96 0.98 0.71 0.98 0.86
Amylin 2KB843 37 0.71 0.64 0.71 0.64 0.71 0.68
Aβ(1−40) 1BA443 40 0.53 0.65 0.82 0.48 0.82 0.66
Aβ(1−42) 1IYT43 42 0.47 0.58 0.74 0.44 0.74 0.59
Apolipoprotein-A1 P0264744 242 1.03 1.26 1.38 1.12 1.32 1.22
Calcitonin 2GLH43 33 1.00 1.00 1.12 0.89 1.12 1.03
Human Prion 1QLX43 210 1.71 1.35 1.86 0.70 1.57 1.44
Huntingtin 3IO443 449 0.88 0.90 0.97 0.76 0.92 0.89
Tau47 − 441 1.13 1.33 1.44 0.93 1.44 1.25
Transthyretin 1BM743 127 0.58 0.71 0.84 0.59 0.80 0.70
Yeast-Sup35 P0545344 685 1.24 1.32 1.41 1.04 1.38 1.28

0.86 ± 0.36

aThe ratio of hydrophilic to hydrophobic amino acids (Np/Nh) for each protein is calculated within each of the five distinct hydropathy scales.
Proteins are identified by their names and/or ID codes from Protein Data Bank43 or Universal Protein Resource.44 For the three proteins without
the ID codes, the source references are cited next to the protein name in the first column. The length of proteins is given in terms of the number of
amino acids in the sequence (third column). The averages over the five Np/Nh values corresponding to each of the five hydropathy scales for each
protein are shown in the last column. The average and standard deviation of the average Np/Nh values per protein of the last column are displayed at
the bottom right (bold font).
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electrostatic interactions are mostly not expected to signifi-
cantly contribute to inter-residue interactions during protein
self-assembly.
By employing several hydropathy scales previously reported

by Chothia,33 Janin,34 Kyte and Doolittle,35 Eisenberg et al.,36

and Engelman et al.,37 we identified the hydrophilic and
hydrophobic amino acids within each scale, counted the
number of hydrophobic and hydrophilic amino acids in the
sequence, and calculated Np/Nh for several natively unfolded
proteins, known to form amyloid fibrils (Table 2). A histogram
of the Np/Nh values from Table 2 demonstrates that the Np/Nh
values are distributed in the range 0.5 < Np/Nh < 2 (Figure 9).
The highest Np/Nh values are found for the human prion,
prion-like yeast-Sup35, and tau (Table 2).

High values of η > 1 in our model result in a high breakage
rate and relatively short and ordered aggregates. Prion proteins
are known to form brittle aggregates, prone to breakage, which
is associated with their infectious nature.38 Substantial evidence
indicates that tau protein displays prion-like characteristics by
initially aggregating in a few nerve cells in discrete brain areas
and then self−propagating and spreading to distant brain
regions.39 Most Np/Nh values from Table 2 fall into the range
0.5 < Np/Nh < 1, for which our model predicts complex and
diverse assembly dynamics with a broad assembly size
distribution. These proteins include Aβ40 and Aβ42 associated
with Alzheimer’s disease, amylin associated with diabetes
mellitus type 2, transthyretin associated with systemic
amyloidosis, α-synuclein associated with Parkinson’s disease,
and huntingtin associated with Huntington’s disease. Interest-
ingly, Aβ42, which aggregates faster and forms larger assemblies
than Aβ40 under equivalent in vitro conditions, has a lower Np/
Nh value of 0.59 than Aβ40 with Np/Nh = 0.66, consistent with
our model’s maximal assembly size decreasing with η in the
range 0.5 < η < 1. For η ≥ 0.75, assembly breakage in our
model creates a steady-state pool of oligomers, which form
from smaller and merge into larger assemblies. Assuming that
oligomers are the key toxic species responsible for patho-
genesis, even if lifetimes of oligomers are short, the assembly
dynamics that produces a constant pool of oligomers is a
persistent source of toxicity, which provides a plausible

mechanism through which a metastable assembly with a short
lifetime might exert toxicity over a longer time period.

■ CONCLUSIONS AND DISCUSSION

In summary, our tetrahedron model predicts complex self-
assembly into quasi-spherical oliogmers, curvilinear protofibrils,
and multi-domain aggregates, characteristic of in vitro observed
amyloid formation by natively unfolded amyloidogenic
proteins. Spontaneous assembly breakage and merging,
assembly size distributions, and a diversity of assembly
morphologies in our model are controlled by a single
parameter, the hydropathic ratio η, which can be meaningfully
mapped onto the hydrophilic to hydrophobic ratio of the
sequence of amyloidogenic proteins. We show that most
natively unfolded amyloidogenic proteins are characterized by
0.5 < η < 1, for which our model predicts the most complex and
diverse assembly dynamics.
There is no consensus on the size and structure of toxic

oligomers. In Alzheimer’s disease, different Aβ pre-fibrillar
species were reported in vitro and in vivo, depending on the
methodologies and experimental settings.40 Moreover, rela-
tively minor changes in the sequence between Aβ40 and Aβ42
result in distinct assembly pathways27 and oligomer structures10

that likely underlie distinct cytotoxic properties of the two
peptides, with Aβ42 that is genetically more strongly associated
with Alzheimer’s disease than Aβ40. Similarly, a single amino
acid mutation of Aβ can cause earlier onset of the disease and/
or altered pathology.41 A seeming contradiction between two
sides of the protein aggregation puzzle: (a) a large class of
proteins with variable sequences that aggregate into amyloid
fibrils and (b) small changes in the sequence and/or solvent
conditions that significantly alter the assembly pathways and
structures, can be reconciled within our model by noting that
both sequence and solvent modifications alter an overall
hydropathic nature of the protein, thus η, in the range, where
the assembly dynamics is the most sensitive.
Short hydrophobic peptides incubated with Aβ42 were

recently reported to inhibit Aβ42-induced toxicity in cell
cultures42 and subsequent computer simulations of Aβ42
assembly in the presence of these inhibitors elucidated the
structure of the resulting large amorphous hetero-oliogmers.16

By binding hydrophobic peptides to Aβ42, the overall
hydropathic ratio of hetero-assemblies, η, is lowered to η ≪
0.5, thereby biasing aggregation toward presumably less toxic
amorphous aggregates. The hydropathy parameter might thus
be critical for a deeper understanding of protein aggregation
dynamics and developing drugs that aim to alter aggregation
pathways in a way to minimize the damage caused by cytotoxic
oligomeric assemblies. While the discussion described above is
specific to protein aggregation, our model and its predictions
are applicable to a wide range of self−assembling systems and
elucidate a critical role of the repulsive to attractive
intermolecular interaction ratio in supramolecular structure
prediction.
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