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Abstract Current FDA-approved kinase inhibitors cause diverse adverse effects, some of which are due to the me-
chanism-independent effects of these drugs. Identifying these mechanism-independent interactions could improve drug
safety and support drug repurposing. Here, we develop iDTPnd (integrated Drug Target Predictor with negative dataset), a
computational approach for large-scale discovery of novel targets for known drugs. For a given drug, we construct a
positive structural signature as well as a negative structural signature that captures the weakly conserved structural features
of drug-binding sites. To facilitate assessment of unintended targets, iDTPnd also provides a docking-based interaction
score and its statistical significance. We confirm the interactions of sorafenib, imatinib, dasatinib, sunitinib, and pazopanib
with their known targets at a sensitivity of 52% and a specificity of 55%. We also validate 10 predicted novel targets by
using in vitro experiments. Our results suggest that proteins other than kinases, such as nuclear receptors, cytochrome P450,
and MHC class I molecules, can also be physiologically relevant targets of kinase inhibitors. Our method is general and
broadly applicable for the identification of protein–small molecule interactions, when sufficient drug–target 3D data are
available. The code for constructing the structural signatures is available at https://sfb.kaust.edu.sa/Documents/iDTP.zip.
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Introduction

Proteins that contain kinase domains are involved in numerous

cellular processes including signaling, proliferation, apoptosis,
and survival [1,2]. The human kinome consists of more than
500 members [3]. These kinases have diverse sequences but a
high degree of 3D structure similarity, particularly in the ATP
binding pocket [4]. Kinases are the primary drug targets for
the treatment of many cancers [5–7]. There are more than 30
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FDA-approved small molecule kinase inhibitors that bind to
kinase domains reversibly or irreversibly. The kinase in-
hibitors that bind reversibly can be categorized into four
major types, based on the binding pocket conformation and
the aspartate-phenylalanine-glycine (DFG) motif of the ki-
nase activation loop controlling access to the binding
pocket [8,9]. Most of these inhibitors fall into the type I or
type II categories. Type I kinase inhibitors bind to the active
forms of kinase domains in an ATP-competitive manner,
with the aspartate amino acid facing into the active site.
Type II kinase inhibitors, on the other hand, bind to the
inactive forms of kinase domains with the aspartate residue
facing outside the active site [8,9]. Given that the ATP-
binding site has necessarily conserved features across most
kinase domains, several kinase inhibitors interact with the
human kinome broadly and are not very selective; on
average, 26% (135) of all human kinases interact with one
or more kinase inhibitors included in this study [10,11].
This broad reactivity affects the inhibitor’s efficacy and
toxicity [12–14]. Therefore, predicting kinase inhibitor
targets or off-targets is central for the rapid and cost-
efficient development of inhibitors, as it allows a better
understanding of a drug’s adverse effects and exploration of
the drug repositioning opportunities [15].

Recent studies have estimated that many unintended tar-
gets of approved drugs are yet to be discovered [16,17], and
this mechanism-independent binding leads to toxicity [14]. It
is difficult to determine whether the unexpected adverse
effects of new drugs especially kinase inhibitors are due to
their binding to unexpected targets or unknown relationships
between their intended targets and the function of a complete
human organ system. Therefore, predicting mechanism-
independent binding sites could enhance early evaluation of
a compound’s specificity and hence the likelihood for spe-
cific clinical consequences.

Computational methods have increasingly been used for
hit identification and lead optimization [18]. These methods
fall into four categories: methods that use 1) binding site
structure, 2) gene expression, 3) ligand structure, and 4) a
combination of all above. Structure-based methods employ
binding site similarity and/or molecular docking [19–22];
expression-based methods use the expression level changes
of proteins that results from the drug activity [23–27]; ligand-
based methods utilize the structural and chemical properties
of a drug [28–30]; and hybrid methods combine two or more
types of data [31–35]. In addition, novel targets for drugs
have also been identified by comparing adverse effects [36]
and by using genome-wide association studies [37].

In this study, we propose a computational method for
large-scale discovery of new drug targets, named iDTPnd,
which markedly improves our previous methodology [38]
by incorporating a negative structural signature (i.e., a
conserved structural signature in the kinases that is known

not to interact with the respective drug). We now also
provide a docking-based interaction score along with its
statistical significance. In a blind test of five FDA-approved
kinase inhibitors, we predict the known targets with 52%
sensitivity and 55% specificity. This is a significant im-
provement compared to a baseline model based on sequence
similarity and to a recently published study [17], which
reports a precision of 30% and a recall of 27% with an
estimated false positive rate of 70%. In addition, our
methodology is generic and can be used broadly for all
types of small molecule drugs for which sufficient 3D
structures of known targets (~ 30) are available. We also
validate 10 predicted interactions through in vitro experi-
ments. It is important to note that our predictions are not
limited to kinases.

Method

Dataset

We extracted the positive and negative datasets from the
kinome scan assay of Davis et al.’s work [11]. Five kinase
inhibitors were selected for this study, each of which had
one co-crystallized structure with its target and had at least
30 known targets with experimentally determined structures
(apo or bound to other entities) available (Table S1). Re-
dundancy reduction was carried out as follows: for the po-
sitive dataset, a cut-off of 70% sequence identity was used
for all structures that were not bound to the respective drug,
and all co-crystallized structures were included (usually 1–
4) in the positive dataset; for the negative dataset, a stricter
cut-off of 60% sequence identity was used, as we had a
relatively larger dataset. We did not do redundancy reduc-
tion between the positive and negative datasets. As struc-
tural databases are growing exponentially, the number of
drugs to which the method can be applied is expected to
increase significantly. The total structures deposited in
Protein Data Bank (PDB) at the end of 2011 were 77,452,
while increased to 150,593 on April 4, 2019 (https://www.
rcsb.org/). This means that the number of structures has
almost doubled in 7 years. Similarly, in case of the mem-
brane proteins which are the targets of more than 60%
marketed drugs, we had 328 structures in 2011, while this
number increased to 876 on April 4, 2019 (https://blanco.
biomol.uci.edu/mpstruc/). Therefore, we expect our method
to be applicable for broader set of studies going forward.

Sequence similarity baseline model

The sequence similarity baseline model used nearest
neighbor algorithm to allocate a protein to the interacting or
non-interacting cluster. Using leave-one-out cross valida-
tion, global pairwise sequence similarity (not identity) was

987Naveed H et al / iDTPnd: Identifying Targets by Binding Signature

https://www.sciengine.com/doi/10.1016/j.gpb.2020.05.006
https://www.rcsb.org/
https://www.rcsb.org/
https://blanco.biomol.uci.edu/mpstruc/
https://blanco.biomol.uci.edu/mpstruc/


calculated between the left-out protein and all other pro-
teins. The left-out protein was assigned to the cluster that
contained the protein with the maximum pairwise global
sequence similarity to the left-out protein. If none of the
protein pairs had a global sequence similarity > 0.6, a label
was not assigned to the left-out protein.

Structural signature construction

The flowchart of our method is shown in Figure S1. Briefly,
CASTp webserver was used to extract the pocket that the
drug binds to [39], referred to as the ‘binding pocket’ from
here on. Sequence order-independent alignment was used to
find the pocket similar to the binding pocket [40,41] using
the distance function described below. We extracted the
conserved (positive and negative) structural signatures by
applying pairwise sequence order-independent structure
alignment followed by hierarchical clustering.
Score = Structural Score + α × Sequence Score
Structural Score = RMSD × N(−1/3)

Sequence Score = 1 − (Sequence Similarity / Best Sequence
Similarity)
Sequence Similarity = Σi(AtomFreqi + ResFreqi)
Best Sequence Similarity = Σi(MaxAtomFreqi +MaxResFreqi)

Our method is not sensitive to the exact value of α as long
as it is close to 1. The α can be adjusted according to the
empirical insight from the data. In this study, we used α =
1.2. RMSD is the root mean square distance, N is the number
of positions aligned, AtomFreqi/ResFreqi represents the
frequency of atom/residue aligned at position i,MaxAtomFreqi/
MaxResFreqi represents the maximum frequency of any
atom/residue aligned at position i, and the summation is
over all aligned positions. Every position in the signature is
present in at least 50% of the structures. To achieve a
minimalistic structural signature, preservation ratio cut-off
is increased if the number of atoms in the signature is more
than 100. While combining the positive and the negative
structural signatures, predicted targets are those that have a
better positive score than the negative one (Scorepositive –
Scorenegative < 0).

MicroScale thermophoresis

The predicted protein targets, human leukocyte antigen A
(HLA-A; Catalog No. TP300661, Acris Antibodies GmbH,
Herford, Germany), human leukocyte antigen B (HLA-B;
Catalog No. TP310631, Acris Antibodies GmbH), mito-
genactivated protein kinase-activated protein kinase 2
(MAPKAPK2; Catalog No. 14-337, Merck Millipore,
Darmstadt, Germany), cAMP-specific 3ʹ,5ʹ-cyclic phos-
phodiesterase 4B (PDE4B; Catalog No. 11527-H20B-20,
Hölzel Diagnostika Handels GmbH, Cologne, Germany),
protein kinase C eta type (PKCη; Catalog No. ab60849,

Abcam, Regensburg, Germany), estrogen receptor α (ERα;
Catalog No. USC-RPB050HU01-50, Biozol, Munich,
Germany), cyclin-dependent kinase 2 (CDK2; Catalog No.
ABIN2003156, Antikoerper, Aachen, Germany), and
tyrosine-protein kinase ITK/TSK (Catalog No. BPS-40445,
Biomol, Hamburg, Germany) were labeled by using NHS
chemistry with the help of an NT647-labeling kit (Nano-
Temper Technologies, Munich, Germany). In an initial step,
the Tris-containing storage buffers were exchanged by the
MicroScale thermophoresis (MST) labeling buffer as in-
dicated by the manufacturers in order to avoid labeling
primary amines in Tris. After addition of a two-molar excess
of reactive NT647 dye to the respective target protein, the
reaction was incubated in the dark for 30 min. After this, the
unbound dye was removed using a size exclusion column as
indicated by the manufacturers. Using the buffer containing
1× PBS pH 7.5, 0.1% pluronic F127, and 2% DMSO did not
result in aggregation or sticking effects for HLA-A, HLA-B,
MAPKAPK2, CDK2, PKCη, ITK, and ERα. Standard,
premium, and hydrophobic capillary types were tested for
non-specific sticking of the proteins to the glass surface.
HLA-A, HLA-B, and ERα showed sticking in standard
capillaries but no sticking in premium capillaries. Hence,
premium capillaries were used for the further experiments
for these proteins. The other proteins remained in solution in
standard capillaries. PDE4B showed aggregation in all
conditions and hence was not tested further. The LED power
was set to 10%–25% to obtain optimal signal intensities.
The laser power was identified being optimal at 40% or
80%. Changes in amplitudes between the lower and upper
binding curve plateau of more than 4 units and a signal-to-
noise ratio of more than 6 were considered significant for
binding events. Each experiment had two replicates.

Results and discussion

Structural signatures

We first constructed the structural signature from the posi-
tive dataset [11], using sequence-independent structure
alignment, hierarchical clustering, and a probabilistic
scoring function (Figure 1A–C; see Method for details).
This method (named iDTP) has been successful in re-
presenting the binding pocket signature of 11 metabolites
(drugs) in our earlier study [38]. However, in this study, we
found that the positive structural signature alone is not
sufficient to distinguish targets from non-targets in the case
of kinase inhibitors. Indeed, for the five drugs (sorafenib,
imatinib, dasatinib, sunitinib, and pazopanib), we obtained
an average sensitivity and specificity of 31% (± 34%) and
78% (± 25%), respectively, using the cut-off of 0.85 spe-
cified in our previous study [38] (Table 1, Table S2). This
large standard deviation (SD) suggests that the iDTP’s
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performance based on a positive signature is not very
reliable when the targets and non-targets share significant
similarity. This might be due to a combination of reasons, 1)
the ATP binding pocket is structurally conserved across the
kinase domains, 2) the orientation of the DFG motifs differs
across the kinase domains, and 3) there are subtle changes in
the binding interaction of the kinase inhibitors with kinase
domains [42]. To resolve these issues, we built a structural
signature from the negative dataset [11] dubbed “negative
signature”, using the same procedure used for the positive
dataset (Figure 1D–F). The pocket that was most similar to
the binding pocket from each structure was used to con-
struct the negative signature. This is similar to the
well-established practice of using near-native decoys to
improve the docking-based scoring functions [43]. The
numbers of structures used to make the positive signatures,
negative signatures, and the preservation ratio for each
signature are given in Table S3. A protein was considered as
a target only when one of its top 3 largest pockets had a

better (lower) score (as defined in Method), after aligning
with the positive structural signature as compared to the
score of the same pocket aligning with the negative struc-
tural signature (Scorepositive – Scorenegative < 0). Combining
the positive and negative structural signatures helped im-
prove the performance of the methodology significantly
across all the kinase inhibitors (Table 1). Using a dataset of
all kinases with experimentally determined structures and
five FDA-approved kinase inhibitors, we predicted their
known targets with an average sensitivity of 52% (ranging
from 42% to 68%) and an average specificity of 55% (ran-
ging from 50% to 59%) in 5-fold cross-validation tests. To
evaluate the effect of sequence similarity in the dataset, we
constructed a baseline model using sequence similarity (see
Method). Using this baseline model, we only assigned 47%
of the proteins to either the interacting or non-interacting
cluster with an average sensitivity of 32% (± 5%) and an
average specificity of 26% (± 9%).

A previous study has shown that a synthetic negative

Figure 1 Structural signatures
3D structural signatures (positive and negative) of sorafenib (A and D), imatinib (B and E), and dasatinib (C and F). The color of each position represents
the atom with the highest frequency. Carbon, oxygen, and nitrogen atoms are labeled in green, red, and blue, respectively.

Table 1 Performances of three methods on five kinase inhibitors

Drug
iDTP (positive signature) iDTPnd (positive + negative signature) Baseline model (sequence similarity)

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Sorafenib 81% 33% 68% 59% 42% 31%
Imatinib 3% 94% 55% 54% 32% 17%
Dasatinib 2% 99% 42% 57% 29% 18%
Sunitinib 63% 67% 46% 50% 26% 23%
Pazopanib 4% 95% 50% 55% 32% 40%
Average (± SD) 31% (± 34%) 78% (± 25%) 52% (± 9%) 55% (± 3%) 32% (± 5%) 26% (± 9%)

Note: SD, standard deviation.
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dataset can be constructed to assess the specificity of
methodologies [38]. Here, we found that using a synthetic
negative dataset could severely over-estimate specificity. For
example, using the positive signature alone for sorafenib, the
specificity on the negative dataset constructed by iDTP [38]
was 65%, while the specificity was 33% on the negative
dataset based on previous experimental results [11]. In the
case of kinase inhibitors, experimental kinome profiling
companies like DiscoverX have explored kinase inhibitor
interactions extensively [11]. According to our dataset, the
five kinase inhibitors chosen in this study interacted with
26% of the kinases (on average) and the rest were con-
sidered as true negatives. Any novel interactions discovered
from these negative examples are therefore non-trivial as
the model was trained to treat them as negative. The
probability of discovering three novel interactions amongst
the top 10 predictions can be determined by using combi-
natorics and is very small (less than 1%).

Identification of new targets

In order to identify new drug targets, we extracted the top 3
pockets (largest volume) of structures deposited in PDB
using CASTp [39]. We then aligned the structural signatures
(both positive and negative) of each drug with these
pockets. Similar to self-validation tests, a protein was
considered as a potential target only when one of the
pockets had “Scorepositive – Scorenegative < 0”. Flexible
docking option of SwissDock was further used to predict the
interacting strength between the drug and the potential
target [44]. To address the relatively high false positive rate
and the imperfections in the scoring functions associated
with docking methods, we measured the significance for
these binding scores. The significance was calculated by
comparing the binding scores obtained for potential targets
of a drug with the binding scores of 100 random protein
structures with the respective drug. The size of random

samples can be increased to improve statistical significance
at the cost of significant computational time. The random
structures were sampled from a list of protein structures that
have less than 60% identity with the positive and negative
datasets. The significance measurement enabled us to
identify more promiscuous compounds such as gefitinib,
where even the targets with most favorable docking score
have an unfavorable significance measure. This supported
that the compound is unusually sticky and is interacting
with many proteins with high probability. Therefore, we
excluded gefitinib from our study. Table 2 gives the top 10
predicted targets of sorafenib after redundancy reduction
using the PISCES webserver [45]. The top 10 predicted
targets for the other four kinase inhibitors are given in Ta-
bles S4–S7. Our ranking consists of two steps. The first step
identifies all protein targets for which “Scorepositive –
Scorenegative < 0”. The second step sorts the targets in an
ascending order with respect to the docking score.

Experimental validation

To provide an experimental validation of iDTPnd, we first
chose five predicted targets (PDE4B, HLA-A, HLA-B,
MAPKAPK2, and PKCη) of sorafenib to test, considering
the target’s ranking in our results as well as the availability
and cost of the purified protein. We used MST experiments
to test the predicted interactions in vitro (see Method for
details). The results showed that PKCη and MAPKAPK2
interacted with sorafenib with dissociation constant (Kd)
values of 1.1 ± 0.4 μM and 3.7 ± 0.1 μM, respectively
(Figure 2). Considering that affinities of sorafenib to its
primary targets are comparable, most of which are within
the range from 100 nM to 1 μM [11], the interactions of
sorafenib with PKCη and MAPKAPK2 might be pharma-
cologically relevant and hence valuable for medicinal che-
mists. Similarly, our results also showed that sorafenib
interacted with HLA-A and HLA-B with Kd values between

Table 2 Top 10 predicted targets of sorafenib

Target Scorepositive Scorenegative Scorepositive− Scorenegative Docking score Significance measure

PDE4B 0.69 0.83 −0.14 −167.63 < 1%
SRC 0.70 1.17 −0.47 −92.22 2%
HLA-B 0.67 0.86 −0.19 −85.80 2%
HLA-A 0.69 0.75 −0.06 −73.87 3%
MAPK1 0.65 0.99 −0.34 −72.66 4%
MAPKAPK2 0.64 0.86 −0.22 −50.03 9%
QPRT 0.65 0.76 −0.11 −40.77 9%
FLG 0.7 0.72 −0.02 −23.11 11%
FECH 0.68 0.9 −0.22 −13.99 14%
PKCη 0.58 0.78 −0.20 −11.71 14%

Note: The predicted targets have less than 60% sequence similarity with the known targets of sorafenib. Proteins that do not contain a kinase domain are shown in bold. PDE4B,
cAMP-specific 3ʹ,5ʹ-cyclic phosphodiesterase 4B; SRC, proto-oncogene tyrosine-protein kinase Src; HLA-B, human leukocyte antigen B (57:01.I80T); HLA-A, human
leukocyte antigen A (02:03); MAPK1, mitogen-activated protein kinase 1; MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2; QPRT, nicotinate-
nucleotide pyrophosphorylase; FLG, filaggrin; FECH, ferrochelatase, mitochondrial; PKCη, protein kinase C eta type.
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300 μM and 600 μM. It was speculated but plausible that,
due to the intracellular accumulation of sorafenib in some
cell types and the wide diversity of HLA isotypes, this weak
in vitro interaction could be clinically relevant [46,47]. For
example, severe drug-specific adverse effects of sorafenib
have been reported to be associated with HLA-A24 sub-
type of HLA-A [48]. Moreover, the immune system is
compromised while taking sorafenib, and flu vaccination is
not recommended during this period [49]. Finally, HLA-B is
known to directly interact with a small molecule drug [50].
PDE4B was the top target predicted in our study, but it
showed aggregation under all test conditions and the results
remained inconclusive. Next, as ITK was the top ranked
prediction of imatinib, we tested their interaction to see if
iDTPnd works for other kinase inhibitors besides sorafenib.
In MST assays, imatinib interacted with ITK with a Kd of
550 ± 120 nM. The confirmation of this interaction suggested
that our method detects previously unrecognized direct
physical interactions, and so we proceeded to evaluate pre-
dicted interactions for additional kinase inhibitors.

ERα

ERα is a nuclear receptor that is activated by estrogen and is
important for hormone/DNA binding and transcription
activation [51]. The role of ERα in breast cancer is well

documented with nearly 70% of newly diagnosed breast
cancers being ER positive (cancer cells grow in response to
the hormone estrogen) [52]. ERα is one of the primary
targets of tamoxifen, an FDA-approved drug for breast
cancer treatment [53]. In our study, ERα was ranked 3rd,
9th, and 10th among the predicted targets for sunitinib,
pazopanib, and dasatinib, respectively (Table 3). We used
MST to test our predictions in vitro. We also included
sorafenib and imatinib in our experiments to test our false
negative rate.

Sunitinib, dasatinib, and pazopanib were found to inter-
act with ERα with Kd values of 14.7 ± 5.7 nM, 1.2 ±
0.5 μM, and 3.2 ± 1.0 μM, respectively (Figure 3). While
sorafenib did not interact with ERα as predicted at detect-
able levels in our setup, we found that imatinib bound to
ERα with a Kd value of 335 ± 114 nM even though ERα was
not predicted as a target for imatinib in our results, sug-
gesting that iDTPnd does have some false negatives. In
support, a recent case study has reported the response of a
patient’s ER+/HER2− breast cancer tumors to pazopanib
after the tumors had developed resistance to endocrine
therapy [54]. Although the study did not explore the me-
chanism of how pazopanib interacted with fibroblast growth
factor receptors to amplify FGFR1 in the tumor, the direct
interaction between pazopanib and ERα might have con-
tributed to this clinical response. Another study has shown

Figure 2 Interactions of sorafenib with PKCη and MAPKAPK2
A. Binding curve of sorafenib with PKCη. B. Binding curve of sorafenib with MAPKAPK2. The predicted interactions of sorafenib with PKCη and
MAPKAPK2 proteins were experimentally verified through MST experiments. MST-derived binding curves of NT647-labeled PKCη and MAPKAPK2 to
sorafenib were plotted as a function of sorafenib concentration. Data are represented as mean ± SD (n = 2). MST, MicroScale thermophoresis.

Table 3 Interactions between kinase inhibitors and ERα

Drug Scorepositive Scorenegative Scorepositive− Scorenegative Docking score Random chance Binding affinity
(mean ± SD)

Sunitinib 0.52 0.74 −0.22 −154.7 7% 14.7 ± 5.7 nM
Dasatinib 0.51 0.75 −0.24 −52.83 8% 1.2 ±0.5 μM
Pazopanib 0.57 0.76 −0.19 −43.23 3% 3.2 ±1.0 μM
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that dasatinib can block ERα-facilitated extranuclear ac-
tions that lead to metastasis [55]. This regulation can be due
to the direct interaction between dasatinib and ERα. Suni-
tinib has also been reported to inhibit tumor growth in breast
cancer cells [56]. Further studies are required to compre-
hensively understand the pharmaceutical effects of these
interactions.

CDK2

Cyclin-dependent kinases (CDKs) perform important roles
in cell division cycle, transcription, differentiation, neuronal
functions, and apoptosis [57]. Specifically, CDK2 has been
implicated in prostate cancer, non-small cell lung cancer,
and breast cancer [58–60]. Several CDK2 inhibitors have
been developed to check aberrant CDK2 activity. Sorafenib
has been shown to interact with CDK2 [11]. CDK2 also
appeared as one of the top targets of dasatinib and imatinib
in our in silico prediction. In our next round of MST
experiments, we also included sorafenib as the positive

control and used two other kinase inhibitors (sunitinib and
pazopanib) to test our false negative rate.

Dasatinib, imatinib, and sorafenib were found to interact
with CDK2 with Kd values of 2.2 ± 0.9 μM, 6.6 ± 2.9 μM,
9.1 ± 2.7 μM, respectively (Figure 4). We found that pa-
zopanib also interacted with CDK2 with a Kd value of 4.7 ±
1.4 μM even though CDK2 was not predicted as a target for
pazopanib in our results (Figure 4). While sunitinib did not
interact with CDK2 as predicted at detectable levels by
iDTPnd, the interaction between CDK2 and dasatinib was
indirectly supported by a previous study that showed se-
lective modulation of CDK2 by dasatinib [61]. Our results
indicate that this modulation is a direct result of the
interaction between CDK2 and dasatinib.

MHC class I proteins

We observed that MHC class I (HLA-A/HLA-B) proteins
were predicted as potential targets for all kinase inhibitors
used in this study except pazopanib. The cell surface of all

Figure 3 Interactions of kinase inhibitors with ERα
A. Binding curve of dasatinib with ERα. B. Binding curve of sunitinib with ERα. C. Binding curve of pazopanib with ERα. D. Binding curve of imatinib
with ERα. MST-derived binding curves of NT647-labeled ERα to ligands were plotted as a function of ligand concentration. Data are represented as mean
± SD (n = 2). ERα, estrogen receptor α.
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nucleated cells contains MHC class I proteins in jawed
vertebrates [62]. They bind peptides (formed due to de-
gradation of cytosolic proteins) and display them to the
cytotoxic T cells. Cytotoxic T cells bind the presented
peptide and initiate an immune response on the recognition
of an infected state. Peptide binding to the MHC class I
proteins is the most selective step in the antigen presentation
pathway. As of August 2016, there were 33 (sequence
similarity < 99%) experimentally resolved structures
available for different alleles of MHC class I proteins. To
further explore the interactions of kinase inhibitors with
MHC class I proteins, we performed the flexible docking of
all five kinase inhibitors with each of the 33 structures. The
dominant interactions (determined using flexible docking)
between the kinase inhibitors and the MHC class I proteins
existed in the peptide-binding region (Figure 5), which was
one of the two pockets identified by using the structural
signatures. The interaction in the peptide-binding region

was significant as it might change the peptides being pre-
sented to cytotoxic T cells as in the case of abacavir, which
is FDA-approved for HIV treatment [63]. The second
pocket identified was located between the two chains of the
MHC class I proteins. Our results showed that with the
exception of pazopanib, other four kinase inhibitors tested
in this study directly interacted with many HLA alleles (13–
31 out of 33) (Table 4). This interaction might compete with
the peptides being presented to cytotoxic T cells. The direct
interactions between the kinase inhibitors and MHC class I
proteins might initiate an immune response responsible for
the observed side effects.

Cytochrome p450 enzymes

Cytochrome p450 enzymes (CYPs) are the most important
enzymes involved in drug metabolism. They account for
about 75% of the total metabolism. Most drugs are deacti-

Figure 4 Interactions of kinase inhibitors with CDK2
A. Binding curve of sorafenib with CDK2. B. Binding curve of dasatinib with CDK2. C. Binding curve of imatinib with CDK2. D. Binding curve of
pazopanib with CDK2. MST-derived binding curves of NT647-labeled CDK2 to ligands were plotted as a function of ligand concentration. Data are
represented as mean ± SD (n = 2). CDK2, cyclin-dependent kinase 2.
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vated by CYPs, either directly or indirectly [64]. Drug
metabolism by CYPs is a key reason of adverse drug in-
teractions, as altered CYP enzyme activity can affect the
metabolism and removal of drugs from the body [64]. In our
study, CYP2E1 and CYP2A6 were among the top predicted
targets of dasatinib, and CYP1A2 was among the top pre-
dicted targets of pazopanib (Tables S4 and S7). As CYPs
play an important role in the drug metabolism, FDA tests
these interactions before approving a drug. We found that
the predicted interactions were indeed reported in the FDA
Orange Books (Table 5) [65,66]. iDTPnd might be a good
platform for drug companies to test the interactions of novel
drugs with different CYPs.

Comparison of iDTPnd with previous methods

Due to the importance of protein–drug interactions, several
computational studies have addressed the problem of identi-
fying novel targets of drugs from different angles. However,
most of these studies do not benchmark their performance on
known targets and use different datasets, thus making it hard
to compare among these studies. Other studies reported low
precision values (29%, 30%, and 49%, respectively)
[17,19,21]. Moreover, it is well established in literature that
a dataset of confirmed negative relationships (not the ne-
gative dataset generated by randomly sampled drugs and
potential targets) is pertinent to the improvement of drug
target predictions [67,68]. Cichonska et al. [33] have used
machine learning methods to predict the binding affinities of

kinase inhibitors to the kinome. Although the authors reported
some success, it was not obvious to choose the kernels and
regularization parameters for applying their methodology to
new drugs. Moreover, it was surprising that 3D features for
both drugs and targets did not improve the performance of
their methodology. Here, we showed that the weakly con-
served 3D features of the drug-binding sites were sufficient to
predict the binding affinity of the kinase inhibitors to the
proteins whose 3D structures have been resolved. Merget et
al. [30] used machine learning to develop a kinase profiling
method. Although they reported considerable success (area
under the curve > 0.7), the authors did not experimentally
validate new predictions. Al-Ali et al. [69] combined cell-
based screening with machine learning to correlate the kinase
inhibition profile to neurite growth. This investigation had
relative specificity for neuronal cells and required more in-
tensive cell-based screening.

Herein, we proposed iDTPnd, a computational method
for large-scale discovery of novel targets of known drugs.
Our method had the following advantages: 1) it incorporated
a negative structural image into the probabilistic scoring
function, increasing the sensitivity from 31% to 52% (cut-off
= 0.85 as mentioned in [38]); 2) it provided a docking-based
interaction score and a measure of the statistical significance
of the interaction score, enabling us to identify especially
promiscuous small molecules like gefitinib; and 3) the per-
formance of the scoring function was supported by in vitro
binding experiments that validated 10 predicted interactions.
Moreover, we also compared our model with recently pub-
lished studies of Zhou and colleagues [17] and Luo and
colleagues [34]. We analyzed the predicted targets of kinase
inhibitors in our dataset by Dr. PRODIS [17] and DTINet
[34]. It is important to note that we cannot ensure training/
testing data split on these tools and hence the reported results
can be considered as a best-case scenario. Dr. PRODIS
predicted 7469, 6483, 6263, and 7394 targets for sorafenib,
imatinib, dasatinib, and sunitinib, respectively, and did not
give any results for pazopanib. Similarly, DTINet predicted
2966 targets for sorafenib, imatinib, dasatinib, and sunitinib,
respectively, but did not give any results for pazopanib. We
analyzed the top 50 and top 200 targets for each drug pre-
dicted by Dr. PRODIS and DTINet for the known proteins
that contain a kinase domain and interact with the respective
drugs. As shown in Table 6, the sensitivities of Dr. PRODIS
and DTIN were much lower than that of iDTPnd.

Figure 5 Ligand-binding pocket of MHC class I proteins
A. Sorafenib bound in the pocket (determined by flexible docking). B.
Peptide bound in the pocket (in the crystal structure). The extracellular
ligand-binding groove of MHC class I proteins, taken from PDB 3BXN, is
shown as green ribbon. In the ligand-binding pocket identified by iDTPnd,
apolar atoms, negatively charged atoms, and positively charged atoms are
shown in green, blue, and red, respectively. Peptide shown in (B) is a
Cathepsin A signal sequence octapeptide.

Table 4 Interactions between kinase inhibitors and MHC class I
proteins (HLA alleles)

Drug Best docking score No. of structures showing
favorable binding (out of 33)

Sorafenib −149.75 13
Sunitinib −199.22 31
Imatinib −126.73 15
Dasatinib −188.48 18
Pazopanib −157.97 2

Table 5 Interactions between kinase inhibitors and CYPs

Drug Subtype Docking score IC50 (μM)

Dasatinib CYP2E1 −194.61 > 50
Dasatinib CYP2A6 −100.57 35
Pazopanib CYP1A2 −105.97 16

Note: These interactions are also reported in the FDA Orange Books [65,66]. CYP,
cytochrome 450; IC50, half maximal inhibitory concentration.
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Application to allosteric binding sites

ATP-binding site has conserved features across most kinase
domains, and several kinase inhibitors interact with the
human kinome broadly and are not very selective. However,
type IV inhibitors bind to allosteric sites that are topologi-
cally and spatially distinct from conserved ATP-binding
sites. It is natural to extend iDTPnd to allosteric biding sites.
However, allosteric binding sites are significantly different
from non-allosteric binding sites in terms of shape and
residue conservation [70]. The construction of the structural
signature requires at least 50% conservation for each posi-
tion in the signature. Therefore, we plan to explore the
application of iDTPnd in detail on allosteric binding sites in
future studies.

Conclusion

In this study, we developed a computational model iDTPnd
to discover the novel targets of known drugs. For the five
kinase inhibitors in our dataset, we identifed the known
targets with 52% sensitivity and 55% specificity. The pre-
dictive capability of iDTPnd was supported by the valida-
tion of top predicted targets using in vitro binding
experiments. First, we showed that 4 of the top 10 predicted
targets of sorafenib were binders. PKCη and MAPKAPK2
had Kd values similar to the primary targets of sorafenib. It
is therefore possible that these interactions can be exploited
in various cancer treatments. Similarly, the interaction
between sorafenib and MHC class I proteins might play
currently unexplored roles in immune response to kinase
inhibitors. Previously, abacavir, an HIV protease inhibitor,
has been shown to alter the peptide binding preference of
MHC class I proteins. It is probable that same might be true
for several kinase inhibitors. Second, we verified kinase
inhibitor interactions with two proteins (ERα and CDK2)
that appeared in the top 10 predicted target list of more than
one kinase inhibitors. In both cases, our predicted interac-
tions were verified by in vitro experiments. Beyond vali-
dating our predictions, experimental results also suggest
that our method can serve as a platform for kinase inhibitor

combination studies. The experimental validation showed
that our false positive rate is very low compared with other
studies. The false negative rate can be improved in future
studies by incorporating structure-independent information
like expression data from GTEx and ENCODE projects.
Our method is generic and can be used broadly for all types
of small molecule drugs for which sufficient 3D structures
of known targets (~ 30) have been solved.

Code availability

The code for constructing the structural signature is avail-
able at https://sfb.kaust.edu.sa/Documents/iDTP.zip.
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