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Abstract: In order to overcome the limitations of traditional road test methods in 5G mobile
communication network signal coverage detection, a signal coverage detection algorithm based
on distributed sensor network for 5G mobile communication network is proposed. First, the received
signal strength of the communication base station is collected and pre-processed by randomly
deploying distributed sensor nodes. Then, the neural network objective function is modified by using
the variogram function, and the initial weight coefficient of the neural network is optimized by using
the improved particle swarm optimization algorithm. Next, the trained network model is used to
interpolate the perceptual blind zone. Finally, the sensor node sampling data and the interpolation
estimation result are combined to generate an effective coverage of the 5G mobile communication
network signal. Simulation results indicate that the proposed algorithm can detect the real situation
of 5G mobile communication network signal coverage better than other algorithms, and has certain
feasibility and application prospects.

Keywords: 5G mobile communication network; distributed sensor network; neural network;
interpolation; PSO-BP-Kriging

1. Introduction

With the popularity of data services and smart terminals, 4G networks fails to satisfy people’s
requirements in terms of capacity, speed, bearer, and spectrum. Compared with 4G technology,
5G technology has greatly improved data transmission rates and spectrum resource utilization,
and the user experience, wireless signal coverage, and signal transmission stability have also been
significantly improved. It has the characteristics of low latency, low power consumption, security,
stability, and reliability [1,2]. Since 5G mobile communication network will realize further innovation
and integration in the fields of wireless, terminal, service and application scenarios, it has become an
inevitable trend and research hotspot in the field of communication.

The future 5G network will be characterized by high automation, intelligence, flexibility, high
efficiency, and stability. In order to better cope with the challenges brought by the development
of 5G networks, academia and industry around the world have launched in-depth research on
5G mobile communication technologies, including the 5th Generation Non-Orthogonal Waveforms
for Asynchronous Signaling (5GNOW) [3], Mobile and Wireless Communications Enablers for the
Twenty-Twenty Information Society (METIS) project [4], 5G Public-Private Partnership (5G PPP)
project, China’s IMT-2020 (5G) promotion group [5], South Korea’s 5G Forum (5G Forum) and Japan’s
5G research group “2020 and Beyond Ad Hoc” [5–7]. Up to now, the overall vision and performance
requirements of the future 5G network have reached a global consensus, including higher data traffic
and user experience rate, massive terminal connections, lower latency, higher reliability, and so
on [5–11].
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It is expected that the data traffic of 5G network will increase 1000 times more than that of the
4G network in the future, and the user experience rate will also increase 10 to 100 times. In order to
meet these requirements, 5G will present new breakthroughs in several key technologies, including
wireless transmission technology and ultra-dense heterogeneous network technology [12–14]. On the
one hand, advanced wireless transmission techniques can be utilized, or spectrum bandwidth can be
increased to increase spectrum resource utilization. On the other hand, improving spatial multiplexing
by cryptographic cell deployment is still the most effective way to increase the capacity of wireless
communication systems. Traditional wireless communication systems usually use cell splitting to
reduce cell radius. However, with the further reduction of cell coverage, cell splitting will be difficult
to carry out. It is necessary to deploy small low-power base stations intensively in indoor and outdoor
hot spots to form a super-dense heterogeneous network architecture. Due to the lower transmit power
and smaller cell radius of 5G mobile communication networks, high-precision detection of 5G mobile
communication network base station signal coverage has become one of the current research hotspots
and cutting-edge technologies.

At present, the more mainstream scheme of mobile communication network coverage detection is
to use vehicle-borne or hand-held test terminals and frequency sweepers to perform road tests [15,16].
The change of the direction of the smart antenna beam makes the traditional road test method
unsuitable for the 5G mobile communication network. The current 5G mobile communication network
is in the critical stage of testing and trial, and the signal coverage detection should be anytime,
anywhere, and repeatable. Traditional road test methods are time-consuming and laborious, and they
are not feasible in varied wild, especially harsh environments, failing to meet the technical requirements
of the current testing phase. In addition, although the 5G network adopts a series of technologies,
such as soft-defined cloud architecture, network virtualization and slicing, and establishes computing
and storage capabilities on the base station through edge computing to achieve low latency of network
services, the base station is physically present, and provides access and information interaction for
users through wireless transmission technology. Therefore, it is necessary to come up with a method
that can test 5G wireless coverage at any time, repeatably and in real time. This paper proposes a
research scheme for signal coverage detection through distributed sensor networks based on ad hoc
network technology, and the main contributions of our work are as follows:

1. Distributed sensor nodes are randomly deployed to collect the received signal strength indicator
(RSSI) of 5G communication base station, and the collected data are pre-processed by Gaussian
filtering, which reduces the influence of error on the performance of the algorithm.

2. The Delaunay triangulation algorithm is used to mesh the target area, and the selection of
interpolation points is realized.

3. An improved hybrid interpolation algorithm is proposed to estimate the RSSI value of the
interpolation point. The objective function of backpropagation (BP) neural network is modified
by the variogram of Kriging interpolation and improved particle swarm optimization (PSO)
algorithm, which overcomes the overly smooth spatial expression of traditional Kriging
interpolation and local convergence of BP neural network interpolation.

4. The data collected by the sensor node and the data estimated by the interpolation
point are processed comprehensively, then the coverage area situation of the 5G mobile
communication network is generated, realizing the reproducible real-time detection of the
wireless network coverage.

The rest of the paper is organized as follows: We first introduce the relevant research background
of the work in Section 2, and analyze the related literature cited. Then, in Section 3, the basic theoretical
knowledge of the algorithm is described. The architecture and specific steps of the algorithm are
described in Section 4. In Section 5, the performance of the algorithm is evaluated and the coverage
situation of the 5G mobile communication network is generated. Finally, we summarize our work
in Section 6.
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2. Related Work

The proposed scheme collects the RSSI values through the wireless sensor nodes deployed in the
target area of the 5G mobile communication network, and then comprehensively processes the data
collected by all the sensor nodes to generate the network coverage situation of the target area, thereby
realizing all-round automated sensing and satisfying 5G mobile communication network coverage
situation detection special requirements, such as real-time field reproducible detection [17]. By means
of UAV carrying and other methods, the wireless sensor node can be placed in the area to be tested,
especially in the area that is difficult to reach by traditional road test.

Since the data perceived by the distributed sensor node is only the RSSI value at the location of
the node, the final coverage of the 5G mobile communication network in the entire area is obtained.
Therefore, it is necessary to estimate the RSSI value for other areas that the sensor node cannot perceive.

At present, there are mainly two methods for RSSI value estimation: signal propagation model
estimation method and interpolation estimation method [18]. The signal propagation model estimation
method is based on the distribution trend of the RSSI values data collected by the sensor nodes,
and the appropriate loss model is selected for estimation [19]. The complexity of the algorithm is
low, but the existing models usually cannot accurately match the complex and varied geographical
environment of the target area, resulting in low precision. So far, no mature model suitable for 5G
networks has been developed. However, the interpolation estimation method based on the feature
attributes of nodes in the neighborhood is relatively feasible and has high precision [20]. Commonly
used interpolation estimation methods include inverse distance weighted interpolation, Newton
interpolation, Kriging interpolation and so on. In [21], the Newton polynomial interpolation method
is used instead of the linear interpolation method to estimate the RSSI values, which improves the
interpolation precision. However, due to the introduction of the polynomial interpolation function,
the computational complexity increases. The inverse distance weighted interpolation method used
in [22] has higher precision when the interpolation points are more dispersed. However, since only the
positional relationship between nodes is considered, the spatial correlation is poor, and the calculation
amount is also large. In [23–25], based on the spatial correlation of the RSSI values received by
the sensor node, Kriging interpolation method is used to estimate the RSSI values of the perceived
blind zone. However, the smoothing effect of the Kriging interpolation tends to obscure important
information in areas with sharp changes in spatial data, resulting in inaccurate interpolation expression
in this region [26].

In recent years, timing analysis, stochastic simulation, artificial intelligence, and many other
methods have been used to overcome the shortcomings of the Kriging interpolation method. Among
them, artificial neural networks have strong capabilities in multi-attribute data classification and
pattern recognition, and are widely used in many fields such as signal processing [27,28]. Chagas
et al. successfully applied neural network technology to positioning problems based on RSSI value
estimation in [29,30]. Jia et al. found that Kriging interpolation can better reflect the spatial distribution
characteristics of the target region, but the accuracy of neural network interpolation is higher [31].
In [32], an improved model using BP neural network technology instead of Kriging global model is
proposed, which is further extended by linear weighted aggregation method to improve the modeling
accuracy. Katsuaki et al. proposed a neural Kriging interpolation method, which reproduces the
spatial characteristics of regionalized variables and improves the interpolation accuracy to some extent
in [33]. However, due to the local convergence of the neural network, the interpolation accuracy of the
above algorithm needs to be further improved. In [34–38], the PSO algorithm is used to optimize the
weight and threshold of BP neural network, and the PSO-BP model with higher precision and faster
convergence rate is obtained. The validity of the model is verified in practical applications.

In order to overcome the shortcomings of the above algorithm application in 5G mobile
communication network coverage detection, this paper proposes an improved hybrid interpolation
optimization algorithm. Through the correction of the objective function of BP neural network,



Sensors 2018, 18, 4390 4 of 19

the algorithm improves the credibility and accuracy of 5G mobile communication network
coverage detection.

3. Algorithm Description

3.1. The Principle of Kriging Interpolation

Kriging interpolation is a linear unbiased estimation method for studying spatial variability and
interpolation, which is commonly used in grid statistics in the field of geological survey [39,40]. In the
context of this paper, the principle is to estimate the RSSI value of the interpolation point by using the
RSSI value received by the sensor nodes in the domain.

Set the RSSI value of the interpolation point to R(x0), the RSSI values collected by m sensor nodes
in the neighborhood are R(xi)(i = 1, 2, · · · , m). Then, the estimation formula of Kriging interpolation
is defined in Equation (1):

R(x0) =
m

∑
i=1

λiR(xi), (1)

where λi represents the weight of R(xi) used for RSSI value estimation in the neighborhood. In order

to ensure an unbiased estimation, there is
m
∑

i=1
λi = 1, and R(xi) satisfies the second-order smoothness,

thus obtaining {
E[R(xi)− R(xj)] = 0
Var[R(xi)− R(xj)] = E

{
[R(xi)− R(xj)]

2} . (2)

To make R∗(x0) an unbiased estimation of R(x0), the estimated variance of x0 is required to be
the smallest:

Varmin(x0) = Var[R(x0)− R∗(x0)] = E
{
[R(x0)− R∗(x0)]

2
}

. (3)

By introducing the Lagrange multiplier µ to calculate the conditional extremum, it can be
expressed as

∂

∂λi
E{[R(x0)− R∗(x0)]

2 − 2µ
m

∑
i=1

λi} = 0, (4)

where i = 1, 2, · · · , m, the following Kriging linear equations can be obtained by derivation:
m
∑

i=1
λiγ(xi − xj) + µ = γ(x0 − xj)

m
∑

i=1
λi = 1 j = 1, 2, · · · , m

, (5)

where γ(xi − xj) =
1
2 E[R(xi)− R(xj)]

2 represents the value of variogram between xi and xj. Solving
Equation (5) gives the weight, λi.

The core of the Kriging interpolation is to determine the law of the change of the research object
(a variable) with the spatial position according to the feature attributes of the sample point, so as to
estimate the attribute value of the interpolation point. This law is the variogram. The variogram is
proposed to describe the spatial characteristics of the regionalized variables. The value of variogram
can be calculated by the following equation:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[R(xi)− R(xi + h)]2, (6)

where h represents the separation distance of a pair of sampling points, and N(h) represents the
number of points in all sampling points separated by h. The variogram curve γ(h) can be fitted by
calculating the value of variogram of different separation distances by Equation (6). From this curve,
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the value of the variogram between the sample point attribute and the interpolation point attribute in
the neighborhood can be obtained, and the Lagrange multiplier µ and the weight λi can be obtained
by substituting the value of variogram into Equation (5).

Usually, the existing variogram model is used to fit the curve of variogram by least square
method [23]. Based on this, the spatial distribution expressed by the Kriging interpolation is smooth.

3.2. The Principle of BP Neural Network Interpolation

BP neural network is a multilayer feedforward neural network based on error back propagation
algorithm. Numerous studies have shown that a three-layer BP neural network with sufficient nodes
in the hidden layer has the ability to simulate any complex nonlinear mapping [41].

Suppose there are P samples, each sample has N input components and M output components
for network training. Calculate the node output by using the node function Equation (7):

uk
i = f (

lk−1

∑
j=1

wk,k−1
i,j uk−1

j − θi), (7)

where uk
i is the node output; wk,k−1

i,j is the input weight; θi is the node threshold; f is the output
function, usually taking the Sigmoid function: f (x) = 1/(1 + exp(−x)).

Calculate the output error by using the objective function F:

F =
1
2

E[
N

∑
p=1

M

∑
j=1

(yj,p − oj,p)
2], (8)

where oj,p represents the network output, and yj,p represents the desired output.
When F is less than the set error ε, the network training ends. Interpolation estimation of unknown

point attributes can be performed by using the trained network. Although the accuracy of the results
estimated by the neural network interpolation method is high, the spatial correlation structure cannot
be guaranteed.

4. 5G Mobile Communication Network Coverage Detection Algorithm

Randomly deployed distributed sensor nodes have a certain number of perceived blind zones.
The 5G mobile communication network coverage detection technology proposed in this paper uses
the hybrid interpolation optimization algorithm to realize the network coverage detection for the
perceived blind zone. The algorithm architecture is shown in Figure 1.

Figure 1. 5G mobile communication network coverage detection technology architecture.

The algorithm is mainly composed of three modules: data preprocessing, hybrid interpolation
estimation, and 5G mobile communication network coverage situation generation. Among them,
data preprocessing mainly completes data collection and processing and target selection. Hybrid
interpolation estimation mainly completes the establishment of objective function model, particle
swarm optimization, and interpolation estimation. 5G mobile communication network coverage
situation generation combines pre-acquired RSSI data and interpolation estimation results to generate
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equal signal strength lines, then network coverage situation of 5G mobile communication network
target area is obtained.

4.1. Data Preprocessing

First, to ensure the accuracy of the collected data, it is necessary to filter out small probability
interference items in the sample. Since the RSSI values of multiple independent repetitive acquisitions
obey the Gaussian distribution, Gaussian filtering can be used to filter out those small probability
interference terms [42]. Then, the RSSI values in the range of f (x) ≥ 0.6 (empirical value) in the
probability density function Equation (9) are selected, and the mean value is obtained as the sample
data required after the preprocessing.

f (x) =
1√
2πσ

exp[− (x− µ)2

2σ2 ], (9)

σ2 =
1

n− 1

n

∑
m=1

(RSSIm − µ)2, (10)

µ =
1
n

n

∑
m=1

RSSIm, (11)

where RSSIm represents the mth acquisition result, n represents the number of acquisitions, µ is the
mean, and σ2 is the variance.

Then, the pre-processed sample data are used to divide the target area and select the interpolation
points. Delaunay meshing scheme divides the target area into several closed triangles, the sensor node
position being the triangle mesh vertex. An interpolation point can be selected in each grid [43]. Due to
the limited space, the paper only provides a brief introduction here.

4.2. Hybrid Interpolation Optimization Algorithm

4.2.1. Objective Function Establishment

The spatial correlation of the Kriging interpolation mentioned above is good, but the expression is
too smooth. The accuracy of the neural network interpolation is high, but the spatial structure is weak.
To overcome the shortcomings of the two methods, the objective function is established as follows:

F = 1
2

{
1
n

n
∑

i=1
[ yi−oi

y ]
2
+ 1

N(hk)

N(hk)

∑
k=1

[ γ(hk)−γ∗(hk)
γ ]

2
}
+

1
2

{
1

n1

n
∑

i=1
[max( oi−omax

omax−omin
, 0)]

2
+ 1

n2

n
∑

i=1
[min( oi−omin

omax−omin
, 0)]

2
} , (12)

where γ(hk) represents the value of variogram of the sample data; γ∗(hk) represents the value of
variogram calculated by the network output; hk is the separation distance of group k sensor node pairs;
N(hk) is the number of points of all sensor nodes separated by hk; y and γ are the average values of yi
and γ(hk), respectively; omax and omin are the maximum and minimum values of the estimated values,
respectively; n1 and n2 are the number of nodes whose network output is larger than omax and smaller
than omin, respectively.

As a new learning standard, this function contains the error of the variogram and the estimated
value, which can effectively improve the interpolation expression of the neural network.

4.2.2. Improved Particle Swarm Optimization Algorithm for BP Neural Network

Although the BP neural network error back propagation algorithm tends to converge to a small
network, it is likely to fall into the local minimum under the condition of training complex data
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distribution patterns. Particle swarm optimization has the characteristics of easy implementation,
high efficiency, and intelligence [44]. By introducing the neural network objective function into the
particle swarm fitness function, the initial weight coefficient can be optimized. However, the standard
particle swarm optimization algorithm is also likely to fall into local optimum. In order to improve the
effectiveness of the algorithm, we need to improve the standard particle swarm optimization algorithm.

The principle of the standard particle swarm algorithm is as follows, in the process of the
algorithm, the particle updates its speed and position according to the following equation:{

vid(t + 1) = wvid(t) + c1r1(pid(t)− xid(t)) + c2r2(pqd(t)− xid(t))
xid(t + 1) = xid(t) + vid(t + 1)

, (13)

where vid is the dth velocity component of the ith particle; xid is the dth position component of the ith
particle; Pid is the optimal position component of the ith particle; Pqd is the optimal position component
of all particles; c1 and c2 are learning factors, r1 and r2 are random numbers in [0,1], and ω is an inertia
factor. To balance the global detection and local mining capabilities, ω can be dynamically adjusted
during the search process. Eberhart et al. proposed a ω linear decreasing adjustment strategy in [45]:

ω = ωmax − (ωmax −ωmin)t/Tf , (14)

where ωmax and ωmin are the initial and extinction values of the inertia factor, respectively, t is the
current iteration time, and Tf is the number of final iterations. This strategy improves the performance
of the algorithm to some extent, but in the initial iteration, ω easily becomes too large and causes
oscillation, which leads to low efficiency of the algorithm search. In the later iteration, ω easily becomes
too small, leading to lower search accuracy.

To solve this problem, we propose a volatility factor σ which gradually decreases with the number
of iterations. The specific equation is as follows:

ω = ωmax − (ωmax −ωmin)t/Tf + σ× randn, (15)

σ = e(−t/Tf )/2, (16)

where randn is a random number obeying a Gaussian distribution with a mean of 0 and a variance of
1. In the initial iteration, ω with large fluctuation factor improves the global detection of the algorithm;
in the later iteration, ω with smaller fluctuation factor enhances the local exploitation ability of the
algorithm. In general, when ω is attenuated from 0.9 to 0.4, the algorithm works better [46].

Figure 2 is the flowchart diagram, which shows the steps to optimize the BP algorithm by the
improved particle swarm optimization algorithm.

The specific algorithm steps are as follows:

(1) Particle initialization;
(2) Calculate the value of fitness function;
(3) Find the optimal values of individuals and groups;
(4) Update the speed and position of particles. If the set maximum number of iterations is reached in

advance during the optimization process, it stops and outputs the optimal solution at this time.
Otherwise, turn to the second step and continue to execute the loop;

(5) Obtain the optimal weight and threshold and assign it to the BP network;
(6) Calculate the error of the BP network model. If the error does not reach the target value, continue

to update the weight and threshold of the network until the condition is met.
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Figure 2. Flowchart of PSO-BP algorithm.

4.2.3. Hybrid Interpolation Optimization Algorithm Steps

Compared with the ordinary Kriging interpolation and BP neural network interpolation,
the PSO-BP-Kriging interpolation algorithm proposed in this paper has higher precision and credibility,
and can effectively overcome the shortcomings of using two traditional methods for interpolation
estimation. The specific algorithm steps are as follows:

(1) Calculate γ(h) by using sample data and select the appropriate model to fit it;
(2) Determine the network structure. Including learning factors, learning rates, target errors,

and maximum number of iterations;
(3) Calculating the variogram γ(hk) in Equation (12) according to the separation distance hk and the

corresponding γ(h) of different sensor node pairs;
(4) Use the PSO algorithm to determine the initial weight of the neural network;
(5) Calculate the network output according to Equation (7);

(6) Update the next iteration weight according to the equation ∆ωk,k−1
i,j (n + 1) = ∂∆ωk,k−1

i,j (n) +

ηδk
i µk−1

j (∂ is the learning factor and η is the learning rate coefficient);

(7) Use the error between the network output and the sample, and γ∗(hk), to calculate F from
Equation (12);

(8) If F ≤ ε, the weight at this time is the last weight of the network, otherwise, turn to step (4);
(9) Select other samples to test the fitting performance of the network. If the conditions are met,

proceed to the next step, otherwise turn to step (4);
(10) Interpolation estimation is performed by using a trained network.
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4.3. 5G Mobile Communication Network Coverage Area Situation Generation

The coverage situation of 5G mobile communication network is obtained by data collection,
data fusion, situational plotting, map support, and other key technologies [47]. Since the focus of this
paper is on data acquisition, interpolation estimation, and coverage situation generation, other key
technologies are not described in detail here.

Combining the estimated data of the interpolation points in the target area with the data collected
by the sensor nodes, the signal strength of each position in the signal coverage area can be represented,
and an equal signal strength line of the signal coverage area of the 5G mobile communication network
is generated. According to the generated equal signal strength line, the coverage situation of the target
area can be obtained, which more intuitively reflects the coverage situation of the real signal in the
target area.

5. Simulation Experiment Analysis

5.1. Simulation Environment Construction

In order to verify the performance of the proposed detection technology, the paper uses 5G
communication test network as an example to carry out simulation experiments. A 400 m× 400 m
test network of the 5G communication network deployment company was selected as the actual
environment for simulation experiments. There are four 5G communication base stations in the
area, as shown in Figure 3a. According to the key data provided by the tester, the signal coverage is
obtained by ATOLL simulation as shown in Figure 3b. The simulation parameter settings are shown
in Table 1. It is assumed that the number of base stations, location, and signal coverage are unknown
when performing simulation experiments. Forty-two sensor nodes were deployed by using a random
delivery approach.

Figure 3. Simulation environment. (a) 5G communication test network; (b) 5G communication network
signal coverage.
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Table 1. Simulation parameter settings.

Simulation Parameters Configuration Value

Target area size 400 m × 400 m
Path loss model Okumura-Hata
Standard deviation of shadow fading 10 dB
Carrier frequency 3.4 GHz
Network model Three sector model
Number of users in each cell 100
Number of sensor nodes 42

In order to facilitate the comparative analysis of interpolation precision, 36 sensor nodes are
randomly selected as sampling points, and the remaining 6 points are used as verification points. At the
same time, in order to verify the performance of the proposed algorithm, this paper designs several
simulation experiments from three aspects: predictive model performance analysis, interpolation
optimization algorithm performance analysis and target region coverage situation generation.

5.2. Predictive Model Performance Analysis

5.2.1. Predictive Model Accuracy Comparison

As the core of the algorithm, the prediction accuracy of the model determines the accuracy of
the interpolation results. The RSSI values prediction is performed by using PSO-BP-Kriging model,
BP-Kriging model, ordinary Kriging model and BP model respectively. Take 36 sampling points
selected in Section 5.1 as samples, randomly select 70% of the data for the training set, and the
remaining 30% for the test set. The prediction results are shown in Figure 4.

Figure 4. Prediction results. (a) Training set prediction results; (b) Test set prediction results.

In order to compare the performance of the algorithm, the root mean square error (RMSE) of each
model in the training set, and the test set is calculated separately. In the training set, the PSO-BP-Kriging
model is 6.178, the BP-Kriging model is 6.829, the ordinary Kriging model is 6.989, and the BP model is
6.866. In the test set, the PSO-BP-Kriging model is 5.993, the BP-Kriging model is 6.513, the ordinary
Kriging model is 6.925, and the BP model is 6.871. By comparison, the PSO-BP-Kriging model has the
lowest RMSE and the highest accuracy.

In order to make the prediction accuracy of the model more persuasive, 5000 random independent
extractions were performed on 36 sensor nodes, and the average RMSE and the average determination
coefficient R2 were calculated. The prediction results of each model are shown in Table 2.
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Table 2. Comparison of different model fitting performance.

Performance Parameter PSO-BP-Kriging BP-Kriging Kriging BP

RMSE 5.9756 6.5979 6.7193 6.6218
R2 0.6541 0.6173 0.6054 0.5946

It can be seen from Table 2 that the RMSE of the prediction results of the algorithm in this paper is
lower than other models and the R2 is higher, so the prediction accuracy of our algorithm is higher.

5.2.2. Algorithm Suitability Analysis

In order to verify the applicability of the algorithm, its robustness and complexity are analyzed.
First, analyze the robustness of the algorithm. When the sensor node is deployed in the target area
for a period of time, due to various reasons, such as energy consumption of nodes, the number of
effective sensor nodes and the amount of collected data may be reduced, which inevitably requires the
algorithm to be robust.

Therefore, by sequentially increasing the number of failed sensor nodes, the RSSI values are
predicted by the above four algorithms, and the predicted results are compared with the original data
to calculate RMSE. The comparison results of each algorithm are shown in Figure 5.

Figure 5. Relationship between RMSE and number of failed nodes in different algorithms.

It can be seen from Figure 4 that when the number of failed nodes is small, the RMSE variation of
each algorithm is relatively stable, and the PSO-BP-Kriging algorithm is the lowest. When the number
of failed nodes is large, the RMSE of each algorithm increases, and especially the ordinary Kriging
algorithm has a faster growth trend. Therefore, through the above comparative analysis, the prediction
result of PSO-BP-Kriging algorithm is more stable and robust.

Then, analyze the complexity of the algorithm. The hybrid interpolation method proposed in this
paper, combined with the machine learning method, increases the time complexity of the calculation
to a certain extent. However, when restoring the true coverage of a certain area, due to the higher
prediction accuracy, usually only less sensor node data is needed. Other algorithms may require
multiple acquisitions of sensor node data which, in turn, increases the computational overhead.

In summary, the PSO-BP-Kriging algorithm has the advantages of high precision and good
robustness. Considering the three factors of prediction accuracy, robustness, and computational
complexity, we can use the algorithm proposed in this paper for prediction when the sensor nodes
have certain data processing capability.
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5.3. Performance Analysis of Interpolation Optimization Algorithm

In order to verify the accuracy of the algorithm, we take the six verification points selected in
Section 5.1 as an example. The above four algorithms are used to estimate the RSSI values of six
interpolation points. The result of the interpolation and the actual value are shown in Figure 6.

Figure 6. Comparison of interpolation algorithms.

The RMSE of the four algorithms is calculated separately, wherein the BP-Kriging interpolation
method is 5.0006, the ordinary Kriging interpolation method is 6.7097, the BP model is 5.8327, and the
PSO-BP-Kriging is 3.4144. It is not difficult to find that the RMSE of our algorithm is minimal, so the
interpolation precision is the highest, and the performance is the best.

5.4. Coverage Situation Generation of 5G Network

Interpolation estimation is performed by using the above four algorithms respectively, and the
target area coverage situation of the four algorithms can be generated by combining the sensor node
acquisition data and the interpolation point estimation data, as shown in Figure 7.

At the same time, 100 position points are randomly selected from the target area. In order to
ensure the confidence of the comparison, 5000 sets of experiments were randomly selected to calculate
the average RMSE of the interpolation results of the above four algorithms at the 100 position points.
Among them, the average RMSE of the ordinary Kriging interpolation is 21.2361, the BP interpolation is
19.7344, the BP-Kriging interpolation is 18.6917, and the PSO-BP-Kriging is 15.3178. After comparison,
the algorithm proposed in this paper has higher precision, and the obtained network coverage situation
is closest to the actual situation, which can better reflect the real signal coverage of the target area.
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Figure 7. Coverage situation. (a) Kriging interpolation results; (b) BP interpolation results; (c) BP-Kriging
interpolation results; (d) PSO-BP-Kriging interpolation results.

5.5. Algorithm Validity Analysis

In order to verify the practicability and effectiveness of the algorithm, nine position points in the
actual test network of 5G communication in Section 5.1 are randomly selected as test points, and the
RSSI values are detected by the traditional road test method. Furthermore, the interpolation estimation
values of the nine position points are extracted from the equal signal strength lines generated by the
algorithm in this paper. The test results of the two methods are shown in Table 3.

Table 3. Comparison of test results of two methods (unit: dBm).

Method 1 2 3 4 5 6 7 8 9

Road Test −89.308 −82.852 −103.16 −113.491 −86.475 −108.312 −95.457 −90.887 −79.645
Interpolation −87.935 −83.674 −105.03 −110.856 −89.317 −107.544 −93.121 −86.021 −81.534

It can be seen from Table 3 that in the area that can be detected by the traditional road test method,
the maximum absolute error value of the interpolation result and the road test result is 4.866, and the
average absolute error is only 2.156. Therefore, the effectiveness of the algorithm in this paper can be
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explained. Considering that there are unreachable areas in the traditional road test, the algorithm in
this paper can detect a wider range and be more practical.

6. Conclusions

Starting from the wireless sensor network (WSN), this paper proposes a new 5G mobile
communication network coverage detection technology, which overcomes the limitations of
the conventional mobile communication network coverage detection that are time-consuming,
labor-intensive, and easily affected by the environment and terrain. Through the improved hybrid
interpolation algorithm, the coverage situation generation of the target area of the 5G mobile
communication network is realized. The generated coverage of the 5G mobile communication network
can intuitively reflect the coverage of the target area, and has certain reference value for measuring
the coverage performance of 5G mobile communication networks. Finally, the effectiveness of the
generated network coverage situation is verified by simulation experiments. The algorithm proposed
in this paper can generate the coverage situation of 5G mobile communication network in the presence
of the perceptual blind zone in WSN, and the requirements for wireless sensor nodes are low. It can
better meet the operator’s special requirements of 5G mobile communication network coverage in
all directions, all weather, with good repeatability, etc. The algorithm is universal and can be widely
used in telecommunications, radio committees, and military fields, where there is a large demand for
wireless communication network coverage detection. In the future, we will conduct further research
on WiMAX network coverage, IoT coverage, sensor network coverage, GSM/CDMA/WCDMA/LTE
network coverage, and self-organizing network work in mountainous and remote mining areas.
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Appendix A

Appendix A.1 Table of Abbreviations

Abbreviation Full Name

5GNOW 5th Generation Non-Orthogonal Waveforms for Asynchronous Signaling
METIS Mobile and Wireless Communications Enablers for the Twenty-Twenty Information Society
5G PPP 5G Public-Private Partnership
RSSI Received Signal Strength Indicator
PSO Particle Swarm Optimization
BP Back Propagation
PSO-BP Particle Swarm Optimization BP Neural Network
BP-Kriging Kriging-BP Neural Network
PSO-BP-Kriging Particle Swarm Optimization and Kriging -BP Neural Network
RMSE root mean square error

Appendix A.2 Comparison Table of Related Work

Method Characteristics Difference

Signal propagation model Low computational complexity Low precision, existing models are not applicable
Newton interpolation High precision High computational complexity

IDW interpolation High precision when interpolating points are dispersed Poor spatial correlation, large amount of calculation
Kriging interpolation Good spatial correlation and high precision Spatial local features are masked

BP neural network High precision Poor spatial correlation, local convergence
PSO-BP model Higher precision Poor spatial correlation

BP-Kriging model Good spatial correlation and high precision Local convergence
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Appendix A.3 Mathematical Calculations and Derivations

(1) Kriging interpolation:

First assume that the regionalized variable R(x) satisfies the second stationary assumption,
its mathematical expectation is p, and the covariance function c(h) and the variogram γ(h) exist:

E[R(x)] = p
c(h) = E[R(x)R(x + h)]− p2

γ(h) = 1
2 E[R(x)− R(x + h)]2

(A1)

Suppose there are a total of m measured points in the neighborhood of the point x to be estimated,
and the sample value is R(xi)(i = 1, 2, · · · , m), then the formula of the Kriging interpolation is:

R∗(x) =
m

∑
i=1

λiR(xi), (A2)

where λi is a weighting coefficient, indicating the degree of contribution of the observed value R(xi)

at each spatial sample point xi to the estimated value R∗(x). It can be seen that the key to Kriging
interpolation is to calculate the weight coefficient λi. To do this, the following two conditions must
be met:

1. Unbiased. To make R∗(x) an unbiased estimator of R(xi), then:

E[R∗(x)] = E[R(x)]. (A3)

When E[R(x)] = p, that is, when E[
m
∑

i=1
λiR(xi)] =

m
∑

i=1
λiE[R(xi)] = p, then

m

∑
i=1

λi = 1. (A4)

At this time, R∗(x) is an unbiased estimator of R(xi).

2. Optimization condition. Under the condition of satisfying unbiasedness, the estimated variance is

σ2
E = E[R(x)− R∗(x)]2 = E[R(x)−

m

∑
i=1

λiR(xi)]
2

. (A5)

Using the covariance function expression, it can be further expressed as

σ2
E = c(x, x) +

m

∑
i=1

m

∑
j=1

λiλjc(xi, xj)−2
m

∑
i=1

λic(xi, x). (A6)

In order to minimize the estimated variance, according to the Lagrangian multiplier principle, let

F = σ2
E − 2µ(

m

∑
i=1

λi − 1). (17)

Find the partial derivative of F for λi and µ, and let it be 0, then get the Kriging equations:
∂F
∂λi

= 2
m
∑

j=1
λjc(xi, xj)− 2c(xi, x)− 2µ = 0

∂F
∂µ = −2(

m
∑

i=1
λi − 1) = 0

. (18)
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Hence, 
m
∑

j=1
λjc(xi, xj)− µ = c(xi, x)

m
∑

i=1
λi = 1

. (19)

Solve the Equation (A9), find the weight coefficient λi and the Lagrangian coefficient µ,
and substitute Equation (A5) to obtain the Kriging estimated variance:

σ2
E = c(x, x)−

m

∑
i=1

λic(xi, x) + µ. (20)

In the presence of the variogram, according to the relationship between the covariance and the
variogram, γ(h) = c(0)− c(h), the variogram can also be used to represent the Kriging equations and
the estimated variance: 

m
∑

i=1
λiγ(xi, xj) + µ = γ(xi, x)

m
∑

i=1
λi = 1

. (21)

Solve the Equation (A9), find the weight coefficient λi and the Lagrangian coefficient µ, and
substitute the Equation (A5) to obtain the Kriging estimated variance:

σ2
K =

m

∑
i=1

λiγ(xi, x)− γ(x, x) + µ. (22)

(2) BP neural network:

The node function of the BP neural network is

uk
i = f (

lk−1

∑
j=1

wk,k−1
i,j uk−1

j − θi), (23)

where uk−1
j is the output of the j-th node of the k− 1th layer, uk

i is the i-th node output of the k-th layer,

wk,k−1
i,j is the input weight of the j-th node from the k − 1 th node to the i-th node of the k-th layer,

lk−1

∑
j=1

wk,k−1
i,j uk−1

j − θi is the net input of the i-th node, θi is the threshold of the node, f is a nonlinear

action function, usually taking the sigmoid function f (x) = 1/(1 + exp(−x)); for the input layer,
there is ui = f (xi − θi).

The iterative process (called neural learning) used to determine the appropriate weight minimizes
the objective function:

F =
1
2

E[
N

∑
i=1

M

∑
j=1

(yij − oij)
2], (24)

where oij represents the actual output of the network and yij represents the expected output, N is the
number of samples in the training dataset, M is the number of nodes in the output layer, F is used as
the standard for learning, and learning continues until F is less than the set error ε.

Modify the next iteration weight in reverse according to Equation (A15):

∆ωk,k−1
i,j (n + 1) = ∂∆ωk,k−1

i,j (n) + ηδk
i µk−1

j , (25)

where n is the number of iterations, δk
i is the learning signal of the i-th node of the k-th layer, ∂ is the

learning factor, and η is the learning rate coefficient.
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Assuming there are P samples, each sample has N input components X = (x1, x2, . . . , xN) and M
output components Y = (y1, y2, . . . , yM), and the basic steps of an L-layer perceptron BP algorithm are:

(1) Determine the hidden layer and the number of nodes per layer;
(2) Determine the network structure;
(3) Input sample data;
(4) Calculate the output value of each layer node according to the node function Equation (A13);
(5) Modify the weight of the n + 1 th iteration;

(6) Calculate the error F = 1
2 E[

N
∑

p=1

M
∑

j=1
(yj,p − oj,p)

2] of the network output value and the expected

output value, where yj,p is the expected value of the output of the j-th component of the p-th
sample, and oj,p is the network output value, and when the objective function F value is less than
the given allowable error ε, the learning process ends, completing the training process of the
network, otherwise return to step (3);

(7) Select different samples from the training set to detect the generalization ability of the network.
If the error between the network output value and the actual value of the detected sample is
within the allowable range, the network training quality meets the requirements. Otherwise,
re-adjust the parameters and repeat the above network training until the network training error
meets the requirements.
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