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Climate vulnerability and induced changes in physico-chemical properties of aquatic
environment can bring impairment in metabolism, physiology and reproduction in
teleost. Variation in environmental stimuli mainly acts on reproduction by interfering
with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive
function in captivity is essential for the sustainability of aquaculture production. There are
more than 3,000 teleost species across the globe having commercial importance;
however, adequate quality and quantity of seed production have been the biggest
bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress
tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive
performance and gamete quality. As the gut microbiota exerts various effects on the
intestinal milieu which influences distant organs and pathways, therefore it is considered to
be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its
importance on physiology and reproduction have already been highlighted for higher
mammals; however, the study on fish physiology and reproduction is limited. While looking
into the paucity of information, we have attempted to review the present status of
microbiome and its interaction between the brain and gut. This review will address a
process of the microbiome physiological mechanism involved in fish reproduction. The gut
microbiota influences the BPG axis through a wide variety of compounds, including
neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being
conducted to determine the precise process by which gut microbial composition
influences brain function in fish. The gut-brain bidirectional interaction can influence
brain biochemistry such as GABA, serotonin and tryptophan metabolites which play
significant roles in CNS regulation. This review summarizes the fact, how microbes from
gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-
Gonad axis.
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INTRODUCTION

Aquaculture is the fastest expanding agricultural sector,
accounting for over half of all seafood (FAO, 2020) and is
frequently promoted as a solution for fulfilling the century’s
growing food demands. Presently, about 424 aquatic species
are cultivated globally, providing nourishment, food security,
and livelihoods to millions of people (Barange et al., 2018). In
2016, around 59.6 million individuals worked in the primary
sector of capture fisheries and aquaculture, with aquaculture
accounting for 32% of this total (Bhari and Visvanathan,
2018). In 2016, China, India, Indonesia, Vietnam, and
Bangladesh accounted for 82.2 % of global production by
quantity (FAO, 2018). According to this viewpoint,
aquaculture has received significant scholarly attention,
including the recent IPCC 1.5°C report (Tollefson, 2018),
which identifies aquaculture as one of the key sectors that
require attention on global food security and the upgrading of
adaptation policy. Aquaculture systems undergoing massive
changes, like other widely researched resource systems in
climate adaptation research, should be able to respond
innovatively in order to adapt more rapidly and completely to
mitigate obstacles and thrive potential possibilities (Siders, 2019).
Fish physiology and their reproductive performances in likely to
be affected by increasing water temperatures arising from climate
changes. Rapid fluctuations in environmental factors causes’
negative impact on fish breeding, hatching and larval
survivability. The role of endogenous microbiota in fish
reproduction, on the other hand, has received little attention.
Understanding the pathways of microbiota-gut-brain linkages in
reproductive biology, endocrinology, and gonadal physiology will
aid in captive maturation, effective breeding, and seed
production. Nonetheless, while microbiologists study
microbiota-gut-brain interactions in behavior and recognize
such intricacies, the equivalent complexity of the host
neurophysiological system, especially within the gut is usually
neglected (Lyte, 2014). The reproductive microbiome has been
found to create selective pressures on males and females, with
severe implications for sexual selection, conflict, mating systems,
and reproductive barriers. According to microbial endocrinology,
the microbiome may influence teleost social behaviour, sex
differentiation, and sex determination.

MICROBIOME COMPOSITION IN TELEOST

Microorganisms are vital for animal survival and physiological
functions (McFall-Ngai et al., 2013). Different anatomical niches
(e.g., skin, reproductive tract, etc.) of an organism have distinct
microbiomes, but the vast majority of microbes inhabits the
gastrointestinal (GI) tract and plays a censorious role in a
multiple way of physiological processes. The term “gut
microbiota” refers to the hundreds of billions of complex
assemblages of bacteria found in the digestive tracts of
vertebrates including fish. Betaproteobacteria
(Janthinobacterium and Rhodoferax) are the dominating
bacteria in fish eggs (Ghanbari et al., 2015). The most

prevalent bacteria in the GI tract during the first feeding
stages are Shewanella and Aeromonas spp, and in juveniles
weighing more than 2g are Pseudomonas and Aeromonas
spp. (Romero and Navarrete, 2006). The fish microbiome is
diversified, containing protists, fungi, yeasts, viruses, and
members of bacteria and archaea (Merrifield and Rodiles,
2015). Approximately 500 distinct kinds of bacteria have been
found in the fish GI tract, which is dominated by aerobes or
facultative anaerobes as well as stringent anaerobes (Legrand
et al., 2020). Rawls et al. (2006) discovered that Proteobacteria,
along with Bacteroidetes and Firmicutes, make up 90 percent of
the microbiota in the digestive tracts of several fish species
(Ghanbari et al., 2015), and Fusobacteria, Actinobacteria,
Clostridia, Bacilli, and Verrucomicrobia are among the most
represented phyla (Givens et al., 2015). In addition, available
literatures have been reviewed and reported in Supplementary
Table S1. The microbial population, composition, and function
of the fish gut differ in different parts (Clements et al., 2014). For a
species the salinity of its habitat, its trophic level, and its
taxonomy all have a strong correlation with microbial
diversity. Furthermore, the microbial community is divided
into two primary groups: allochthonous (free-living, transient
microbiota) and autochthonous (microbiota colonise themucosal
surface of the digestive system), the latter of which constitutes the
core population in vertebrates (Nayak, 2010; Banerjee and Ray,
2017). The composition varies as a consequence of natural
environment. Freshwater specie’s guts are dominated by
Acinetobacter, Aeromonas, Flavobacterium, Lactococcus, and
Pseudomonas, as well as obligate anaerobes such as
Bacteroides, Clostridium, and Fusobacterium, and members of
the Enterobacteriaceae family (Gómez and Balcázar, 2008).
Aeromonas, Alcaligenes, Alteromonas, Carnobacterium,
Flavobacterium, Micrococcus, Moraxella, Pseudomonas, and
Vibrio dominate the intestines of marine fish (Gómez and
Balcázar, 2008). The genus Vibrio that contains both
dangerous and probiotic (health-promoting) species
(Vandenberghe et al., 2003), is one of the most important
bacterial genera in aquaculture. Vibrio alginolyticus acts as a
probiotic for Atlantic salmon, protecting it against Aeromonas
salmonicida, Vibrio anguillarum, and Vibrio ordalii (Kim et al.,
2007; Yan and Chen, 2015). The most common bacterial diseases
of marine fish and invertebrates are V. anguillarum, V.
salmonicida, and V. vulnificus (Kim et al., 2007). According to
Thompson et al. (2004), many Vibrio species are function as
symbionts, releasing hydrolytic enzymes that aid in the digestion
of food components. Photobacterium iliopiscarium, a non-
luminescent bacterium, was obtained from the intestines of
cold-water fishes (Onarheim et al., 1994; Urakawa et al.,
1999). Numerous Photobacterium aid in chitin digestion in the
host stomach (MacDonald et al., 1986; Itoi et al., 2006). The
density of enzyme-producing bacteria in the gastrointestinal tract
(GI tract) of four brackish water teleosts (Scatophagus argus,
Terapon jarbua, Mystus gulio, and Etroplus suratensis) revealed
that the density increases with GIT length (Fidopiastis et al., 2006;
Bakke-McKellep et al., 2007; Silva et al., 2011; Hovda et al., 2012;
Das et al., 2014). Previously, most studies were conducted on
mammals, but now some researchers are focusing on elucidating

Frontiers in Physiology | www.frontiersin.org August 2022 | Volume 13 | Article 8710452

Haque et al. Teleost Reproduction: A Microbiome Approach

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


the role of microbiota (present in the gill, gut, intestine, and skin
regions) in aquatic organisms, particularly in fish. The role of the
gut microbiota in aquatic organisms appears similar to that in
terrestrial animals and strengthens the digestive and immune
systems (Talwar et al., 2018). These complex microbial
communities, interact with each other as well as with the host
and its environment. Gut microbiota research is critical for
gaining a thorough understanding of the relationships between
gut microbiota and their hosts (Yukgehnaish et al., 2020). There is
mounting evidence that bacteria interact with the hosts’
endocrine systems, giving them the ability to impact or be
influenced by the wide range of physiological pathways that
regulate the endocrine system (Garcia-Reyero et al., 2020).
Previous studies have focused on salinity (Lozupone and
Knight, 2007), pH (Fierer and Jackson, 2006); (Chu et al.,
2013), and ecological interactions (Steele et al., 2011) as major
determinants of free-living community composition. Microbial
community variances have been linked to differences in hormone
metabolism (Ridlon et al., 2013; Kwa et al., 2016), circulating
hormone levels (Miller et al., 2017; Antwis et al., 2019), behaviour
(Dinan et al., 2018), and even distorted gene expression in
endocrine tissues (Martin et al., 2019). Recent evidence
suggests that microbiota, particularly gut microbiota, can
influence many physiological functions (Clemente et al., 2012)
by establishing communication between the gut and proper brain
functioning.

Microbial endocrinology has recently been recognized as an
interdisciplinary field of study that connects microbiology,
endocrinology, and neurophysiology. Its primary goal is to
provide a paradigm for understanding the biological interaction
between microorganisms and their hosts. The discovery of inter-
kingdom signaling, which includes hormonal communication
between microorganisms and their hosts, results in crosstalk
between microbes and the endocrine system (Hughes and
Sperandio, 2008). The direct action of microbes on gut mucosa
and the enteric nervous system (ENS) can increase the microbiome’s
output, allowing it to reach beyond the local GI compartment. In
many ways, the gut microbiota resembles an endocrine organ due to
its ability to influence the function of distal organs and systems
(Forsythe et al., 2010; Evans et al., 2013). Although the processes
driving gut-brain connections remain unknown, the gut microbiota
has a substantial impact on the central nervous system and the idea to
understand interaction of the gut-brain axis is becomingmore crucial
(Wang et al., 2019). Furthermore, the microbiota can alter the
function of a variety of neurotransmitters and neuropeptides in
the central nervous system, causing behavioural and physiological
changes.

MICROBIAL INTERACTIONS WITHIN FISH

A fascinating translational area of fish physiological study is the
relationship between gut bacteria and host physiology. Like
mammals, zebrafish have innate and adaptive immune systems
for modulating interactions with microorganisms (Borrelli et al.,
2016). Zebrafish research has shown that this fish is an ideal
vertebrate developmental model for understanding the link

between host-microbiota and host-pathogen, including the
ontogenesis of gut microbiota. Microbiota can influence parasite
colonization, replication, and virulence, implying that parasite-
microbiota interaction is bidirectional. Colonization of the gut
with certain microorganisms endows the host with a range of
functions, including metabolism, nutrient absorption,
immunological response, intestinal maturation, as well as regulates
the expression ofmultiple cellular genes. Parasitic load can influenced
by gut microbiota and that may lead to alteration in physiology and
reproduction in fish. Similar findings have been obtained using
(Rawls, 2007; Kanther and Rawls, 2010) fish models where
organisms demonstrated to regulate metabolism. Gut colonizing
microorganisms have a diverse interaction spectrum that can
range from parasitism to mutualism depending on the
physiological situation of the host (Méthot and Alizon, 2014). In
some cases, interaction of microbes with host are asymptomatic, as
many parasites caused disease on a random basis (Wammes et al.,
2014). The interaction between eukaryotic parasites (helminths,
protozoa, and fungi) and bacteria can alter the immune
background of the gut interactions, ultimately affecting the host’s
overall health status, either driving or protecting against dysbiosis and
inflammatory diseases (Giacomin et al., 2015; Gause and Maizels,
2016). As a result, there are significant evidences that interactions
between gut microbiome and parasites can impact each other’s
pathogenicity, which is a key concern in aquaculture.

In herbivorous fishes (Nayak, 2010; Wu and Liu, 2012) microbial
members aid in the digestion of cellulose. They also help the host-
immune system for protection against pathogenic invaders in a better
way and also influence innate immune responses. Boutin et al. (2014)
provided the first evidence that host genotype regulates microbiota
taxonomic diversity in brook char (Salvelinus fontinalis) and that
particular host genomic areas regulate the acquisition of three specific
bacterial genera (Lysobacter, Rheinheimera, and Methylobacterium)
with antimicrobial activities.

The gut microbiota serves vital functions in the body, and
abnormalities (dysbiosis) in its composition and diversity can
reduce intestinal barrier protection and promote infectious
pathogens (Infante-Villamil et al., 2021). However, any
dysbiosis in microbiota can regulate peripheral and CNS
function, altering brain transmission and host behavior
(Collins et al., 2013). Probiotics, which have been widely
marketed and consumed, primarily as dietary supplements or
functional foods (Kumar et al., 2006, 2015), may benefit fish
health by immunity enhancement (Kumar et al., 2008), and
building a stable and robust intestinal ecosystem (Messaoudi
et al., 2011). Probiotics fight for adhesion sites with pathogenic
organisms, and can influence various activity in the gut, including
GI tract function, gut immune function, cytokine production in
mucosal cells (Lyte, 2010a; Llewellyn et al., 2016).

THE DIVERSIFICATION OF GUT
MICROBIOME: A COMPLEX ENDOCRINE
ORGAN
In contrast to other endocrine systems or organs that secrete only
one or a few humoral agents, the gut microbiota has the capability
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to produce hundreds of products. It is much larger and
biochemically more heterogeneous in terms of morphology
and biochemistry. The biochemical complexity of the gut
microbes even outnumbers that of the brain, and several of
the microbiota producing hormones also function as
neurotransmitters in the central nervous system (CNS). For
example, several lactobacilli produce gamma-aminobutyric
acid (GABA), the most important inhibitory neurotransmitter
in the brain (Barrett et al., 2012), whereas monoamines such as
noradrenaline, dopamine, and serotonin are also produced by
certain strains of bacteria (Lyte, 2013). A dysfunctional reciprocal
gut-brain relationship can lead to a range of illnesses, including
inflammatory problems, inappropriate stress responses, changed
behaviour and metabolic changes in fish. However, the processes
behind these abnormalities in fish remain unknown. Microbial
endocrinology is the study of microbes interacting with host
neurophysiology. It has been extensively studied in the gut (Lustri
et al., 2017) because it not only contains the majority of the
animal body’s microbiota but also expresses a wide range of
neuropeptides (Furness, 2016). Furthermore, the food contains
neuroendocrine factors and precursors that can directly influence
the intestinal microbiota (Lyte et al., 2019). In terms of mass and
diversity, the skin is home to the body’s second most abundant
microbiome (Grice and Segre, 2012). The gut and skin are major
neuroendocrine organs (Slominski et al., 2000; Roosterman et al.,
2006) that are innervated by a dense network of nerve fibers and
are constantly in contact with the environment (Slominski et al.,
2012). Large numbers of microorganisms colonize the epithelial

surfaces of fish and all other vertebrates, forming commensal or
mutual relationships with their hosts (Spor et al., 2011). The host
microbiota system refers to the microbial communities, which
include bacteria, archaea, eukaryotes, and viruses, that colonize
various body surfaces such as the skin, gills, and intestine
(Figure 1). Members of this community interact extensively
with one another as well as their hosts, playing a significant
role in modulating host physiology and homeostasis (Llewellyn
et al., 2016). Davis et al. (2016) revealed a clear and significant link
between the host and microbiota in zebrafish metabolism,
immune system, and brain development as well as a variety of
behaviour via the vagus nerve. The colonization of the gut in fish
begins when larvae open their mouths and acquire bacteria from
the chorion, feed, and water (Cicala et al., 2020). Before hatching
the digestive tract, aquatic oviparous species’ eggs are surrounded
by aquatic microbial communities. On the other hand, viviparous
species are first exposed to the maternal environment before
coming in contact with the ambient water (Longo and Bernardi,
2015). Along the microbiota ontogeny, biotic factors such as host
genotype (Boutin et al., 2014), life stage cycle (Llewellyn et al.,
2016), and population density (Dehler et al., 2017), as well as
abiotic elements such as water chemistry, temperature, nutrition,
and xenobiotics such as antibiotics (Sylvain et al., 2019), shape the
host microbiota. These biotic and abiotic components are
responsible for many physio-biological mechanisms in fish, as
shown in Figure 2. According to (Nayak, 2010), the most
frequently documented phyla in the salmonid gut microbiota
are proteobacteria and firmicutes, suggesting that members of

FIGURE 1 | Composition of microbiota in fish.
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these bacterial taxa are especially well adapted to conditions in the
fish intestine or their surrounding aquatic environment.
Furthermore, Pseudomonas sp. can account for more than
60% of the population in salmonid gut microbial composition
(Navarrete et al., 2008). Clostridium and Aeromonas are two
significant groups that have been found in the intestines of
rainbow trout (Pond et al., 2006). The digestive system of fish
is also an environment for bacteriophages, and particularly
bacterial composition, may be affected by bacteriophages
(Bastías et al., 2010). The phyla Ascomycota’s
Saccharomycetaceae, which includes the genus Rhodotorula, is
commonly detected in the microbiota of both marine and
freshwater fish (Gatesoupe, 2007), and it has also been discovered
that Candida spp., Saccharomyces cerevisiae, and Leucosporidium
sp. have been reported in the rainbow trout intestine.

CANDIDATE HORMONES OF THE GUT
MICROBIOTA

The gut microbiota plays an important role in the diversified
physiology of fishes. The microbiota is known to mediate these
physiological processes through mechanisms such as breaking
down food components and strengthening the immune system by
destroying toxins (Elahi et al., 2013). Modulation of hormone
secretion revealed the nature of the host-bacteria relationship,
which plays a vital part in the maintenance of the endocrine
system. (Clarke et al., 2014). As previously discussed, the
connection between host and bacteria is bidirectional as the

microbiota has been proven to be affected by and affect the
hormones of the host. After discovering that stress-induced
neuroendocrine hormones can influence bacterial growth, Lyte
and Ernst 1992 were the first researchers to develop the topic of
microbial endocrinology research. Various studies on microbial
endocrinology of mammalian models showed that hormone
receptors in microbes are hypothesized to be a method of
intracellular communication (Lyte, 1993). However, there is no
clear understanding of the concept of microbial endocrinology in
fish/teleost. A fascinating study discovered that many enzymes
involved in host hormone biosynthesis (such as epinephrine,
norepinephrine, dopamine, serotonin, melatonin, and others)
may have evolved by horizontal gene transfer from bacteria
(Iyer et al., 2005). Short chain fatty acids (SCFAs) are the
primary byproducts of bacterial fermentation of carbohydrates
and proteins in the intestine (Kovatcheva-Datchary and Arora,
2013). In many respects, they are the microbiota’s characteristic
hormones, and may mediate many of the functions assigned to
the microbiota via classical endocrine signaling. SCFA receptors
and transporters are expressed throughout the GI tract and are
significant for its functioning (Ganapathy et al., 2013). For
example, SCFAs may influence enteroendocrine serotonin (5-
HT) production as well as peptide YY (PYY) release, a key
neuropeptide at various levels of the gut-brain axis (Holzer
et al., 2012). The process of feeding behaviour and metabolism
involving the brain and gut microbes is depicts in Figure 3. In this
review, we screened the studies demonstrating multiple
approaches to how gut microbiota impacts brain function and
behavior in fish.

FIGURE 2 | Factors that affecting the microbiome composition in fish and its impact on host physiology.
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Catecholamines
Adrenalin and noradrenaline were the first neurohormones
which were shown to have antibacterial activity and this was
correlated to be the origin of the concept of microbial
endocrinology (Lyte, 2010a). Since the skin includes a large
number of sympathetic nerve terminals, catecholamines are
the primary autonomic skin neurotransmitters (Donadio et al.,
2006). Many bacterial species have been defined for their
response to catecholamines (Sarkodie et al., 2019), but the
impact of these neurohormones on bacteria isolated from
human skin has seldom been studied, and there is not a lot of
relevant data available from an aquaculture standpoint.
Catecholamines, like all other cutaneous factors discussed here,
have no effect on the growth of these microorganisms. However,
various bacterial catecholamine sensors have been found. The
main one, discovered in Escherichia coli, is the QseBC system
(Karavolos et al., 2013), however other receptors such as QseEF,
BasRS, and CpxAR have also been identified.

Pheromones and Sex Hormones
Pheromones are hormones that play key roles in sexual
recognition, mating, aggressive behaviour, and dominance in
aquatic animals such as fish. Pheromones are also known as
ectohormones, which are chemicals secreted outside of one’s
body that influence the behaviour of others. The influence of
sex hormones on microorganisms have been studied for nearly
4 decades. Prevotella intermedius, for example, absorbs oestrogen

and progesterone, which elevate its growth (Kornman and
Loesche, 1982). Alteration in the expression of the oestrogen
receptor (ER- β) can influence the diversity of the gut microbiota
(Menon et al., 2020). This interaction is bidirectional, as some
microorganisms have been implicated in steroid production or
modification. Clostridium scindens is a bacterium that transforms
glucocorticoids into androgens, which are male steroid hormones
(Ridlon et al., 2013). According to (Adlercreutz et al., 1984),
antibiotic use lowers estrogen levels, implying that gut bacteria
play a role in oestrogen metabolism.

Cutaneous Hormones
The skin has a plethora of neuropeptides, the vast majority of
which have yet to be studied for their potential interaction with
the cutaneous microbiota. This is the case with MSH and
proopiomelanocortin (POMC) related peptides, which are
generated in the epidermis and have antibacterial activity
(Catania et al., 2006), but have received little attention in the
context of skin physiology. At high non-physiological
concentrations, other skin neuropeptides, such as
neuropeptide-Y (NPY), vasoactive intestinal polypeptide, and
galanin-related peptides, demonstrate antibacterial activity
against microorganisms, including members of the cutaneous
microbiota such as Staphylococcus. Aureus, Streptococcus mutans,
and Candida sp (El Karim et al., 2008; Holub et al., 2011). The
release of serotonin and melatonin by common cutaneous
bacteria, as well as the presence of serotonin and melatonin

FIGURE 3 | The possible mechanism involved in teleost reproduction induced by gut microbiota. * Arrow line indicates “positive feedback” and Box tipped arrow
line indicates “negative feedback” in the above mentioned reproductive mechanism in teleost. **Text abbreviation–Kiss 1 (kisspeptin 1), Kiss 2 (kisspeptin 2), gnrh 3
(gonadotropin releasing hormone 3 gene), leptin, GABA (gamma-aminobutyric acid), 5-HT (5- hydroxytryptamine), DA (dopamine), NPY (neuropeptide-Y), GnRH
(gonadotropin releasing hormone), DAG (diacylglycerol), PKC (protein kinase C), GtH II (gonadotropin II), GH (growth hormone), bmp15 (Bone Morphogenetic
Protein 15), gdf9 (Growth differentiation factor-9), tgfβ (Transforming growth factor beta), lhcgr (Lutropin-choriogonadotropic hormone receptor), cbr11 (Carbonyl
reductase 1-like), paqr8 (progestin and adipoQ receptor), arα (androgen receptors α), arβ (androgen receptors β), prl (prolactin), fshr (follicle stimulating hormone
receptor), bdnf (brain-derived neurotrophic factor), dmrt1 (doublesex and mab-3 related transcription factor 1).
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dependent regulatory functions in the skin microbiota, have
never been studied. Particular emphasis should be directed to
γ-aminobutyric acid (GABA), which is generated by fibroblasts
and immune cells in the skin (Ito et al., 2007) and released by
interneurons implicated in itch transmission (Nigam et al.,
2010). The effect of GABA on cutaneous bacteria was not
particularly studied, however investigations were conducted
on Pseudomonas fluorescence, one of the uncommon species
of commensal skin proteobacteria, and Pseudomonas
aeruginosa, which was primarily discovered in the skin
under pathogenic conditions. Glutamate, another
neurotransmitter released by primary sensory neurons in
the skin (Miller et al., 2011), is also generated by several
microbes, including corynebacteria (Persicke et al., 2015).
Glutamate, as shown in the gut, may contribute to
bidirectional communication between the cutaneous
microbiota and skin (Baj et al., 2019).

Hormones of Immunity and Stress
The intestinal microbiota influences the development and
differentiation of the immune system. Escherichia
spp. Produces dopamine, which is required for optimal brain
function as well as the substrate for the production of the stress
hormone norepinephrine (Tsavkelova et al., 2006). The gut
microbiota can provide signals that stimulate the immune
system’s normal development and immune cell maturation
(Louis et al., 2014). There are numerous correlations that
suggest, microbiome and hormones may influence the
immune system via a common mechanism. The HPA axis
monitors and integrates gut functions while also connecting
the brain’s emotional and cognitive centres to peripheral
intestine functions and mechanisms such as immune
activation, enteric reflex, intestinal permeability, and entero-
endocrine signalling via the enteric nervous system (ENS). An
imbalance in the composition and diversity of the host’s
microbiota might reduce intestinal barrier protection and
favour infectious bacteria. Any dysbiosis in the host’s
microbiota can regulate peripheral and CNS function, altering
brain signals and behavior (Collins et al., 2013). In this context,
two specific species, L. helveticus and B. longum, have been found
to reduce stress hormone cortisol levels as well as anxiety-like
behaviour in both rats and healthy humans (Messaoudi et al.,
2011), suggesting its prominent role in downregulation of
cortisol, steering the peripheral and CNS function towards
signaling restoration of homeostasis. Zebrafish as a model
illustrate the function of the gut microbiota in maintaining
equilibrium in the gut-brain axis via immunomodulation,
protection, nutrition and metabolism, illness, as well as
directly add to an anxiety like phenotype (Mohanta et al.,
2020). Manipulation of the zebrafish gut microbiota resulted
in greater resistance to infections, stimulation of the immune
response, growth enhancement and improved gut physiological
status. The same collection of hormones and receptors exist in
both the immunological and neuroendocrine systems.
Glucocorticoids, such as corticosterone and cortisol, regulate
inflammation and have an impact on both innate and adaptive
immunological responses in fish (Franchimont, 2004).

Neurohormones
Asano et al. (2012) were the first to establish that the microbiota
was capable of producing biologically active neuroendocrine
hormones in situ. The GIT is the vertebrate body’s largest
endocrine organ (Holst et al., 1996). A wide range of
hormones and signaling molecules are secreted by various
types of endocrine cells along the length of a fish’s GIT
(Holmgren et al., 1986; Abad et al., 1987). Neurohormones are
hormones that are released by neuroendocrine cells in response to
neurological input. They can function as neurotransmitters
despite being discharged into the bloodstream to have a
systemic effect. Microbiota are considered to influence
behaviour (such as anxiety in animals) through neurohormone
precursors (e.g., serotonin, dopamine) (Lyte, 2013).
Neurohormones such as serotonin, dopamine, acetylcholine,
and norepinephrine can be produced and responded to by gut
microbes (Roshchina, 2010). The fish host has a large number of
neurochemicals. Certain bacteria in the gastrointestinal system,
for example, produce large amounts of γ-aminobutyric acid
(GABA), the primary inhibitory neurotransmitter found in the
mammalian brain (Obata et al., 2013) as well as
immunomodulatory properties (Bjurstöm et al., 2008). The
metabolic pathways employed by the microbiome to
manufacture these neurochemicals are similar to those found
in the host, which is critical in recognizing the ubiquitous nature
of neurotransmitters produced bymembers of themicrobiota and
their relationship to the host. GABA is synthesized by both
eukaryotic and prokaryotic organisms, and the essential
enzyme, glutamate decarboxylase, has been identified in a
variety of Gram-positive and Gram-negative bacteria,
including Staphylococcus, Bacillus, Streptococcus, and
Pseudomonas (Hammer et al., 2019). Even common bacterial
Quorum sensing (QS) components have the potential to act as
neurotransmitters. This is especially true for N-(3-
oxododecanoyl)-L-homoserine lactone, which is generated by
Gram-negative bacteria (Hughes and Sperandio, 2008). Critical
reviews of the scientific literature reveal numerous reports
claiming, microorganisms ability to produce and respond to
neuroendocrine hormones has potent physiological
consequences for the host, providing solid evidence about the
intersection of the fields of microbiology and neurophysiology.
Knowing the microbiota composition in the host is critical for
identifying processes by which the microbiome regulates host
neurophysiology and ultimately behaviour. The ability of
microorganisms to create neuroactive components is
dependent on the availability of appropriate substrates, which
has yet to be adequately addressed. As a result, the significance of
nutrition is critical in assessing the microbiome’s ability to create
neuroactive chemicals. The microbes produce a variety of
neuroactive substances like catecholamines, histamine, and
other compounds that can stimulate the host’s
neurophysiology, either directly through interaction with
receptors present in the GI tract or via passive diffusion
through the gut wall and finally enters the portal circulation.
Escherichia spp. produces dopamine, which is essential for
optimal brain functioning as well as the substrate for the
formation of the stress hormone norepinephrine. The
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evolutionary pathway of intercellular signaling shares this level of
communication and its mediation. It has been postulated that
these pathways evolved first in bacteria and were then adopted by
eukaryotic cell systems via late horizontal gene transfer.

THE MICROBIOTA-GUT-BRAIN AXIS (GUT
HORMONE- BRAIN CROSSTALK)

Entero-endocrine cells (EECs), are considered as one of the
largest endocrine systems that control food uptake and energy
homeostasis in the body, can be elevated by gut bacteria to release
peptides. EECs are synaptically coupled to vagal afferent terminal
postganglionic sympathetic nerves and facilitate bidirectional
communication between the ENS, CNS, and gut, producing
peptides such as galanin, orexin, leptin, and gastrin (Forsythe
and Kunze, 2013). The gut is a highly innervated organ with its
own neural system called the enteric nervous system, which is
constantly in interaction with the central nervous system (CNS)
via nerves like the vagus. The CNS influences intestine function
via the hypothalamic-pituitary-adrenal (HPA) axis, as well as the
sympathetic and parasympathetic autonomic nerve systems
(ANS). Furthermore, the ANS is another avenue via which the
CNS impacts the intestinal microbiota. The CNS receives
neurological and chemical signals from the gut on a
continuous basis and is in charge of integrating this
information and creating appropriate responses to maintain
homeostasis. According to current data, the gut influences
CNS activities primarily via the immune system,
neuroimmune mechanisms, neurotransmitters, and ANS,
which typically involves the vagus nerve, enteric nervous
system, enteroendocrine signaling, and metabolites derived
from the gut microbiome (Cryan et al., 2018). To influence

the connection between gut and brain, neural networks act in
both ascending (gut-to-brain) and descending (brain-to-gut)
directions (Sternberg, 2006). This communication system
between the gut and the brain is made up of complicated
loops of neurological responses (Genton and Kudsk, 2003).
The gut microbiota influences the brain through a wide
variety of compounds, including neurotransmitter homologs
and other metabolites. On one hand, these substances are
recognized by host cell receptors and activate nerve endings,
immune cells, or EECs, a process known as the microbiota-gut-
brain axis. Some molecules, on the other hand, can permeate the
intestinal barrier, enter the circulation, cross the blood-brain
barrier, and deliver to the brain, a process known as the gut
microbiota-brain axis Figure 4. The gut’s innervation, like its
microbiome, is not uniform along its length. As a result, it is
critical to understand how one microbial species that produces a
neuroactive chemical might have an influence on behaviour in
one section of the gut but not another. The gut microbiota is
established early in infancy, but it can be affected later by a variety
of conditions that affect its development and diversity. Microglia
dysfunctions and deficits have been identified in a variety of brain
areas, including the cortex, corpus callosum, hippocampus,
olfactory bulb, and cerebellum (Erny et al., 2013). These
findings are consistent with a growing body of research on
microbiome-neuro-immune interactions that influence
behavioural and physiological abnormalities in mice models of
multiple sclerosis, depression, stroke, and other diseases. The gut
microbiota regulates homeostasis, which includes brain
development, and has a significant impact on brain function.
The microbiota is required for the normal development of the
mucosal and systemic immune systems, as well as nutrition
absorption and metabolism. The microbiome impacts the
hypothalamic-pituitary-adrenal axis (HPA), the stress

FIGURE 4 | Bi-directional relationship between the gut microbiota and brain function. The bacterial metabolites of dietary fibers like SCFAs are neuroactive
compounds that activates neural circuit, endocrine system, mucosal immune responses, CNS function andmodulating signaling pathways influencing the host behavior.
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response, and behaviour, particularly anxiety-like and locomotor
behaviour, which may affect the host’s food behaviour and energy
homeostasis. The microbiota can also affect the function of the
HPA axis by replenishing corticotrophin releasing hormone
(CRH) concentrations and regulating excessive corticosterone
levels (Carnevali et al., 2013). The complete microbiota-gut-brain
axis (gut hormone-brain crosstalk) pathway is depicted in
Figure 3. Currently, research is being conducted to determine
the precise processes by which gut microbiota composition
influences brain function in fish models. The precise
mechanism of microbial endocrinology in fishes is unknown.
Researchers are attempting to decipher the signaling systems that
modify gastrointestinal function and host behaviour by
interconnecting the gut-brain interface.

FISH MICROBIOTA AND THE
REPRODUCTIVE AXIS

It is difficult to establish unambiguous, mechanistic linkages
between microbiota, the endocrine system, and reproductive
hormone control, and just a few studies have been conducted
in this area. To date, the majority of research on the involvement
of microbiota in reproduction has been descriptive in nature,
evaluating changes in microbial communities inside specific
physiological niches (i.e., male and female reproductive tracts)
during the reproductive cycle (Moreno and Simon, 2019).
Lactobacilli are the most common bacteria in the vaginal
microbiome of animals (Moreno and Simon, 2019). These
findings imply that hormones may influence vaginal microbial
communities and/or vice versa. Furthermore, they demonstrate
that, while microbiomes differ in terms of community
composition, functional niches are usually conserved, allowing
different microbial communities to perform identical functions
across species. A recent human study discovered that men with
good sperm quality (high motility and normal morphology) had
an increased abundance of Staphylococcus spp. and Lactobacillus
spp, respectively, and that the microbiomes of the male and
female reproductive tracts are generally similar (Baud et al.,
2019). Hormones are well known to play a role in sperm
maturation inside the male reproductive tract (Miura et al.,
1992) and the development of sperm motility (Tan et al.,
2019) in comparative models, particularly fish. Gut
microorganisms can influence reproductive endocrine control
by directly modifying hormones, hence altering their
bioavailability and efficacy (Kunc et al., 2016). Members of the
gut microbiota frequently express a variety of hormone-
converting enzymes, particularly conjugated steroids, such as
glucosidases, glucoronidase, and hydroxysteroid
dehydrogenases (Kunc et al., 2016; Kwa et al., 2016). Probiotic
treatment of zebrafish (Danio rerio) with Lactobacillus
rhamnosus resulted in increased ovarian function, which was
associated with increased ovarian expression of genes positively
associated with oocyte maturation and ovulation and
downregulation of genes negatively associated with these
processes (Carnevali et al., 2013). Gut bacteria have been
demonstrated to enzymatically modify all steroid families

(Kunc et al., 2016). However, it is exciting to speculate on
how bacteria can contribute to these processes, either through
the production of biomolecules with signaling potential or
through other means. Investigating such connections could be
a fruitful topic of future aquaculture research.

MICROBIAL DERIVED METABOLITES AND
NEUROACTIVE SUBSTANCES

The gut-brain transmission can change neurochemistry of brain
such as gamma-aminobutyric acid (GABA), the principal
inhibitory neurotransmitter in the CNS, and serotonin [5-
hydroxytryptamine, (5-HT)] levels (Clarke et al., 2014).
Neuroactive chemicals such as 5-HT, GABA, and tryptophan
metabolites all play significant roles in CNS regulation (Clarke
et al., 2013). The gut microbiota degrades nutrients, which are
then digested by host cells and some of these metabolites are
implicated in neurological activity. Gut bacteria in humans
generate amino acids such as GABA and tryptophan and
monoamines such as serotonin, histamine, and dopamine,
which play essential roles in the brain as neurotransmitters or
neurotransmitters precursors (Frank et al., 2008). These
compounds can target the CNS via the circulation and impact
neurons in the ENS (Semova et al., 2012; Brugman, 2016). The
chemicals released by gut microbes in fish are intriguing for
example, Candida and Escherichia can use tryptophan to make 5-
HT, whereas Bacillus can produce dopamine. GABA has been
produced by Lactobacillus spp. and Bifidobacterium spp,
noradrenalin by Escherichia spp., Bacillus spp. and
Saccharomyces spp., serotonin by Candida spp, Streptococcus
spp., Escherichia spp, dopamine by Enterococcus spp. (Semova
et al., 2012). These bacteria are thought to influence the CNS
through a particular mechanism by which they can create
neurochemicals that are structurally identical to
neurotransmitters produced by neuronal cells. Gut bacteria aid
in the fermentation of starch or dietary fibres in the colon,
resulting in the creation of SCFAs such as butyrate, acetate,
and propionate (Sternberg, 2006). Butyrate is immediately
used as an energy source by colonocytes. In contrast,

FIGURE 5 | The process involved between brain and gut microbiota
related to feeding behavior and metabolism.
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propionate and acetate are transferred from the intestinal lumen
into the host’s blood circulation and to the organs, where they act
as substrates or signal molecules. Acetate and propionate aid in
synthesizing ATP in the muscles and liver (Hernandez et al.,
2019). SCFAs influence energy metabolism in the colon, food
intake, and gut homeostasis by binding to their receptors, which
include G protein-coupled receptors, immune cell activity,
hormone generation, inflammation, and activation of host
epithelial cell signaling pathways (Genton and Kudsk, 2003;
Moloney et al., 2014). The vagus nerve, immunological
activation, and the generation of microbial and
neurometabolites such as short-chain fatty acids (SCFAs),
vitamins, and neurotransmitters are all implicated in this
bidirectional pathway. The fish gut microbiota regulates
hormone-like compounds, and the various pathways for those
actions are presented in Figure 5. The precise method by which
they alter brain functions in aquatic animals is unknown yet to be
unrevealed and it is hypothesized that, the neuroactive chemicals
produced by the gut microbes can pass the gut mucosal layer and
act on the enteric nervous system.

EFFECT OF MICROBIAL METABOLITES
AND NEUROACTIVE SUBSTANCES ON
REPRODUCTION
Gonadal maturation, sex steroid, sex pheromone synthesis, and
reproduction of fish are regulated by gonadotropin-releasing
hormone (GnRH) and dopamine (DA) following positive and
negative feedback, respectively (Omeljaniuk et al., 1987; Peter
et al., 1988). The interaction between the neuropeptide GnRH,
catecholamine, DA, and GABA plays a significant role in the fish
reproductive cycle (Trudeau, 1997). Trudeau et al. (2000) has
mentioned that the stimulatory actions of GABA are inhibited by
DA, which also has a down regulatory action on GnRH receptors
of goldfish pituitary (Leeuw et al., 1989). The positive feedback
activities of sex steroids appear to result from increased pituitary
sensitivity to GnRH and increased GABAergic activity rather
than alterations in DA function (Trudeau et al., 1993). In the
goldfish brain’s telencephalon preoptic–hypothalamic (TEL-
POA-HYP) area, GABA increases LH release by activating
GnRH and inhibiting DA neurons (Trudeau et al., 2000). It
has been demonstrated by increasing GABA levels with the
irreversible inhibitor of GABA-T vinyl gamma (GVG),
intraventricular GABA injection, and intraperitoneal injections
of GABA agonists. Thus, activation of endogenous GABAergic
pathways activates pituitary secretion and transcription. As a
result, to control LH release, the GABAergic system transduces
both external environmental and internal hormonal feedback
signals. Several 5HT receptor subtypes have recently been
discovered to be involved in releasing GnRH and LH. In vitro
activation of the ionotropic receptor, 5HT3A, enhanced LH beta
mRNA expression in rat pituitary (Quirk and Siegel, 2005). This
could be a way for the pituitary to respond quickly to
environmental changes. Only a 5HT2-like receptor at the
GnRH cell body or nerve terminal is known to have
stimulatory effects on LH release in goldfish (Somoza and

Peter, 1991), red seabream (Senthilkumaran et al., 2001) and
Atlantic croaker (Khan and Thomas, 1992). In the hypothalamus
of sexually mature rainbow trout, the 5HT2 antagonist ketanserin
binding was higher than in juveniles, suggesting that 5HT2-type
receptors are involved in reproduction (Agrawal and Omeljaniuk,
2000).

Furthermore, 5HT suppresses the release of GH in goldfish
(Somoza and Peter, 1991). As a result, fluctuations in brain
receptor levels may play a role in the seasonal cycle of
reproduction and growth (Marchant and Peter, 1986; Tecott
and Abdallah, 2003). The Gonadotropin-releasing hormone
(GnRH) neurons are controlled by a signaling network that
comes from the brain via afferent nerve. The neuropeptide
(NPY), most abundant peptide in the neurological system is
triggered by circulating leptin and insulin levels and has a
direct influence on GnRH, follicle-stimulating hormone (FSH),
and luteinizing hormone (LH) secretion (Won and Borski, 2013).

In this review, we are bringing out the fact that the influence of
microbes from the gut, skin, and other parts of the body, which
help to regulate fish reproduction through the endocrine system.
Transcriptomic and proteomic studies evidenced many neo
secreted proteins by gut microbes such as Lactobacillus, and
these effector molecules influence host physiology (Gioacchini,
2011; Semova et al., 2012; Carnevali et al., 2013). van de Wetering
et al. (2002) have reported that intestinal bacteria from zebrafish
influence the epithelial cells by enhancing β-catenin stability,
promoting cell proliferation. Blache et al. (2004) described that β-
catenin is controlled by Wnt signaling; its protein is translocated
into the nucleus, interacting with proliferative target genes, such
as c-myc and Sox9. Sox9 is also involved in chromosomal control
of testis differentiation in teleost (Avella et al., 2012). Gioacchini
(2011) studied that Lactobacillus rhamnosus induced a significant
enhancement in Kiss1, Kiss2, and leptin in the brain, concomitant
with an increase in gnrh3 gene expression. These genes act on the
pituitary level, stimulate FSH and LH production (Zieba et al.,
2005), and control the steroidogenesis process (Moschos et al.,
2002). The microbial organism also affect the expression of
cyp19a in the ovary, erα, and vitellogenin (vtg) in fish liver.
Also, it increased the gonadosomatic index (GSI) and enhanced
the vitellogenic follicles in the fish ovary (Gioacchini, 2011). As
shown in Figure 6, an increase in transcription of genes coding
for signals involved in the maturation phase, such as lhr, 20β-hsd,
mprb, cyclin B, activinbA1, and smad2, was observed, along with
downregulation of genes coding for local factors that prevent
premature oocyte maturation, such as tgfβ, gdf9, and bmp15. In
addition to estradiol (E2) several members of the transforming
growth factor (tgf) superfamily may play a role in vitellogenesis
regulation. During vitellogenesis, mRNA levels of the activin A
subunit, also known as inhibin βA (inhba), rise potentially
promoting follicle growth (Wang and Ge, 2003c; 2003a;
2003b). Tgfβ1 mRNA increases the expression of fshr,
implying that vitellogenesis may be influenced (Kohli et al.,
2005). Finally, it was demonstrated that bone morphogenetic
protein 15 (bmp15) could inhibit precocious follicle maturation
(Clelland et al., 2009). Higher levels of genes coding for signals
inducing oocyte maturation (lhcgr, cbr1l, paqr8) were found in
the ovaries of zebrafish treated with L. rhamnosus (Carnevali
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et al., 2013; Gioacchini et al., 2014); an opposite trend was
associated with the transcription of local factors involved in
preventing oocyte maturation (bmp15, gdf9, and tgfβ).
Valcarce et al. (2015) observed P. acidilactici a significant
increase in leptin, bdnf, and dmrt1 gene expression after a 10-
day dietary administration of Pediococcus acidilactici. Higher
sperm quality was associated with increased levels of
spermatogenesis genes activin, arα, arβ, pr1, and fshr
(Valcarce et al., 2015); the entire mechanism is depicted in
Figure 6.

IMPORTANCE OF MICROBIOTA ON FISH
PHYSIOLOGY

Nutrient Digestion and Metabolism
(Rawls et al., 2006) discovered that the GI microbiota can
influence the expression of 212 genes in the zebrafish digestive
tract, some of which are associated with epithelial proliferation
stimulation and nutrition metabolism optimization. The
zebrafish intestinal environment favours a specific group of
bacteria that are regulated by host anatomy, physiology,
nutrient availability, and immunology (Baumgart and
Sandborn, 2012) and these microbes are involved in dietary
functions. According to (Smriga et al., 2010), members of the
Proteobacteria, Bacteroidetes, Firmicutes, and Fusobacteria phyla
may aid in digestion in fish such as parrotfish, snapper, and
sturgeons by offering a variety of enzymes. Fusobacteria, which
have been found to colonise the stomach of zebrafish (Roeselers
et al., 2011), can excrete butyrate (Kapatral et al., 2003) and
produce vitamins (Roeselers et al., 2011), both of which may
exerts a positive effect on fish health. Cetobacterium somerae has

been found in a variety of fish species, including rainbow trout
(Kim et al., 2007), common carp (Omar, 2012), zebra fish
(Roeselers et al., 2011), and goldfish (Silva et al., 2011). As
Cetobacterium somerae produces substantial amounts of
vitamin B12 (cobalamin) in gut, therefore it has been
proposed that this species serves as a source of cobalamin for
some freshwater fish species (Tsuchiya et al., 2008). (Ray et al.,
2012) reported that the fish gut microbiota may contribute to host
nutrition by delivering enzymatic activities that have a positive
effect on fish digestive processes. The ability of grass carp to digest
plant stuff has long been linked to a greater abundance of
cellulolytic bacteria in the gut of herbivorous fish (Li et al.,
2009). Cellulolytic Aeromonas predominates in the gut
bacterial community of grass carp, followed by Enterobacter,
Enterococcus, Citrobacter, Bacillus, Raoultella, Klebsiella,
Hydrotalea, Pseudomonas, and Brevibacillus, and a raise in
plant-fiber consumption enhances the range of cellulolytic
bacteria (Li et al., 2009). Cellulose degrading bacteria like
Clostridium, Aeromonas, Cellulomonas, and Bacteroides along
with other nitrogen fixing species are found to supply assimilable
carbon to the wood eating fish Panaque nigrolineatus (Watts
et al., 2013). Clostridia also dominate the microbial flora of the
intestine in certain marine herbivorous fish species (Clements
et al., 2007, 2014). In contrast to the cellulolytic function of the
microbiome in herbivorous species, carnivorous species have
significantly larger levels of lipase, protease, and trypsin
producing bacteria and activity of trypsin (Li et al., 2009),
confirming the significance of microbiota in host digestion.
Lactic acid-producing bacteria (LAB) was found in greater
abundance in Atlantic salmon fed a plant-based diet than in
those on fishmeal-based diets, implying a potential role in
digestion (Catalán et al., 2018).

FIGURE 6 | The microbiota-gut-brain axis (gut hormone-brain crosstalk).

Frontiers in Physiology | www.frontiersin.org August 2022 | Volume 13 | Article 87104511

Haque et al. Teleost Reproduction: A Microbiome Approach

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Immunity and its Ability to Withstand Stress
Some studies on zebrafish and mice provide insights into the
microbial-host molecular dialogues that affect numerous host
functions, including feeding, immunology, and development
(Rawls et al., 2006; Round and Mazmanian, 2009). Because the
intestinal microbiome is required for nutritional metabolism,
the composition of the zebrafish gut microbiome can have a
significant impact on disease aetiology (Rawls, 2007). Apart
from digestion, alterations in microbiome composition caused
by environmental stress result in compromised immunity in
the host (Dawood, 2021). Gut bacteria create significant
amounts of short-chain fatty acids (SCFAs), which are
absorbed in the intestine via simple diffusion or specialized
receptors and provide resistance to harmful invaders
(Montalban-Arques et al., 2015; Maji et al., 2018). As a
result, the functional repertoire of gut microbiota appears to
be synergistic with the needs of the host. The composition of
gut microbiota may regulate CNS function via numerous
communication channels such as neurological, hormonal,
humoral, and immunological (activation of the mucosal
immune system). The gut-to-brain microbial axis is
regulated by stress factors and works through changes in
intestinal motility and permeability as well as the liberated
neurotransmitters and mucus. There is a bi-directional
interaction that regulates gut-to-brain communication in
both health and sickness, but little is known about how
bacteria can influence this communication (Figure 7).
There is a possibility that alterations in microbiota can
affect CNS function, despite the fact that the composition
of human intestinal microbiota changes over time, as food and
overall health changes (Brugman, 2016). Zebrafish and
mammals share a high degree of resemblance in the
acquired immune system as well as in the digestive system
and most interestingly, the intestinal tract harbours a diverse
community of bacteria residing in humans and other
terrestrial and aquatic animals, including fish.

THE GASTROINTESTINAL MICROBIOME
AND ITS BIDIRECTIONAL REGULATIONS

Upon meal consumption, nutrients in the GI tract activate a
variety of hormones, peptides, and neurotransmitters that are
responsible for bidirectional transmission along the gut-brain
axis (GBA). Enteroendocrine cells (EEC), which are specialized
cells in the GI epithelium that excrete key signaling molecules and
peptides, are responsible for much of this bidirectional
communication (Sandhu et al., 2017). Cholecystokinin (CCK)
and peptide YY (PYY) are two of these hormones that signal
satiation via direct EEC-nerve transmission or indirect paracrine
pathways (Sandhu et al., 2017; Butt and Volkoff, 2019). SCFAs
have been shown to regulate inflammatory responses and
metabolism, but they also influence neuroendocrine hormone
release via interactions with EEC surface receptors (Cani et al.,
2013). The gut microbiome can also influence bile acid synthesis
and secondary bile acid formation (Haygood and Jha, 2018), both
of which influence EEC neuropeptide release via interaction with
the apical bile acid GPCR, TGR5, and the farnesoid X receptor
(FXR), a nuclear receptor responsible for maintaining glucose
tolerance and insulin sensitivity (Cani et al., 2013; Sandhu et al.,
2017). While the majority of studies on the processes underlying
microbial modulation of GBA signaling have been conducted on
human, mouse, and rat models, evidence suggests that the
microbiome’s influence on neuroendocrine signaling is
conserved across many animal taxa. Few studies in fish have
looked at the direct mechanism of microbiota-gut-brain axis
transmission, but zebrafish (Danio rerio) studies have shown
that microbial colonization is required for appropriate epithelial
fatty acid absorption, as well as lipid accumulation and
metabolism (Sheng et al., 2018).

TEMPERATURE RISE AND ITS IMPACT ON
GUT MICROBES

Animals are hosts to a wide range of bacteria, fungi, protists, and
viruses (Baquero et al., 2013). Climate change/temperature rise
can have wide impacts on animal health. Climate change affects
animals and can be viewed as influences on a host-microbiome
assemblage, or “holobiont,” given the co-dependence of hosts and
their resident microorganisms (Roughgarden et al., 2018). To
understand the pattern of change in fish gut composition as a
result of climate change, it is necessary to assess the effects of
climate change/temperature rise on fish and their microbial
symbionts. Microbiologists may now use genetic techniques to
investigate microbial life on all surfaces, even on and within live
humans, due to advancements in DNA sequencing technologies
(Caporaso et al., 2012). Changes in the environment, stress,
nutrition can influence host microbiomes, which ultimately
affect fish health. Increase in temperature is also expected to
have an impact on microorganisms, as changes in temperature
can affect ambient microbial reservoirs, and rising temperatures
may have an indirect effect on animal microbiomes as well. While
an animal may have the ability to adapt to environmental
changes, the loss of essential microorganisms may impair its

FIGURE 7 | Hormone like metabolites regulated by the fish gut
microbiota. These microbial metabolites such as SCFAs (having signaling
functions) are secreted into the fish intestinal lumen, and transported to the
effector organs, including the brain, via blood stream. The gut microbiota
is also capable of producing or releasing neurotransmitters such as serotonin
or regulating the availability of precursors such as tryptophan. The microbiota
also regulates the bioavailability of choline and its metabolites.
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health and ability to live (Heiman and Greenway, 2016). Climate
change/temperature rise influences the physical and chemical
properties of aquatic habitats, which in turn influence organism
physiology and phenology, and, ultimately, the composition of
food webs. Fish live in water, and as a result, changes in aquatic
ecosystems have an immediate impact on them. They are
poikilothermic; changes in external temperature have a direct
effect on their body temperature. Depending on the species and
their spawning window, seasonal temperature changes have
either accelerated or slowed the spawning process.
Temperature and rainfall in tropical and subtropical climates
can stimulate long-term reproductive activity. Atypical
temperature regimes can influence the length and timing of
the reproductive season, as well as the quantity and quality of
reproductive output (Durant et al., 2007). As a result, temperature
can have a variety of effects on the neuroendocrine reproductive
axis (Pankhurst, 2011). Warmer water, for example, can influence
GnRH secretion, clearance, and gonadal steroidogenesis in
salmonids (Wang et al., 2009; Pankhurst, 2011). Rising
temperatures may have an immediate negative impact on
animal fitness due to effects on physiology, but they may also
have an indirect impact by disrupting mutualisms between
animals and other creatures. The effects of temperature on
species relationships have been widely studied in symbiosis
between eukaryotes. Some of the most common symbioses
that animals enter are those with bacteria and archaea
(McFall-Ngai et al., 2013), underlining the necessity of
understanding the impact of temperature on interactions with
these species as well. Microbial communities reside both within
and outside the body of an animal. Although some of these
animal-associated microbial communities are sparse, unstable, or
have little functional value for their hosts (Hammer et al., 2019),
many play an important role in host phenotypes and fitness. As
global temperature regimes change, any impact on the
composition of animal gut microbial communities may affect
their activities, with repercussions for host phenotypes and
fitness. Understanding how ambient temperature affects
animal gut microbiota may thus aid in predicting future
reactions of animal lineages and communities to climatic
change. Temperature increases, in particular, have been linked
to changes in communitymembership and relative abundances of
certain bacteria (beta diversity) in host humans. Data suggests
that each host species exhibits a distinct microbial response to
thermal stress, but some gut bacterial taxa, particularly Firmicutes
and Proteobacterial lineages, exhibit consistent temperature shifts
that appear to be reproducible across host species. The effects of
ambient temperature on gut microbiota in fish species have also
been studied. In rainbow trout (Oncorhynchus mykiss), there is a
negative relationship between rearing temperature and relative
abundance of Firmicutes (Huyben et al., 2019). However, the
relative abundance of Firmicutes and rearing temperature do not
appear to be consistently connected or correlated in all fish
species, which often have lower relative abundances of
Firmicutes than larger relative abundances of Proteobacteria
(Ley et al., 2008). The majority of the observed changes in the
composition of fish gut microbiota in response to temperature
fluctuations are mediated by alterations in the distribution and

abundance of Proteobacterial linages. According to a recent study
on the gut microbes of salmon (Salmo salar), rising temperatures
were associated with shifts in the richness of Gamma
proteobacterial linages, decreases in the abundances of
Acinetobacter, and an increase in Vibrio species known to be
pathogenic (Neuman et al., 2016). Similar changes in Gamma
proteobacterial abundance were found in yellowtail kingfish
(Seriola lalandi) too (Soriano et al., 2018).

FUTURE RESEARCH WORK

Our knowledge of the microbiome’s impact on fish performance
and health continues to advance at a rapid rate and future studies
on teleost systems should focus on improving the favourable pro-
endocrine microbiome for successful reproduction. The majority
of existing research has been done on animals, and there is a
significant need to understand how microbiomics might be used
to regulate potential physiology, immunology, and reproductive
health risks in fish. Additional new innovative studies must be
focused on the following research areas:

• The role of microbes in male and female gametogenesis,
reproductive organ maturation, development, sexual
differentiation, and sex change mechanisms in teleosts.

• The neurobiological and behavioral effects of the microbiota
in the fishes exposed to toxic chemicals/contaminants.

• How dysbiosis of the gut microbiota is linked to the onset
and progression of neurological illnesses in fishes.

• To establish a comprehensive and mechanistic strategy to
untangle microbiota-brain communication in order to
develop microbiota-based therapeutics to treat any
microbe-induced neurological disorder in fish.

• Develop a microbial consortium diet with the potential to
treat metabolic disorders by targeting the microbiota-gut-
brain axis (MGBA).

• How microbial metabolites interact with host
neurotransmitters.

CONCLUSION

Maintaining gut microbial balance is critical for fish health and
reproductive fitness. Several fundamental studies have shown
various potential ways by which bacteria may interact with host
tissues to regulate their energy metabolism. The endocrine system
and microbiota both influence physiological processes across
systems in different ways. There is a significant amount of
research demonstrating intricate, frequently bi-directional
interactions between gut bacteria and host endocrine systems
in other models. The majority of research on microbial
interactions and the endocrine system is based exclusively on
microbial sequencing technology, specifically. In these
circumstances, metagenomics may be useful, but it has
limitations due to its inability to assess in situ microbial
activity. 16S rRNA amplicon sequencing, metagenomics, meta-
transcriptomic, and whole genome metagenomics technique will
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make it easier to identify metabolic pathways that are responsible for
the production of a wide range of microbial metabolites. The selection
of probiotics to work properly, as well as the production of GABA and
serotonin by probiotic bacteria, may reflect the largely
underappreciated importance of neuroscience in understanding
how microbes may influence health via both neuroimmune and
neurophysiological mechanisms. In order to comprehend the
complexities of microbiota-host interactions and the sophistication
of disorders, the animal models studied require additional research to
optimize targets and therapeutic approaches. This study will address a
holistic approach towards new breeding technology and conservation
endocrinology. This review will also provide an insight into
microbiota-mediated manipulation of fish neurotransmission and
its physiological implications and the mechanism that how
neuroactive chemicals produced by gut microorganisms modify the
gastrointestinal function and host behaviour via interconnecting the
gut-brain interface. Finally, good communication between researchers
and application biologists is required for this knowledge to be
employed to maximize teleost health and reproduction.
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