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Abstract

Gfi1b (growth factor independence 1b) is a zinc finger transcription factor essential for development of the erythroid and
megakaryocytic lineages. To elucidate the mechanism underlying Gfi1b function, potential downstream transcriptional
targets were identified by chromatin immunoprecipitation and expression profiling approaches. The combination of these
approaches revealed the oncogene meis1, which encodes a homeobox protein, as a direct and prominent target of Gfi1b.
Examination of the meis1 promoter sequence revealed multiple Gfi1/1b consensus binding motifs. Distinct regions of the
promoter were occupied by Gfi1b and its cofactors LSD1 and CoREST/Rcor1, in erythroid cells but not in the closely related
megakaryocyte lineage. Accordingly, Meis1 was significantly upregulated in LSD1 inhibited erythroid cells, but not in
megakaryocytes. This lineage specific upregulation in Meis1 expression was accompanied by a parallel increase in di-methyl
histone3 lysine4 levels in the Meis1 promoter in LSD1 inhibited, erythroid cells. Meis1 was also substantially upregulated in
gfi1b2/2 fetal liver cells along with its transcriptional partners Pbx1 and several Hox messages. Elevated Meis1 message
levels persisted in gfi1bmutant fetal liver cells differentiated along the erythroid lineage, relative to wild type. However, cells
differentiated along the megakaryocytic lineage, exhibited no difference in Meis1 levels between controls and mutants.
Transfection experiments further demonstrated specific repression of meis1 promoter driven reporters by wild type Gfi1b
but neither by a SNAG domain mutant nor by a DNA binding deficient one, thus confirming direct functional regulation of
this promoter by the Gfi1b transcriptional complex. Overall, our results demonstrate direct yet differential regulation of
meis1 transcription by Gfi1b in distinct hematopoietic lineages thus revealing it to be a common, albeit lineage specific,
target of both Gfi1b and its paralog Gfi1.
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Introduction

Growth factor independence (Gfi)1 and Gfi1b are homologous

zinc finger transcriptional repressors that perform critical and

essential functions in multiple developmental processes and stages.

In the hematopoietic system, Gfi1 is required for maintaining stem

cell homeostasis in the bone marrow [1,2], generating neutrophils

[3,4], and ensuring proper development and maturation of other

innate and adaptive lymphoid cells [5,6,7]. Gfi1 also controls

differentiation of non-hematopoietic tissues including inner ear

hair cells, lung, and intestine [8,9,10]. Gfi1b is essential for

generation of the definitive erythroid and megakaryocytic lineages

in the fetal liver [11]. Conditional deletion of gfi1b in adult HSCs

also perturbs quiescence, resulting in ectopic mobilization and

expansion of the HSC compartment [12].

Gfi1 and Gfi1b have also been implicated in oncogenesis. Gfi1

exhibits major oncogenic potential and has been associated with

both murine and human cancers [9,13,14,15]. Additionally, over

expression of Gfi1 co-operatively accelerates the rate of lympho-

magenesis in collaboration with the oncogenes c-myc or pim1 [16].

Similar results have also been reported for Gfi1b [17]. Recent

reports also suggest a probable connection between both factors

and chronic (CML) and acute (AML) myeloid leukemias [18,19].

While Gfi1 was shown to be over-expressed in chronic myeloid

leukemias in a case study in China [19], a variant of Gfi1 (S36N)

(in which the serine residue at position 36 is replaced by an

asparagine) was observed to be prevalent in AML patients in

Europe [20]. Gfi1b was earlier shown to be over-expressed in

erythroid and megakaryocytic malignancies and the proliferative

capacity of leukemic cell lines was found to be directly pro-

portional to Gfi1b levels [21]. Full length Gfi1b and a shorter

splice variant isoform of it were also shown to be over-expressed in

AML and CML patients [18]. The shorter Gfi1b splice variant

Gfi1bp32 was also recently shown to be expressed in normal cells

and required for erythroid differentiation of a multi-potent

hematopoietic cell line [22].

Although, ablations of gfi1 and gfi1b function produce both

distinct and overlapping phenotypes, these proteins exhibit

remarkable physiological and mechanistic interchangeability

during hematopoietic development as evidenced by targeted

replacement of gfi1 with gfi1b (knock in) in the mouse genome

[23], and in the co-factors they associate with to mediate their

functions [24,25,26,27]. Knock in of the gfi1b cDNA into the gfi1

locus produced ostensibly normal hematopoietic development but

did not rescue inner ear defects ensuing from loss of gfi1 [23]. Both
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proteins also associate with the chromatin regulatory factors LSD1

(lysine specific demethylase1), CoREST/Rcor1 (REST co-re-

pressor) and HDACs1–2 (histone deacetylases) via their N

terminal, 20 amino acid long, transcriptional repression SNAG

domains [24,27]. Recruitment of these co-factors mediates re-

versible transcriptional repression of Gfi1 and Gfi1b target genes.

Gfi1 and Gfi1b also associate with the histone methyl transferase,

G9a via other domains which likely mediates or initiates relatively

stable, long term silencing of their targets [25,26]. The function of

their almost identical 20 amino acid long SNAG domains is

further underscored by an amino acid substitution (proline to

alanine) at position 2 that ablates both transcriptional repression

and biological activities of both proteins albeit in distinct cellular

contexts [23,27,28,29]. Consistent with their virtually identical, C

terminal, DNA binding zinc fingers they also bind the same

consensus sequence TAAATCAC(A/T)GCA in the promoters of

their gene targets [17,30]. Thus these proteins are likely to share,

and repress, many common targets though the actual pool of

responsive targets in any cell type may be determined by cellular

context and chromatin accessibility.

Despite the diverse and essential roles of Gfi-1 and Gfi-1b,

relatively little is known regarding their mechanism of action,

particularly the identity and function of the significant gene targets

of Gfi1b and how they mediate the functions of this protein.

Therefore, we performed chromatin immunoprecipitation screens

(ChIP on chip) to identify common gene targets of Gfi1b and its

co-factors LSD1 and CoREST in erythroid cells as previously

reported, and identified 653 ChIP targets of all three proteins [27].

To determine the regulation of these targets by Gfi1b/LSD1/

CoREST, expression profiling of these genes was performed in

control versus LSD1 inhibited erythroid cells since depletion of

LSD1 had previously been shown to up-regulate known Gfi1b

gene targets (including itself) in erythroid cells [27]. The

combination of the ChIP and microarray profiling screens

revealed that the oncogene meis1 (myeloid ecotropic virus in-

tegration site1), a three amino acid loop extension (TALE) subclass

of homeodomain transcription factors, was most robustly regulated

by the Gfi1b complex, following that of its own promoter as

previously described [31].

Analysis of the ChIP sequences further demonstrated the

presence of 2 distinct meis1 promoter segments with numerous

consensus and quasi-consensus Gfi1/1b sites that were occupied

by Gfi1b, LSD1 and COREST specifically in erythroid cells but

not in megakaryocytes. Accordingly, inhibition of LSD1 in

erythroid cells but not in megakaryocytes lead to elevated Meis1

expression, and was also accompanied by elevated di-methyl H3–

K4 levels in the promoter chromatin of the of the former. Meis1

mRNA was also found to be upregulated in gfi1b2/2 fetal liver

cells relative to wild type controls, and this upregulation persisted

when these cells were differentiated along the erythroid lineage but

disappeared when cultured along the megakaryocytic lineage. The

message levels of Meis1 transcriptional partners, and other related

proteins, that are often co-ordinately upregulated with it in

different leukemias, such as Pbx1 and a number of Hox family

members [32,33] was also found to be elevated in the mutants

although to different extents. Finally, different segments of the

Meis1 promoter were observed to be repressed by Gfi1b in

reporter based transfection assays. This repression required both

the intact SNAG and DNA binding domains of Gfi1b.

Our results demonstrating direct regulation of meis1 transcrip-

tion by Gfi1b complement a similar relationship between its

paralog, Gfi1 and Meis1 expression in myeloid cells [34].

Although this study neither documented direct regulation of the

meis1 promoter by Gfi1, nor association of Gfi1 and its co-factors

with the promoter chromatin, nevertheless these results confirm

independent, lineage specific, regulation of meis1 transcription by

both Gfi paralogs. This demonstration of meis1 as a common gene

target of both Gfi1 and Gfi1b in turn underscores the functional

basis of the observed physiological interchangeability between

these proteins. Given that the fly ortholog of the Gfi proteins,

Senseless (Sens) opposes Meis/Hox function during fly neurogen-

esis [35], our results further demonstrate that functional antago-

nism between the hox and gfi/sens families has been conserved

through evolution from flies to mammals despite duplication of the

sens orthologs in the latter.

Materials and Methods

ChIP and ChIP on Chip
Chromatin immunoprecipitations were performed in MEL and

L8057 cells as previously described [27]. Briefly, 56107 cells were

used per ChIP reaction, crosslinked with 1% formaldehyde,

sonicated, precleared, and incubated with 5–10 mg of antibody or

pre-immune sera. Complexes were washed with low and high salt

buffers, and the DNA was extracted and precipitated. Primers

used for ChIP were as follows:

Gfi-1Bp: CGCCAGATTTTGACACAAATAA, CTGCACA-

GACAGACACTTCTCC.

Meis1.1: GATAATTGATTTTCCCCGCAGC, GAAAAT-

GAGCTCACCCAAATCTC.

mMeis1.2: CTGATTTTTTTGGGGGGGAGA, CTGAGCA-

TAAAAGCGCTCTGG.

ChIP on chip was performed as previously described [27].

Hybridization was performed on the Affymetrix GeneChip Mouse

promoter 1.0R arrays. MAT [36] was applied to predict the target

loci, and targets were predicted at the MAT p value cutoff of

1.061026. Mouse genome annotation released in March 2006

(mm8, refFlat) of genomic regions between 5 kb 59 and 2 kb 39 of

transcription start site (TSS) was searched to predict target

sequences. Microarray expression profiling was performed using

the Affymetrix Mouse Chip 430_2 array and results compared

with the CHIP on chip data.

Extract Preparation and Western Blotting
Whole cell extracts from different cell lines and Western blotting

was performed as previously described [27]. Antibodies used for

ChIP and Westerns have also been previously described [27].

RNAi and qPCR
Mel and L8057control cell lines or those stably expressing

LSD1shRNA(TGCTGTTGACAGTGAGCGCGGATGG-

GATTTGGCAACCTTATAGTGAAGCCACAGATGTA-

TAAGGTTGCCAAATCCCATCCTTGCC-

TACTGCCTCGGA) from the retroviral vector mIR-PIG (LTR-

U6-Mir30-PuroIresGFP) as previously described [27] were used

for RNA extraction and qPCR. Total fetal livers were also

harvested from e12.5 mouse embryos and used for RNA

extraction. RNA was prepared from cell lines and primary cells

using the RNeasy kit (Qiagen).

QPCR (40–45 cycles per primer pair) was performed with Sybr

Green Mastermix (Applied Biosystems) in an ABI 7500 machine.

qPCR primers used were as follows:

Gfi1B: cttaccactgtgtcaagtgcaac, ctcctgtgagtggacgtgagtat.

Meis1: gccatacaagtgttaaggtttcatc, cctccttctctatcatctatcacaa.

Hoxa9: ccttatggcattaaacctgaacc, tgtttttctctatcaactggaggag,

Pbx1: ggacattttacagcaaattatgacc, cattaaacaaggcaggcttcattc,

Hoxb3: agttccacttcaaccgttatttgt, ccttctggtctttcttgtacttcat.

Hoxc4: atgatcatgagctcgtatttgatg, gactgtgttcagggatgtagctatt.

Regulation of meis1 by Gfi1b
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Hoxd13:agctcaaagaactggagaatgagta, cttggagacgattttcttgtcct.

P values of the qPCR data were calculated using one way Anova

comparisons with Halm-Sidak post-hoc test using GraphPad

PrismTM (Version 6) software.

Plasmid Construction
Gfi-1b, and P2A-Gfi-1b expression vectors were as previously

described [27], the Gfi1b-del5+6 vector was constructed by PCR

amplification of Gfi1b sequences upstream of the 5th zinc finger

(corresponding to amino acids 1–272) followed by subcloning the

product into the XbaI site of pEF1alpha. The Meis1 promoter

constructs were produced by subcloning the indicated regions of

the Meis1 promoter upstream of the luciferase gene in the pGL3

vector (Promega). The Gfi1b core promoter plasmid was a gift of

T. Moroy.

Cell Lines, Transfections and Luciferase Assays
MEL, a murine erythroleukemia cell line comprised of erythroid

precursors arrested at the proerythroblast stage [37]; L8057,

a megakaryoblastic cell line derived from a C3H/He mouse [38]

and HEK-293T (ATCC # CRL-11268TM) a transformed human

kidney cell line were cultured as previously described [27]. MEL

and L8057 cells were transduced with shRNA carrying retro-

viruses as indicated above.

Transfection experiments were performed with 50–70% con-

fluent HEK-293T cells plated in wells of a 24 well plate which

were co-transfected with 1 mg of the luciferase reporter and the

indicated amounts of the expression vectors along with 50 ng of

EF4- -gal expression vector. Cells were harvested 48 hrs after

transfection and lysed in 100 ml of CCLR lysis buffer (Promega).

20 ml of lysate was mixed with 100 ml of luciferase assay reagent

(Promega) and luminescence measured on a GlorunnerTM micro-

plate luminometer (Turner Biosystems).

Animal Welfare and Euthanasia
Animals (mice) were housed and bred in the CCNY vivarium

(The City College/CUNY Medical School Institutional Animal

Care and Use Committee number: A3733-01) as per the PIs

approved animal protocol (#0858) and in accordance with USDA

and institutional guidelines. For collection of embryos, pregnant

female mice were euthanized by asphyxiation with carbon dioxide,

delivered at less than 5psi per second. This study was approved by

The City College IACUC.

Harvesting and Culture of Fetal Liver Cells
Fetal liver cells were harvested from e12.5 embryos whose

genotypes was confirmed as previously described [11]. Livers were

dissociated by passaging through a 25G needle and syringe and

,105 cells were plated in IMDM medium with 20%FCS,

supplemented with either 2 U/ml of erythropoietin and 20 ng/

ml of SCF (stem cell factor) or with 20 ng/ml of thrombopoietin

and 10 ng/ml of IL-3 and cultured for 5 days, followed by

harvesting for total RNA.

Results

Lineage Specific meis1 Regulation by LSD1
Chromatin immunoprecipitation screens (ChIP on chip) for

common gene targets of Gfi1b, LSD1 and CoREST in erythroid

cells revealed several (653) potential common transcriptional

targets of all three factors [27]. To further investigate regulation of

these targets in erythroid cells, expression profiling was performed

in control versus LSD1 inhibited MEL (murine erythroleukemia)

cells. The rationale for the screen being that the common targets

of Gfi1b, LSD1 and Rcor1 should be transcriptionally derepressed

in LSD1 deficient cells relative to controls, given that LSD1

functions as a transcriptional repressor in the context of Gfi1b and

CoREST [27]. Of the 653 putative targets, gfi1b itself was most

highly upregulated in LSD1 inhibited cells consistent with the

established auto-regulation of this promoter [31]. The next most

de-repressed message was found to be that of the homeo box

protein, Meis1 (Table 1).

To assess repression of meis1 by LSD1 in the context of Gfi1b,

meis1 expression and subsequent de-repression in cells deficient in

LSD1, was determined by quantitative PCR (qPCR) analysis in

the closely related erythroid and megakaryocytic lineages

(Figure 1A and B). Both gfi1b and meis1 were found to be

upregulated in erythroid (MEL) cells deficient in LSD1 relative to

controls. In contrast, meis1 was neither expressed in control, nor

upregulated upon LSD1 depletion, in the closely related mega-

karyocytic (platelet) lineage, L8057 cells. Given that both lineages

express high levels of Gfi1b, LSD1 and CoREST (Figure 1c) and

that gfi1b itself is upregulated upon LSD1 inhibition in both

lineages, the meis1 promoter appears to be specifically targeted for

differential regulation by Gfi1b and its co-factors in these closely

related lineages. Curiously, gene targeting experiments demon-

strated an absolute requirement for meis1 in megakaryopoiesis

[39]. Therefore, the absence of Meis1 in this mouse megakaryo-

blastic line capable of differentiating into megakaryocytes in vitro

[27,38] along with its insensitivity to regulation by Gfi1b/LSD1/

CoREST indicates stage specific inactivation of meis1 in this

lineage.

Differential meis1 Promoter Occupancy and Chromatin
Status in Erythroid Versus Megakaryocytic Cells
The original ChIP on chip experiments identified two distinct

,1.2 kb long Meis1 promoter segments that hybridized to DNA

sequences selectively enriched in Gfi1b/LSD1/CoREST immu-

nopecipitates relative to immunoglobulin controls in MEL cells

(Figure 2A). Both of these contained putative consensus and quasi-

consensus Gfi1/1b binding sites. To define the locations of the

Gfi1b, LSD1 and CoREST associated sites on the meis1 promoter,

ChIP experiments were conducted in MEL and L8057 cells.

Although, the Meis1 promoter exhibits multiple distinct transcrip-

tional start sites (tss), the majority of these transcripts originate at

or near the point corresponding to the 59 end of the mRNA

designated NM_010789 in the NCBI data base. Therefore, for

clarity we considered the 59 end of NM_010789 as a representative

tss and designated the ChIP sequences as distal (Meis1.1) and

proximal (Meis1.2) relative to it. Although, we did not verify the

actual tss for meis1 in hematopoietic cells, we observed that both

regions of the putative meis1 promoter were occupied by Gfi1b,

LSD1 and CoREST in MEL cells (Figure 2b). Of the two, the

distal putative non-transcribed promoter region exhibited rela-

tively greater affinity for Gfi1b/LSD1/CoREST compared to the

proximal site, which overlapped with the transcribed region of the

gene. However, at both sites, the pattern of enrichment of the

promoter sequences in the immunoprecipitates exhibited a similar

trend. Promoter sequence enrichment was highest for Gfi1b

immunoprecipitates consistent with its direct binding to its specific

DNA recognition element, intermediate for LSD1 and lowest for

CoREST, reflecting the likely order in which these co-factors bind

to DNA or chromatin via interaction with Gfi1b. Gfi1b recruits

LSD1 to chromatin via its SNAG domain, which in turn associates

with and brings CoREST to the locus [27].

In sharp contrast to erythroid cells, but consistent with the

insensitivity of its promoter to LSD1 levels, neither region of the

meis1 promoter was occupied by any of these three factors in

Regulation of meis1 by Gfi1b
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L8057 cells (Figure 2C) even though all three proteins were

present in (Figure 1C), and associated with the gfi1b promoter

(Figure 2C), in these cells. Therefore, the meis1 promoter appears

to be inaccessible to these factors at the megakaryoblast and

subsequent stages of development of this lineage despite compa-

rable levels of all three factors in both cell types (Figure 1C).

In order to investigate the chromatin condition of the meis1

promoter in the two lineages, particularly the methylation status of

the H3–K4 residue, a substrate of LSD1 [27], in promoter

associated chromatin, CHIP experiments were performed in both

lineages. Both the gfi1b and meis1 promoters showed comparable

enrichment of di-meH3–K4 in MEL cells and further enhance-

ment of this modification upon LSD1 inhibition (Figure 3A and

data not shown). However in L8057 cells, the gfi1b promoter

showed ,10 fold greater di-meH3–K4 enrichment compared to

the meis1 promoter (not shown) which was further enhanced upon

LSD1 depletion, while di-meH3–K4 levels at the meis1 promoter

remained very low and essentially unaltered upon LSD1 knock

down (Figure 3B). These results confirm the silent and un-

responsive state of the meis1 promoter in L8057 cells, though the

mechanism(s) responsible for it, and for precluding the recruitment

of the Gfi1b protein complex to it in megakaryocytes, remain to be

determined.

Lineage Specific Deregulation of meis1 upon Loss of
Gfi1b
To confirm that meis1 is a bona fide target of, and is regulated

by, Gfi1b in vivo, its relative expression level was determined in

wild type, heterozygous and gfi1b mutant fetal liver cells at day

12.5 of embryonic development (e12.5), since fetal livers consist

mainly of erythroid progenitors in early and intermediate stages of

differentiation at this age of embryogenesis [40]. Meis1 expression

was found to be reciprocal to that of Gfi1b in e12.5 fetal liver cells,

being significantly over-expressed in the mutants and slightly over-

expressed in heterozygotes compared to wild type litter mates

(Figure 4A).

Furthermore, even though haploinsufficiency of gfi1b consis-

tently produced an ,2 fold increase in Meis1 message in gfi1b+/2
fetal livers (Figure 3A), this change in the level of Meis1 did not

appear to produce any discernible phenotype in either fetal liver,

or subsequent stages, of murine hematopoiesis [11]. To investigate

lineage specific repression of the meis1 promoter in primary cells,

e12.5 fetal liver cells were differentiated along the erythroid or

megakaryocytic lineages ex vivo by being cultured in erythropoietin

(epo) and SCF or thrombopoietin (tpo) and IL-3 respectively, for 5

days (Figure S1). Interestingly, mutant cells cultured under

erythroid conditions (with epo and SCF) continued to exhibit

elevated meis1 levels relative to controls (wild type or hetero-

zygotes) although there was some diminution in the relative levels

upon culture, probably due to the mutant cells adopting

alternative cell fates (Figure 4B). In sharp contrast, progenitors

from the same fetal livers, cultured under megakaryopoietic

conditions (with tpo and IL-3) showed either no difference in

relative meis1 levels between control and mutant cells or even

a slight decrease in the latter (Figure 4B). This proves that in

primary cells, like in cell lines, meis1 is selectively repressed only in

erythroid cells by Gfi1b and not in megakaryocytes. Therefore,

Table 1. Microarray profiling of Gfi1b and Meis1 expression in erythroid (MEL) cells upon LSD1 inhibition.

Gene EX (lsd kd) Fold increase
Accession
No. Full Name/Brief description

gfi1b 3.340036542 10.1 NM_008144 Growth factor independence 1b

meis1 2.927793305 7.63 NM_010789 Myeloid ecotropic viral integration site 1

Increase in mRNA levels of Gfi1b and Meis1 (fold increase) in LSD1 depleted MEL cells relative to controls.
doi:10.1371/journal.pone.0053666.t001

Figure 1. Message levels of Gfi1b and Meis1 in erythroid and megakaryocytic cells. Quantitative PCR (qPCR) of relative Gfi1b and Meis1
mRNA levels (normalized for HPRT) in (A) MEL (erythroid) and (B) L8057 (megakaryocytic) cells transduced with empty vector (mIR-PIG) or LSD1 shRNA
(LSD1 k/d). Average of three experiments is shown, error bars represent standard deviation. C. Steady state protein levels of Gfi1b, LSD1 and CoREST
relative to -actin in HEK-293T, MEL and L8057 cells.
doi:10.1371/journal.pone.0053666.g001

Regulation of meis1 by Gfi1b

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e53666

b



although meis1 is expressed in primary megakaryocytic cells, its

expression appears to be independent of Gfi1b.

Deregulation of Hox Genes and pbx1 in gfi1b Mutants
Meis1 is often co-ordinately over-expressed in various leukemias

with its transcriptional partners the TALE domain protein Pbx1

and one or more homeodomain containing Hox family members,

and collaborates with them in accelerating leukemogenesis

[33,41]. Moreover, Meis1, Hoxa9 and Pbx1 were also recently

demonstrated to be upregulated in gfi1 mutant bone marrow

myeloid progenitors resulting in their hyper-proliferation [34].

These observations prompted an assessment of message levels of

pbx1 and certain hox genes in e12.5 day fetal livers from wild type,

heterozygous and gfi1b2/2 embryos. Specifically, the relative

expression of messages encoding proteins known to either associate

Figure 2. Occupancy of two distinct promoter regions of the meis1 promoter by Gfi1b/LSD1/CoREST. A. 2.1 kb sequence of the murine
Meis1 promoter and ,0.75 kb of coding sequence spanning the two ,1.2 kb segments (denoted in black uppercase lettering) obtained from ChIP
on chip screening for Gfi1b/LSD1/CoREST targets. Intervening and downstream sequences not obtained from ChIP are indicated in grey lowercase
letters. The putative transcriptional start site (indicated as +1 in the sequence) as inferred from the meis1 transcript sequence (NM_010789) reported
in the nucleotide database (also see text) and the initiator codon, (also according to the database) are indicated in green. The Gfi1b consensus
elements are highlighted in bold maroon lettering. Sequences of primers used for ChIP qPCR or for amplification of promoter segments for
subcloning are underlined (see also Materials and Methods). B,C. Chromatin immunoprecipitation (ChIP) analysis of the Gfi1b promoter and two
Meis1 promoter segments (Meis1.1: distal; relative to tss and Meis1.2: promoter proximal) in erythroid and megakaryocytic lineages. Enrichment of
the indicated promoter sequences relative to the immunoglobulin switch m (Sm) sequence in MEL (B) and L8057 (C) cells are indicated. Results shown
are the average (solid bars) and standard deviations (error bars) of three independent experiments.
doi:10.1371/journal.pone.0053666.g002

Regulation of meis1 by Gfi1b
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directly with Meis1 (Pbx1, Hoxa9 and Hoxb3) [33] or hox

members known to be expressed in hematopoietic stem cells/

progenitors during normal development (Hoxc4) [42] or ectopi-

cally expressed upon undergoing translocations in leukemias

(Hoxd3) [43], from multiple hox clusters were interrogated. These

messages exhibited substantial (Pbx1) to moderate (Hoxa9) to

modest and consistent (Hoxb3, Hoxc4 and Hoxd13) upregulation

in gfi1b2/2 fetal livers relative to controls (Figure 4C). Since the

pbx and hox gene promoters were not identified in the original

ChIP screen, the mechanism responsible for the observed

deregulation of these proteins in the absence of Gfi1b in fetal

liver cells i.e either by loss of direct binding and de-repression of

their promoters in gfi1b2/2 cells or by other indirect means,

remains to be determined.

Repression of the Isolated meis1 Promoter by Gfi1b
To demonstrate direct Gfi1b specific repression of the isolated

meis1 promoter by Gfi1b, luciferase reporter based promoter assays

were performed in the non-hematopoietic human embryonic

kidney cell line HEK-293T. This line does not express any

endogenous Gfi1 or Gfi1b but does express the relatively

ubiquitous co-factors LSD1 and CoREST (Figure 1C). Two

segments of the meis1 promoter comprising 2.4 kb (Meis1L) and

1.2 kb (Meis1S) of sequences upstream of the initiator ATG codon

(Figure 2A) were both repressed by Gfi1b in a dose dependent

manner, but neither by the SNAG domain mutant P2A-Gfi1b nor

(in case of meis1S) by the DNA binding deletion mutant Gfi1b-

del5+6 which lacks the 5th and 6th zinc fingers (Figure 5), despite

comparable expression of all recombinant proteins in these cells

(Figure S2). These results shows that the isolated meis1 promoter is

repressed by Gfi1b in a SNAG domain and DNA binding

dependent manner. Interestingly, despite the presence of multiple

Figure 3. Di-methyl H3–K4 levels in meis1 promoter chromatin. Chromatin immunoprecipitation (ChIP) analysis of the gfi1b promoter and
two meis1 promoter segments as indicated Figure 2A in erythroid and megakaryocytic lineages. Relative enrichment of the indicated promoter
sequences for di-methyl H3–K4 in control (scrambled) versus LSD1 knocked down cells was calculated relative to that for immunoglobulin switch m
(Sm) sequences in MEL (A) and L8057 (B) cells respectively. Results shown are the average (solid bars) and standard deviations (error bars) of three
independent experiments.
doi:10.1371/journal.pone.0053666.g003

Figure 4. Message levels of Meis1, Pbx1 and Hox family members in fetal liver cells. A. QPCR of relative Gfi1b and Meis1 mRNA levels
(normalized for HPRT) in embryonic day 12.5 (e12.5) wild type, gfi1b+/2 and gfi1b2/2 fetal liver cells. B. QPCR of relative Meis1 mRNA levels
(normalized for HPRT) in control (wild type or gfi1b+/2) and gfi1b2/2 fetal liver cells differentiated along the erythroid or megakaryocytic lineages
ex-vivo. C. QPCR of relative Hoxa9, Pbx1, Hoxb3, Hoxc4 and Hoxd13 message levels from total fetal liver cells of the indicated genotypes. Averages
and standard deviations from multiple embryos of different genotypes from three cohorts are shown. The p values for Pbx1, Hoxb3 and Hoxc4 levels
in wild type versus mutant cells were ,0.001 and those for Hoxa9 and Hoxd13 were ,0.01. All values ,0.05 were considered significant.
doi:10.1371/journal.pone.0053666.g004
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consensus Gfi1b binding elements, the Meis1 promoter appeared

to be somewhat less responsive to Gfi1b protein levels relative to

the 500 bp gfi1b core promoter itself (Figure 5) that had previously

been shown to be auto- and cross- regulated by Gfi1b and Gfi1

respectively [31]. The gfi1b core promoter was maximally

repressed by 50 ng of Gfi1b while the meis1 promoter was only

partially repressed by the same level of Gfi1b and needed five fold

more Gfi1b to be completely repressed. This difference in the dose

responsiveness of the two promoters toward Gfi1b protein levels

may reflect their relative sensitivity in vivo to Gfi1b concentrations

and is also consistent with the difference in their level of

upregulation upon LSD1 inhibition in erythroid cells (Figure 1A).

Although repression of the isolated meis1 promoter by Gfi1 has not

been similarly demonstrated in reporter assays, we predict that

given the similarities between Gfi1 and Gfi1b wrt to sequence and

binding site specificities [17], the results should be very similar.

However, simply expression of one or both of these paralogs in any

cell type, may not guarantee transcriptional regulation of meis1 by

them.

Discussion

The results presented above demonstrate that the oncogene

meis1 is a bonafide target of Gfi1b and is repressed by this factor

in vitro and in vivo. Since Gfi1b is required for both definitive

erythropoiesis and megakaryopoiesis [11], and Meis1 for mega-

karyopoiesis in the fetal liver [39], repression of meis1 by Gfi1b in

fetal liver cells may appear paradoxical at first pass. However,

a recent study demonstrating the ability of Meis1 to promote

megakaryopoiesis at the expense of erythropoiesis in bone marrow

MEPs [44], suggests the probability of a similar scenario in the

fetal liver. Therefore, Gfi1b mediated repression of meis1 in fetal

liver MEPs likely ensures the channeling of the majority of these

cells into the erythroid lineage, thereby ensuring the appropriate

developmental stage specific equilibrium between these two

lineages in this organ. Interestingly, our results demonstrate that

the meis1 promoter is refractile to Gfi1b and its cofactors in

megakaryocytes despite high levels of the latter in this lineage.

How the Gfi1b transcriptional complex is either specifically

excluded from the meis1 locus in megakaryocytes or conversely is

selectively recruited to it in erythroid cells remains to be

determined. In any case, our identification of meis1 as a crucial

transcriptional target of Gfi1b complements a previous study

documenting regulation of meis1 by its paralog Gfi1 [34], and

establishes it as a common target of both Gfi proteins in

hematopoiesis. Identification of meis1 as a common gene target

of both Gfi1 and Gfi1b coupled with their association with several

common co-factors (LSD1, CoREST, HDACs etc.) [27] further

augments the mechanistic basis for the observed physiological

interchangeability between these factors during hematopoietic

development [23].

Figure 5. Regulation of the isolatedmeis1 promoter by exogenous Gfi1b. Luciferase reporter based promoter assays in HEK-293T cells. 1 mg
of reporter plasmid along with the indicated amount of expression plasmid and 50 ng of -galactosidase expression vector was transfected into,106

cells and assayed for luciferase activity. The 0.5 kb gfi1b core promoter was used as a positive control. The meis1L promoter consisted of 2.7 kb of
promoter sequence from 22.1 kb to +0.65 kb (see Figure 2A) and the meis1S consisted of 1.25 kb of promoter sequence from 20.60 kb to +0.65 kb
relative to the tss of meis1. P2A-represents the P2A-Gfi1b SNAG domain mutant; Gfi1b-del5+6-represents the Gfi1b deletion mutant lacking zinc
fingers 5 and 6. For each promoter set, values shown are relative to that obtained in the absence of the corresponding expression vector, following
normalization of all luciferase values for b-galactosidase levels. The average (solid bars) and standard deviations (error bars) from 3 independent
experiments is shown.
doi:10.1371/journal.pone.0053666.g005
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Increasing Complexity of Hox/Meis/Pbx and Gfi1/1b
Interactions During Evolution
Recently, functional antagonism was uncovered between the fly

ortholog of the Gfi proteins, Sens and those of Meis1 (Homo-

thorax; Hth) and its Hox partners during fly neurogenesis [35].

This antagonism was further demonstrated to be conserved

between Gfi1 and Meis1/Hoxa9/Pbx1 in mammalian hemato-

poiesis although the underlying mechanism was found to be

different [34]. Our results now reiterate the conservation of this

antagonism between the Meis/Hox/Pbx conglomerate and both

Gfi paralogs during evolution from flies to mammals, despite the

complex lineage diversification associated with mammalian

hematopoiesis.

However, the molecular mechanism underlying sens/Gfi and

Meis/Hox/Pbx antagonism has undergone a major modification

from flies to mammals. In mammals, expression of the hox and

meis1 genes themselves have come under direct or indirect Gfi1/1b

regulation, while in flies Sens and Hox/Meis complexes compete

for binding to overlapping sequences in the promoters/enhancers

of common target genes and accordingly repress or activate their

transcription respectively, as demonstrated recently for the

regulation of the rhomboid (rho) enhancer [35]. Whether this

apparently newly acquired mode of meis1/hox repression by Gfi1/

1b simply supplements and/or partially or entirely supplants

physical competition between these proteins for binding to

overlapping DNA recognition elements at common potential

targets in the mammalian genome remains to be determined.

Interestingly, the Sens and Gfi1/1b binding elements have been

conserved between flies and mammals [45]. Moreover, analogous

to the sequence overlap between the Sens and Hox/Hth binding

sites in the rhomboid (rho) enhancer [35], the consensus Gfi1/1b and

Hox/Meis1/Pbx1 binding sites that have been characterized in

their respective mammalian targets also exhibit substantial

sequence overlap [17,30,32]. Interestingly, the Hoxa9/Meis1/

Pbx1 core consensus motif ATGATTTATGGC [32] that was

recently shown to be present on the majority of Hoxa9/Meis1

gene targets obtained by ChIP-Seq screening [46] is a perfect

reverse complement of the core Gfi1/1b consensus motif

TAAATCAC(A/T)GCA [17,30]. Thus, similar competition

between Gfi1/1b and Hox/Meis1/Pbx1 for binding to gene

regulatory elements in the mammalian genome is a likely

possibility if these binding sites or loci are accessible to, or

otherwise able to recruit, these opposing sets of factors. Therefore,

we hypothesize that Gfi1/1b may antagonize Hox/Meis/Pbx

function in mammals in a bimodal manner by simultaneously or

sequentially binding to and reducing the transcription of Hox,

Meis1 and Pbx1 factors while also stoichiometrically displacing

them from other downstream targets common to both sets of

proteins (Figure 6). Since Hox/Meis/Pbx proteins recruit

CBPp300, a histone acetyl transferase, to their target sites thereby

activating their transcription [46], the displacement of these

activating complexes with the repressive Gfi/LSD1/CoREST/

HDAC complex(es) on the promoters of cell cycle promoting genes

likely initiates the transition from proliferation to commitment

and/or differentiation of progenitors poised for maturation along

different lineages. Conversely, in leukemias, ectopic over-expres-

sion of wild type or fusion Meis/Hox/Pbx proteins may displace

Gfi1/1b repressive complexes from the promoters of such genes

leading to their over-expression (Figure 5). Although several

known Hox/Meis/Pbx targets such as Pim1, c-myb, c-myc, CD34,

flt3 and cycD [34,41] could likely mediate this effect, the

verification of the above model requires either demonstration that

the above genes are also common targets of Gfi1/1b and/or the

identification and characterization of other similar common

transcriptional targets. If this bimodal mechanism of regulation

is, in fact, observed in mammals and not in flies then it would

represent an additional level of fine tuning gene expression by Gfi

proteins that was acquired during mammalian evolution.

Dual Roles of Gfi1/1b in Hematopoiesis
Over-expression of Gfi1 and Gfi1b have been observed in

induced and naturally occurring lymphoid and myeloid leukemias

in mice and humans respectively [9,13,14,15,16,17,18,19,21].

However, the causal role of these genes if any in initiation or

maintenance of these leukemias is not clear. In contrast, the results

presented here in combination with recent evidence [34,47]

Figure 6. Bimodal mechanism of cell cycle inhibition by Gfi proteins. Transition from proliferation to commitment and/or differentiation
(black arrow) follows an increase in Gfi1/1b concentration (‘‘low’’ versus ‘‘high’’, as indicated by increased shading). Increasing concentrations of Gfi1/
1b repress meis/hox/pbx transcription and as levels of the latter decline (fading shapes) they may also be replaced on putative common promoters by
Gf1/1b repressive complexes resulting in transcriptional inhibition of target genes. Ectopic expression of Meis/Hox/Pbx proteins in leukemias (grey
arrow) may produce the opposite effect and reverse the normal differentiation program.
doi:10.1371/journal.pone.0053666.g006
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indicate that Meis1 and its oncogenic partners Pbx1 and Hoxa9

are actively repressed by both Gfi1 and Gfi1b in multiple lineages

and demonstrate that these proteins indeed exhibit growth

inhibitory, tumor suppressor-like properties. Accordingly, deletion

of either gfi1 or gfi1b results in hyper-proliferation of hematopoietic

stem and progenitor cells [1,2,3,4,11]. Moreover, recently

a hypomorphic mutant of gfi1 was found to be responsible for

predisposing individuals bearing this mutation to AML by

deregulating Hoxa9 expression in their myeloid cells [47]. This

same mutant was also found to collaborate with K-RAS in

inducing fatal myeloproliferative disease in mice [47]. Therefore,

these erstwhile ‘‘oncogenes’’ seem to function more like tumor

suppressors under normal circumstances, and their oncogenic

propensities if any, may be exposed upon corruption of their

normal function, perhaps under the influence of other oncogenes,

during leukemogenesis.

In conclusion, this study demonstrating the repression of the

meis1 promoter in a lineage specific manner by Gfi1b establishes

this oncogene as a crucial common target of mammalian Gfi

proteins. These results together with that demonstrating antago-

nism between their orthologs in flies [35], highlights an

evolutionarily ancient mechanism for regulating gene expression

that has been essentially conserved from flies to mammals while

acquiring increased sophistication and complexity in the latter, in

accordance with their expanded lineage repertoires.

Supporting Information

Figure S1 Cell morphology of wild type and gfi1b2/2
fetal liver cells cultured ex vivo. Phase contrast images of

e12.5 fetal liver cells from wild type and mutant embryos as

indicated, cultured with epo and SCF (top panel) or tpo and IL-3

(bottom panel). Erythroid differentiation is indicated by the

presence of small differentiated erythrocytes in the top left image,

while megakaryocytic differentiation is evidenced from the

presence of large megakaryocytes in the bottom left image.

gfi1b2/2 mutants do not give rise to either lineage [11].

(TIF)

Figure S2 Expression of recombinant proteins in 293T
cells. Western blot showing expression of the indicated

recombinant proteins following transfection of their expression

vectors into 293T cells. ,60 mg of total protein from whole cell

lysates was loaded in each lane.

(TIF)
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