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Epidemiologically‑based strategies 
for the detection of emerging plant 
pathogens
Alexander J. Mastin1,4*, Frank van den Bosch1,3, Yoann Bourhis2 & Stephen Parnell1,5

Emerging pests and pathogens of plants are a major threat to natural and managed ecosystems 
worldwide. Whilst it is well accepted that surveillance activities are key to both the early detection of 
new incursions and the ability to identify pest-free areas, the performance of these activities must be 
evaluated to ensure they are fit for purpose. This requires consideration of the number of potential 
hosts inspected or tested as well as the epidemiology of the pathogen and the detection method used. 
In the case of plant pathogens, one particular concern is whether the visual inspection of plant hosts 
for signs of disease is able to detect the presence of these pathogens at low prevalences, given that it 
takes time for these symptoms to develop. One such pathogen is the ST53 strain of the vector-borne 
bacterial pathogen Xylella fastidiosa in olive hosts, which was first identified in southern Italy in 2013. 
Additionally, X. fastidiosa ST53 in olive has a rapid rate of spread, which could also have important 
implications for surveillance. In the current study, we evaluate how well visual surveillance would be 
expected to perform for this pathogen and investigate whether molecular testing of either tree hosts 
or insect vectors offer feasible alternatives. Our results identify the main constraints to each of these 
strategies and can be used to inform and improve both current and future surveillance activities.

Increases in international travel, transportation, and trade have increased the risk of introduction of plant pests 
and pathogens into new areas, with changes in land use and climate potentially facilitating their establishment 
and spread1–3. Surveillance activities in presumed “pest free areas”4 are required to either confidently declare 
pest or pathogen absence (in order to facilitate trade activities) or to detect new incursions at a sufficiently early 
stage for control measures to be applied5, and are thus commonly referred to as “detection surveys”. To date, 
detection surveys are generally based upon the visual inspection of economically or ecologically important host 
species by trained surveyors4. Whilst this strategy is invaluable for the detection of novel and unexpected pests 
and pathogens, there are concerns that it may be less effective in cases where the pest or pathogen is known but 
symptoms do not immediately become apparent. This is evidenced by the fact that many emerging pests and 
pathogens are first detected at a point in epidemic development at which control is no longer feasible6–9. Our own 
previous work on plant pathogens has demonstrated that, along with the epidemiology of the pathogen, the detec-
tion method has an effect on the number of hosts which must be inspected or tested for detection surveys to be 
effective10–15. Although new diagnostic methods capable of detection of infection in presymptomatically infected 
hosts16 offer great potential for improving detection in individual hosts, less is known about their value for large 
scale detection surveys—particularly as they will generally cost more than visual inspection to deploy17. In some 
cases, there is also the question of whether hosts should be tested at all. Many plant viruses and some notable 
bacterial plant pathogens are spread by insect vectors, which may themselves be valuable alternative sources of 
surveillance data13, yet are generally only currently used as an adjunct to conventional host-based surveillance.

The challenges facing visual inspection as a surveillance strategy are exemplified by the recent emergence 
of a novel strain of the vector-borne plant pathogenic bacterium Xylella fastidiosa in Europe. This strain (X. 
fastidiosa subspecies pauca, ST53—hereafter X. fastidiosa ST53) was identified in 2013 as the cause of a novel 
disease of olive trees (olive quick decline syndrome; OQDS) in the Italian province of Lecce in the region of 
Apulia18,19. Following first identification, the meadow spittlebug, Philaenus spumarius, was identified as the most 
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important vector of this pathogen20–23 and the limits of infection within the Salento peninsula were identified 
through a delimiting survey. Whilst elimination of infection from this area is considered unlikely, X. fastidiosa 
is considered one of the greatest phytosanitary threats in Europe, meaning that there is now a need for effective 
surveillance in areas considered still free of infection24. Although much of this surveillance to date has been based 
upon visual inspection, the long “presymptomatic period” before hosts become visibly detectable and the high 
potential spread rates of X. fastidiosa raise questions of the efficacy of this strategy25. By building upon our earlier 
work11–13,15, we consider here whether visual detection can continue to be justified as the standard surveillance 
strategy prior to X. fastidiosa incursion, in the face of alternatives such as molecular testing of either hosts or 
vectors by considering the following questions:

•	 Is visual inspection useful for detection surveys?
•	 What characteristics of a host diagnostic test would make it more cost effective than visual inspection?
•	 Could laboratory testing of vectors outperform visual inspection?

Methods
Is visual inspection useful for detection surveys?  A single detection survey can result in one of two 
potential outcomes:

	 i.	 At least one positive detection is made, usually after a series of monitoring rounds where no detections 
are made. Assuming that the detection method in use has a perfect specificity—that is, there are no ‘false 
positive’ results—this indicates that the pathogen is definitely present in the population.

	 ii.	 No positive detections are made, in which case the pathogen may or may not be present in the population, 
due to imperfect test sensitivity (i.e. ‘false negative’ results) and/or random error (i.e. the possibility that 
infected hosts are present but were not sampled).

Whether or not the pathogen of interest is found during this detection survey, we are interested in answering 
the same general question: “given these results, what can we say about the prevalence of infection in this area?”. 
If a pathogen is not detected, we commonly reformulate this question in relation to a predefined “prevalence 
threshold” and ask what the probability is that the prevalence is lower than this threshold. If this probability 
is sufficiently high, it can be interpreted as evidence that the pathogen is effectively absent from the region in 
question24,26. This interpretation links well with our previous work on pest freedom determination11, which 
allows us to estimate the probability density, P

(

q
)

 , of the prevalence, q , for any given sampling rate and thus 
identify the prevalence above which only a small percentage of the probability density remains. By changing 
the number of hosts inspected (and found to be negative), we can estimate the number of hosts which would 
need to be sampled in order for this prevalence to be lower than a given prevalence threshold, and therefore 
confidently declare pest freedom. This interpretation differs from conventional prevalence estimation, in which 
a point estimate and an uncertainty range is provided. In pest freedom surveys, we effectively only consider an 
upper limit of the uncertainty range and do not attempt to estimate what the true prevalence is (indeed, it is 
hoped that the true prevalence is 0). For ease of calculation, we consider a single detection survey, allowing us 
to disregard the interval between survey rounds11. However, our methods are also applicable to multiple rounds 
of a detection survey across years (either to determine pest freedom or in the case of early detection), as detailed 
in Supplementary Information A.

When our detection survey is based upon visual inspection, our ability to detect infection will depend upon 
the proportion of symptomatic hosts at any given time, which we term the “apparent prevalence”. However, we 
wish to declare pest freedom in relation to the true prevalence (the proportion of infected hosts, symptomatic 
or not). The relationship between the apparent and true prevalences will be affected by both the duration of the 
presymptomatic period (which we term the “detection lag”) and the rate of pathogen spread (r) (Fig. 1). The 
ratio of true and apparent prevalences (which describes the number of infected hosts for each symptomatic 
host) would also be expected to reduce over time as density dependent constraints reduce the rate of increase 
in the true prevalence, until the true and apparent prevalences are equal (Fig. 1B). As this effect will be most 
pronounced when a pathogen is spreading rapidly and the detection lag is relatively long (as is the case with X. 
fastidiosa ST53), we explicitly consider this logistic growth pattern in our model27, rather than the exponential 
approximation (i.e. an assumed fixed ratio of true and apparent prevalences over time) we have previously 
described10,11. Using this approach, we are able to estimate the number of trees that would need to be visually 
inspected to detect a maximum true prevalence of 0.01 at a confidence level of 0.90 (Supplementary Information 
A), for a range of different tree pathogens—including X. fastidiosa.

What characteristics of a host diagnostic test would make it more cost effective than visual 
inspection?  Can we improve upon the performance of a detection survey by using a laboratory test capable 
of identifying infection in presymptomatic hosts? The methods described above allow us to explore the impact 
of varying different test characteristics (namely the detection lag period and diagnostic sensitivity), but we also 
need to consider how the costs of alternative detection methods compare to those of visual inspection. To do 
this, we adapt our previous work on early detection surveillance (in which the pathogen is detected)12 to the situ-
ation in which there is no detection (Supplementary Information A). Rather than specifying a particular detec-
tion method, we investigate what combinations of detection lag and diagnostic sensitivity and relative cost would 
be required to outperform visual inspection, assuming a single round of sampling. However, we also consider 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10972  | https://doi.org/10.1038/s41598-022-13553-y

www.nature.com/scientificreports/

the specific example of a molecular diagnostic which costs €14.63/host to deploy, in contrast to visual inspection 
at €5.48/host, based on estimates of the costs of X. fastidiosa surveillance in Apulia (Supplementary Table 2).

Could laboratory testing of vectors outperform visual inspection?  Vector-borne pathogens such 
as X. fastidiosa can be detected in insect vectors as well as in the plant host, and our previous work has shown 
that the relative prevalences in vectors and hosts during early stage spread is a key consideration when identify-
ing the value of surveillance in either group13. However, not only is very little known about how the prevalence of 
X. fastidiosa in vectors and hosts relate to each other during early stage spread, there is also marked seasonality in 
vector infection which makes capturing these relative prevalences more challenging. P. spumarius is univoltine 
(i.e. a single new generation is produced per year) and adults rarely survive the winter months. The total density 
of adult vectors therefore rapidly increases from the time of first emergence in spring, to peak in summer, before 
decreasing to very low levels over the winter months due to mortality28. As X. fastidiosa is lost during moulting 
and is not transmitted vertically, adult vectors (which are motile and therefore the main source of tree to tree 
spread29) would be expected to only acquire infection in a relatively short window following emergence in spring 
and whilst feeding on potentially infected olive hosts (before moving to herbage in late summer). In Apulia, the 
prevalence of vector infection therefore rapidly increases in the Spring and Summer months, before reducing to 
very low levels over winter each year as remaining adults die off20,22,28. Finally, because X. fastidiosa is a ‘semiper-
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Figure 1.   The true prevalence of infection can be estimated for any apparent prevalence from the rate of 
pathogen spread and the length of the detection lag period. (A) A detection lag period can be considered as 
a shift of the epidemic growth curve to the right. In this plot, time is shown on the x-axis and the proportion 
of infected or symptomatic hosts (the prevalence) on the y-axis. The two curves represent the true prevalence 
and the apparent prevalence (e.g. the proportion of hosts with symptoms, if detection is based upon visual 
inspection). The curves are parameterised based upon X. fastidiosa, but are intended for visualising the 
relative difference in true and apparent prevalences rather than the exact prevalences at different time points. 
The horizontal distance between the curves (i.e. in the direction of the x-axis) represents the asymptomatic 
period (the detection lag (δ) for visual inspection), and the vertical distance (in the direction of the y-axis) 
represents the difference between the true and apparent prevalences at any given time. (B) The ratio of the 
true and apparent prevalences decreases as the true prevalence increases. This plot shows the ratio of the true 
and apparent (detectable) prevalences (which can be interpreted as the number of asymptomatic trees per 
symptomatic tree) under logistic and exponential growth as time progresses. The dashed line represents the 
predicted ratio under continued exponential growth and the solid line represents that under logistic growth. 
Although during very early stage spread, the growth in both the true and apparent prevalences is broadly 
exponential, as the true prevalence deviates from this, the ratio of the two prevalences starts to decrease.
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sistent’ pathogen30,31, it is restricted to the foregut of infected vectors, meaning that colonised tissue can be more 
reliably isolated at an early stage in infected insect vectors than in infected plant hosts.

As a result of intensive vector surveys following the first detection of X. fastidiosa in Apulia, some data are 
available on both the abundance of adult P. spumarius20,28 and their prevalence of infection with X. fastidiosa20,22,28 
over the course of a year. We captured the associated prevalence of infection in olive hosts by estimating the 
overall mean prevalence in these hosts over the same time period (between 2013 and 2015) and in the same area 
of Lecce province captured in the vector data. At the same time the peak vector prevalence was 0.48 (Fig. 2B), 
the prevalence amongst hosts was 0.23. Although this does not represent the very early stage spread we are pre-
dominantly interested in, we use these data to extrapolate this. We capture the temporal trends in P. spumarius 
abundance and prevalence using nonlinear regression (Fig. 2A,B). and then use an epidemiological model of 
spread between hosts and vectors (described in more detail in Supplementary Information B) to simulate spread 
between vectors (accounting for the seasonal trends in both density and prevalence) and hosts (in which the 
prevalence increases over consecutive years according to the total density of bacteria-carrying vector days over 
the course of the previous year). From this model, we are able to estimate how the prevalence of X. fastidiosa in 
both vectors and hosts would be expected to change both within and between seasons for years in which we do 
not have data (Fig. 3A,B). Due to the limited available data on the trends in vector prevalence over time, we also 
repeated these analyses using low (0.20) and high (0.70) estimates of the peak vector prevalence for the year in 
which we have data, as shown in Supplementary Information D.

We assess the implications of these results for surveillance by adapting our previous work on early detection 
surveillance in a host-vector system13 for a scenario in which no detections are made (as described in Supplemen-
tary Information C). This approach requires a single estimate of the ratio of apparent vector and host prevalences 
during early stage spread. As this ratio varies both within and between years in the case of X. fastidiosa (Fig. 3B), 
we consider only very early stage spread. If we assume that vector sampling is conducted when vector densities are 
at their peak (which is most logistically feasible and therefore commonly practiced in the field, as well as relating 
to a maximal vector prevalence in this particular case), we can estimate the initial ratio of detectable vectors and 
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Figure 2.   There is pronounced seasonal variability in the density of adult P. spumarius and the prevalence of X. 
fastidiosa infection amongst these. (A) Data suggest that adult P. spumarius are absent from January to March, 
and peak in density around August. This plot shows the modelled change in relative P. spumarius density over 
a year, fitted to data from two papers. The black dots show the mean density from both papers20,28. (B) Data 
suggest that the prevalence of X. fastidiosa infection in adult P. spumarius increases rapidly between June and 
July, to reach a steady peak for the rest of the year. This plot shows the modelled change in the prevalence of 
X. fastidiosa infection of P. spumarius over a year, fitted to data from three papers: “Cornara JPS”28, “Cornara 
JAE”22, and “Ben-Moussa”20. The black dots show the mean prevalence estimates from all three papers.
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detectable hosts at this timepoint either analytically (see Supplementary Information C for more information) 
or directly from the model. Using this estimate, we can then estimate the maximum apparent prevalence in 
hosts for any given number of hosts and/or vectors inspected/tested and found to be negative, and convert this 
to an estimate of the true host prevalence under the assumption of logistic growth using the methods described 
above. As our previous work has shown that the total surveillance costs required in order to detect infection at 
or before a given prevalence are generally minimised when either hosts only or vectors only are sampled13, we 
only consider these two scenarios here (rather than a mixed surveillance strategy in which both hosts and vec-
tors are sampled). Finally, we incorporate sampling and testing costs and estimate the total costs of either host or 
vector sampling. As the relatively low numbers of bacteria in infected individuals21,32,33 limit the ability to detect 
X. fastidiosa infection in vectors using ELISA tests34, we consider PCR testing35 of vectors here.

Results
Is visual inspection useful for detection surveys?  The number of hosts which must be found to be 
asymptomatic to declare pest freedom is affected by the rate of pathogen spread and the duration of the pre-
symptomatic period, which will vary for different pathogens. These factors together determine the degree of 
disparity between the apparent prevalence (the proportion of hosts with visual symptoms) and the true preva-
lence of infection. Using the mean estimates of spread rate and presymptomatic period summarised in Ref.10, 
we find that there is little difference between the apparent and true prevalences for some tree pathogens (such 
as Phytophthora ramorum or Hymenoscyphus fraxineus). In these cases, relatively small numbers of hosts must 
be inspected in order to be able to declare pathogen freedom (Fig. 4). However, using our own estimates for X. 
fastidiosa ST53 (Supplementary Table 2), we found that the disparity between the apparent and true prevalences 
was more marked than for any other pathogen considered, with around 80% of hosts being infected by the time 
10% become detectable (Fig.  4A). The low numbers of symptomatic hosts which would be expected during 
early stage spread means a total of 10,384 trees would need to be observed (and all found to be asymptomatic) 
to be 90% confident that the prevalence of X. fastidiosa ST53 was lower than 1%, under our best estimates of the 
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Figure 3.   In the early stages of the epidemic, the apparent prevalence of X. fastidiosa in vectors increases 
faster than that in hosts. (A) Although the total density of P. spumarius is assumed to be fixed between years, 
the density of infected vectors increases each year. This plot shows the modelled density of P. spumarius and 
the density of X. fastidiosa-infected P. spumarius over the course of 5 years. (B) The apparent prevalence of 
X. fastidiosa infection is higher in vectors than in hosts in the early stages of a new epidemic. This plot shows 
how the modelled apparent prevalence of X. fastidiosa in hosts contrasts with that in vectors, over the course of 
5 years. The inset plot shows the estimates from the first 2 years in more detail.
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growth rate (0.0122 infections/infected host/day) and presymptomatic period (313 days). This is greater than for 
any of the other pathogens considered (Fig. 4B).

What characteristics of a host diagnostic test would make it more cost effective than visual 
inspection?  Although detection methods able to detect the pathogen before the development of symptoms 
(i.e. with shorter detection lags) require fewer samples to be collected (Fig. 5A), any associated reductions in 
the diagnostic sensitivity increases the required sample size. There is therefore a trade-off between the detection 
lag and the diagnostic sensitivity, meaning that both of these test characteristics must be considered together. 
Although the most marked reduction in sample size is associated with relatively small reductions from the origi-
nal detection lag, there are considerable increases in required sample size when the sensitivity of detection is low 
(Fig. 5A). In practical terms, a test with a detection lag period half that of visual inspection would require fewer 
samples than visual inspection if the diagnostic sensitivity of this test was over 0.15.

However, the detection lag and diagnostic sensitivity are not the only important considerations for an alter-
native detection method. We also need to consider how much the new method costs to deploy, and how this 
compares to visual inspection12. Assuming that the alternative detection method is an ELISA test, which costs 
around 2.67 times more than visual inspection to deploy (Maria Saponari, Personal Communication; Supple-
mentary Table 2), we find that a test with a perfect sensitivity must be able to detect infection with X. fastidiosa 
at or before 232 days post-infection to be more cost effective than visual inspection (that is, the intersection of 
the uppermost solid coloured line with the horizontal dotted line in Fig. 5B). If the sensitivity of the test is lower, 
then it must be possible to detect infection even earlier than this for the test to be more cost effective than visual 
inspection. Although very little information is available on the performance of the ELISA test on asymptomati-
cally infected hosts at different times post-infection, it is likely to be very low, given the large number of leaves 
(the majority of which will not contain bacteria) on a tree.

Our method can also be used to assess other potential host-based detection methods. Figure 5B shows how 
the detection lag, diagnostic sensitivity and cost influence the required sample size together by estimating the 
“equivalence point” at which the total cost of either visual inspection or the alternative detection method would 
be equal for any combination of these three factors. This equivalence point is shown in Fig. 5B for different 
combinations of diagnostic sensitivity, detection lag, and relative test cost (the ratio of the costs of testing a single 
host with the alternative detection method and by visual inspection) as coloured lines. For any given diagnostic 
sensitivity (i.e. selecting a single coloured line in Fig. 5B), we find that changing the relative costs effectively 
shifts the previous relationship between detection lag and required sample size in a linear fashion. This means 
that doubling the relative costs of the molecular test reduces the maximum acceptable detection lag by 57 days, 
all else being equal.

Could laboratory testing of vectors outperform visual inspection?  To evaluate how vector testing 
would be expected to compare to host visual inspection we need to consider not just the diagnostic consid-
erations of detection lag, diagnostic sensitivity, and cost, but also any differences in the prevalence of infection 
between hosts and vectors, which will be determined by the epidemiology of the pathogen itself. We find that 

Figure 4.   The asymptomatic period for Xylella fastidiosa makes it very difficult to detect at an early stage when 
using visual inspection. (A) The highest difference between apparent and true prevalence is seen for olive quick 
decline syndrome, caused by X. fastidiosa. This plot shows the relationship between the apparent prevalence 
(on the x-axis) and the true prevalence (on the y-axis) for a number of different pathogens (associated 
disease): Hymenoscyphus fraxineus (ash dieback); Xanthomonas citri subsp. citri (citrus canker); Candidatus 
Liberbacter asiaticus (huanglongbing); X. fastidiosa ST53 (olive quick decline syndrome); Phytophthora 
ramorum (ramorum). (B) In order to confidently declare pest freedom, more samples are needed when the 
asymptomatic period and/or the spread rate are high. This plot shows the relationship between the detection lag 
(x-axis), the exponential growth rate (on a logarithmic scale on the y-axis), and the number of samples (also on 
a logarithmic scale, in the contour lines) required to be 90% confident that the true prevalence is lower than 1% 
given that no positive detections are made. The coloured lines indicate our best estimates of the growth rate and 
presymptomatic period for the pathogens considered10.
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these epidemiological considerations are favourable for vector surveillance during early stage spread, with the 
prevalence of vector infection being up to four times higher than that in hosts. Although the detection lag and 
diagnostic sensitivity of a PCR test are also favourable for vector surveillance, the higher costs associated with 
such testing means that vectors must be pooled in order for these approaches to be cost-effective.

Our model of the population dynamics of adult P. spumarius replicates the seasonal fluctuations in adult P. 
spumarius density (Fig. 3A) and prevalence of infection with X. fastidiosa (Fig. 3B) seen in the data (Fig. 2). In 
line with the available data (Fig. 2B), the prevalence of infection is zero when adults are not present, before rising 
as adults emerge and initially feed on olive hosts36,37, and then remaining unchanged for the remainder of the 
year as the total density of adults declines (which we term the asymptotic prevalence). Our model is also able to 
predict how the prevalence of X. fastidiosa amongst adult P. spumarius varies over a number of years (Fig. 3B). 
Despite the similar general trend each year, the asymptotic prevalence in vectors increases over the first 4 years, as 
does the prevalence in hosts (Fig. 3B). However, these are not symmetrical increases—with the vector prevalence 
reducing from 4.06 times higher than the host prevalence in the first year to 3.86 times higher in the second year 
and 2.40 times higher in the third year. The fact that this ratio remains greater than 1.0 shows that during early 
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Figure 5.   The low sensitivity of current diagnostic tests when applied to presymptomatic hosts may limit 
their ability to detect infections at a low prevalence. (A) Diagnostic tests can result in a lower sample size than 
visual inspection, but if the diagnostic sensitivity is low, the test needs to be able to detect infection shortly after 
infection. This plot shows the impact of reducing the detection lag and the diagnostic sensitivity on the number 
of hosts which must be found to be negative to be 90% confident that the prevalence is lower than 1% (the 
sample size). As the dashed lines reflect the detection lag and required sample size under visual inspection, all 
solid lines below the horizontal dashed line indicate that fewer trees must be tested to declare pathogen freedom 
than would have to be visually inspected. (B) Lower detection sensitivities and higher costs both reduce the 
feasibility of a nonvisual detection method, even if the detection lag is short. This plot expands on plot A to also 
incorporate testing costs. We capture this by showing in solid coloured lines the relative cost of an alternative 
detection method at which the total costs of surveillance would be equal to those under visual inspection, for 
different diagnostic sensitivities. The intersections of the solid coloured lines with the solid black line (which 
indicates that the costs of the detection method is equal to that of visual inspection) therefore represent equal 
required sample sizes (and therefore match the intersections of the curves in plot A with the dashed line in 
that plot). The horizontal dotted line indicates the current estimated relative cost of using the host ELISA test 
(a cost ratio of €14.63/€5.48 = 2.67). The vertical dashed line shows the presymptomatic period for X. fastidiosa 
(and therefore the detection lag for visual inspection). All areas of the parameter space below the test sensitivity 
contour of interest indicate that the alternative detection method is cheaper to deploy than visual inspection, 
and all areas above indicate that visual inspection is cheaper.
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stage spread, any given number of sampled vectors would have a higher probability of containing an infected 
vector than an equal number of sampled hosts.

When we consider only the differences in detection lag and diagnostic sensitivity between vector and host 
sampling, we find that a total of 10,384 hosts would need to be sampled to be able to declare a prevalence lower 
than 1%, in contrast to 3106 vectors (Fig. 6A). However, when we account for the fact that laboratory testing 
of single vectors is higher than the costs of host visual inspection, we find that it would cost €87,754 to reli-
ably declare pest freedom when sampling vectors in contrast to the €56,902 required for host visual inspection 
(Fig. 6B). Studies have suggested that vectors can be pooled in batches of up to five insects38. We estimate that 
doing this would reduce the costs to €19,444, assuming that this pooling does not impact upon the test sensitiv-
ity (Fig. 6B).

We also explored the impact of lower and higher peak vector prevalences in relation to the known host preva-
lence (Supplementary Information D). We found that a lower vector prevalence (more in line with one of the two 
available studies20) resulted in the prevalence of vector infection during early stage spread being approximately 
equal to that of hosts and therefore removing the advantages of vector surveillance. However, a higher vector 
prevalence (in line with the other study28) further heightened the value of vector surveillance, with early stage 
prevalences being over ten times higher in vectors than in hosts. In this scenario, even testing vectors individu-
ally resulted in lower surveillance costs than host inspection.

Discussion
Summary.  The rate of new plant pathogen invasions has skyrocketed in recent years, associated with increases 
in international travel and trade and changes in land use and climate1–3. This is exemplified by the recent detec-
tion of the vector-borne plant pathogen Xylella fastidiosa in numerous European countries, reflecting a num-
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Figure 6.   In cases where X. fastidiosa is not thought to be present, fewer vectors than hosts need to be tested in 
order to declare pest freedom. (A) The number of hosts which need to be tested to detect at a given prevalence is 
over three times higher than the number of vectors. This plot shows the 90th percentile of the host prevalence in 
the absence of positive detections on the x-axis, and the number of individuals which would have to be sampled 
(and found to be negative) to achieve this on the y-axis, when hosts or vectors are sampled exclusively. The 
intersection of the curves and the vertical dashed line represents the sample size required to be 90% confident 
that the true prevalence is lower than 1% if no detections are made. (B) If vectors are pooled, the total cost 
of sampling hosts is around three times higher than the cost of sampling vectors. This plot shows the 90th 
percentile of the host prevalence in the absence of positive detections on the x-axis, and the total cost of the 
required sampling and testing effort to achieve this on the y-axis, when hosts or vectors are sampled exclusively. 
We assume that hosts are sampled with visual inspection and ELISA confirmation of suspected positives, and 
that vectors are tested using qPCR, either singly or pooled in batches of five.
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ber of separate incursions39. Given the considerable threats this pathogen poses to plant health throughout the 
continent were it to spread further, as well as the continued threat of incursion of other plant pathogens, we are 
faced with the question of how best to conduct surveillance to ensure that “pest free areas” remain as such. These 
surveillance activities (known as “detection surveys”) must be capable of detecting the presence of the patho-
gen at low prevalences, and to date, have predominantly relied on the visual inspection of host plants for signs 
of disease. Whilst this remains the only plausible method of detecting new, unexpected, pathogens or disease 
syndromes, it is unclear whether the wealth of alternative detection strategies offered by advances in molecular 
diagnostics and image analysis may be more appropriate when the pathogen of interest is known. We investigate 
whether visual surveillance can still be justified for X. fastidiosa detection surveys by comparing the expected 
performance of visual inspection to that for other tree pathogens and then evaluating the performance of alter-
native host-based methods such as molecular diagnostic tests and laboratory testing of insect vectors in relation 
to visual inspection. Although directly valuable for informing future surveillance for X. fastidiosa, our results 
allow us to better understand the situations in which these different detection methods may be best applied, and 
the constraints to their use.

Although X. fastidiosa has over 600 known potential host species40, we focus here on the X. fastidiosa ST53 
– olive system, as found in Apulia, Italy41. In this system, the combination of a high spread rate and a long 
presymptomatic period means that visual inspection is likely to fail to reliably detect invasions at an early stage 
of invasion (i.e. when the prevalence of infection is very low) unless very large numbers of hosts are inspected 
(Fig. 4). Although fewer hosts would need to be inspected if molecular tests capable of reliably detecting infec-
tion before the development of symptoms were used, it is unlikely that this reliable detection can be achieved 
with these tests (since the probability of selecting a sample containing the pathogen is so low). As a result of the 
likely low diagnostic sensitivity associated with molecular testing of presymptomatic trees, larger numbers of 
trees would have to be sampled (Fig. 5A). As an additional constraint, the higher financial costs of molecular 
testing (even when using lower cost ELISA methods) compared to visual inspection also mean that sample size 
reductions would need to be very substantial before the tests become more cost effective (Fig. 5B). However, 
there remains some promise in the use of higher throughput, whole-tree methods such as remote sensing, which 
may be capable of reliably detecting presymptomatic trees at a relatively low cost per tree (due to their capacity 
for inspecting large numbers of trees relatively quickly), which will be explored in more detail in future work. 
We also find that sampling insect vectors and testing them for the presence of the pathogen has the potential to 
outperform both visual inspection and molecular testing of hosts (Fig. 6A). As well as offering shorter detection 
lag periods and higher diagnostic sensitivities, we find that the prevalence in vectors during early stage spread 
would be expected to be higher than that in hosts—making it more likely that infected individuals would be 
included in any sample, which therefore reduces the required sample size. The main challenge facing vector 
surveillance is the considerably higher per-sample costs of PCR testing. Although pooling vectors together for 
testing—a commonly used approach38—may solve this problem (Fig. 6B), further work is required to estimate 
the performance of this testing approach.

Is visual inspection useful for detection surveys?  Visual inspection may be an appropriate detection 
method to use in pathogen detection surveys, but this depends on the rate of pathogen spread and the length of 
time before symptoms develop. As Fig. 4 shows, the sample sizes required are lowest in cases where the pathogen 
spreads slowly and symptoms develop quickly (in Fig. 4B, the lowest sample size contour is reached roughly 
when the time before symptoms develop is lower than the inverse of the spread rate). This agrees with our previ-
ous work, which showed that visual inspection for Phytophthora ramorum in rhododendron (a slow spreading 
pathogen with a short presymptomatic period) is likely to be more cost effective than the use of rapid diagnostic 
tests12. However, X. fastidiosa ST53 in olive both spreads rapidly and takes a long time for symptoms to develop. 
As a result, the number of trees which must be inspected for symptoms of X. fastidiosa infection during detection 
surveys is higher than for any other tree pathogen considered here (Fig. 5B). Although this intensity of surveil-
lance is comparable to that in recent years within the 10 km wide ‘buffer zone (‘Zona Cuscinetto’) adjacent to 
the known infected zone in Apulia, it likely represents an unfeasibly high surveillance effort to maintain for long 
periods of time over the large areas for which such surveillance would be required (such as the remainder of 
Apulia, or even Italy as a whole). We assume that visual detection has both a perfect diagnostic specificity (i.e. 
that inspectors would be able to correctly identify all uninfected hosts) and a perfect diagnostic sensitivity (i.e. 
that inspectors would be able to detect all infected hosts after 313 days of infection). Our assumption of a per-
fect diagnostic specificity (i.e. that inspectors would not mistake other conditions for X. fastidiosa infection in 
uninfected hosts) corresponds to the guidance that any suspected cases would undergo confirmatory laboratory 
testing24, thereby making false positives unlikely. Our assumption of a perfect diagnostic sensitivity is a “best 
case” scenario, and a lower sensitivity (for example, resulting from nonspecific or subtle symptom development) 
would further increase the required sample sizes (Fig. 5A). Although little is known of the true sensitivity of 
visual inspection for plant pathogens, the impact of variability in both symptom development and in inspector 
performance would be a valuable avenue for future study.

What characteristics of a host diagnostic test would make it more cost effective than visual 
inspection?  A number of novel methods of detection of host infection have become available in recent years. 
Although our method is flexible enough to be applicable to any of these, we focus mainly on the use of molecular 
tests—in particular, ELISA tests—which are currently being deployed in the field alongside visual inspection. 
Although theoretically capable of detecting presymptomatic infection in hosts and being relatively cheap to 
deploy, less is known of the diagnostic sensitivity of these tests in the field. Although estimates of test sensitivity 
are available, these are generally based upon the testing of either symptomatic or known infected tissue, and thus 



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10972  | https://doi.org/10.1038/s41598-022-13553-y

www.nature.com/scientificreports/

do not account for the fact that the pathogen is not homogeneously distributed throughout infected hosts—par-
ticularly early in infection. This is a particular issue for tree pathogens, and therefore means that there is a high 
probability that tissue sampled from an infected host will either not contain the pathogen at all or only at low 
levels. Given that even cheaper ELISA tests cost over two and a half times that of visual inspection, the number 
of hosts which need to undergo testing must be less than 40% of the number of hosts requiring visual inspection 
for the total surveillance costs of both methods to be equal. This can be achieved with a molecular test able to 
detect infection 6 months after infection (i.e. around 5 months before symptoms develop) and a host-level diag-
nostic sensitivity of greater than 0.7. To the authors’ knowledge, no available molecular tests could be expected 
to have sensitivities this high at this stage of infection. Although advances in molecular diagnostics offer some 
potential for reducing the costs of diagnostic tests, until a method of accurately selecting infected tissue for test-
ing is developed, we therefore conclude that molecular testing of host plants is likely to remain of limited use for 
detection surveys.

Amongst nonvisual detection methods, non-molecular methods such as aerial remote sensing42 or canine 
olfactory detection43,44 may be capable of more reliably identifying infected hosts before the development of 
symptoms as they operate at the level of the whole tree rather than a particular sample, and may therefore be 
more appropriate for detection surveys than either visual inspection or molecular testing. Another potential 
advantage of these particular methods is that they are potentially capable of screening large numbers of hosts in 
a short space of time, meaning that their cost of deployment on an individual host basis could be relatively low.

Could laboratory testing of vectors outperform visual inspection?  We finally consider whether 
surveillance of insect vectors could circumvent some of the challenges associated with host surveillance. The 
concept of testing vectors for pathogens is a recognised component of surveillance for emerging vector-borne 
pathogens of humans and other animals45,46, as well as of plants24. Indeed, the first detection of the citrus patho-
gen Candidatus Liberibacter asiaticus (the cause of the citrus disease huanglongbing) in California was made 
in insect vectors47. However, to date, most vector surveillance for X. fastidiosa has focused on the identification 
of competent vectors, seasonality of infection, and the spatial limits of the pathogen48–50. We find that the high 
prevalences of vector infection during early stage spread, the potential for reliable detection early in infection, 
and the ability to reduce testing costs through pooling, all make insect vectors a potentially valuable “sentinel 
host” for the detection of X. fastidiosa ST53 at low prevalences of host infection.

Although the short latent period and the reliable localisation of the pathogen in infected vectors suggests that 
vector surveillance could reduce the long detection lags and low diagnostic sensitivities which constrain host 
surveillance, very little data are available on how the prevalence in vectors relates to that in hosts during early 
stage spread. We therefore estimate this using a mechanistic model, created to reflect the population dynam-
ics and infection of the main vector of X. fastidiosa, P. spumarius, in Apulia. Although our precise findings are 
therefore specific to the Apulian scenario, our framework is generic and can be adapted to other settings or other 
pathosystems if desired. From our model we obtain a rule of thumb which determines the relative prevalence in 
vectors compared to that in hosts, and therefore tells us something of the relative value of conducting surveil-
lance in vectors. This ratio increases as the host density or the rate of pathogen acquisition by vectors increases 
and decreases as the rate of vector emergence increases. The inverse relationship between the vector and host 
densities and the relative prevalences in each initially appears counterintuitive, but represents the potential total 
increase in inoculum and therefore the infection pressure from vector to host or from host to vector, respectively.

Using our best estimates of these parameters in the Apulian scenario, our model predicts that the apparent 
prevalence of X. fastidiosa infection in these vectors would be around four times higher than that in hosts in the 
early stages of infection. This means that lower sampling rates would be required in vectors than in hosts dur-
ing early pathogen spread to reliably sample infected individuals. This high vector prevalence is supported by 
the observed rapid spread of X. fastidiosa ST53 between Apulian olive trees by P. spumarius despite the limited 
transmission window each year (when adults are present and feeding on olive). However, we found that these 
conclusions are sensitive to the estimated relative prevalences in vectors and hosts, with lower vector prevalences 
removing this value of vector surveillance and higher vector prevalences heightening it (Supplementary Fig. D). 
As a result, further data on both host and vector infection during early stage spread for future pathogen incur-
sions are urgently needed to verify these conclusions, especially given that studies in Spain have suggested that 
that there may be variability in the vector prevalence year on year51. We also note that there is some evidence 
that the prevalence amongst vectors declines towards the end of the year in Apulia20 (and in other locations51). 
We do not explicitly capture this decline in our model because the low numbers of vectors at this point (Fig. 3A) 
would be expected to have relatively little impact on transmission, and because this decline does not affect our 
detection ability since we assume that vectors are sampled earlier in the year when they are at high densities.

Although we assume that the diagnostic sensitivity of vector PCR is reasonably high (resulting from recent 
advances in vector PCR testing diagnostic methods and protocols49,52), PCR tests are expensive and laborious to 
undertake. As a result, we found that although fewer vectors need to be sampled than hosts, the costs of testing 
these individually was higher than that of hosts. However, assuming that the performance of PCR is unaffected 
when five insects are pooled together (as has been suggested38), the total costs of vector testing are lower than 
those of visual inspection (Fig. 6B). Given that the costs and performance of these molecular tests are likely to 
improve over time in line with advances in molecular diagnostics, these results suggest that vector testing also 
offers great future potential for improving the early detection of X. fastidiosa.

As mentioned above, our current results consider the scenario in Apulia, Italy, where X. fastidiosa is thought 
to have spread rapidly since first introduction53. When considering surveillance activities in other locations, the 
impact of factors such as climate, host availability and vector density on pathogen spread and on the value of vec-
tor surveillance will need to be explored. Finally, whilst our method can quantify the value of vector surveillance 
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from a scientific perspective, the most appropriate response to a positive detection is best considered by decision 
makers. Further work will be needed to develop appropriate responses to detection in vectors, given that it is 
not possible to perform repeat confirmatory tests (as is possible with host trees) and that less information can 
be gained on the spatial distribution of infection. As a result, vector surveys alone are currently not considered 
sufficient to determine the X. fastidiosa status of any area in the European Union25.

Conclusions
The rapid rate of spread of X. fastidiosa ST53 in olive and the considerable delay between infection and the 
development of symptoms makes visual inspection less able to identify low prevalences of infection required 
for effective detection surveys. Whilst molecular tests can reduce the delay before infection can be detected, the 
relatively low diagnostic sensitivity and high costs of these tests mean that they are unlikely to outperform visual 
inspection in the field. However, the combination of a short interval between infection and reliable detection and 
the high initial prevalences of infection amongst the insect vectors responsible for pathogen spread means that 
vector sampling offers great potential for a sustainable and effective surveillance strategy. Whilst individual test-
ing of vectors is unlikely to currently be a cost-effective alternative to visual inspection, costs can be substantially 
reduced when insects are pooled together for testing.

Data availability
All code required to generate and analyse the data in this study is included in the Supplementary Information.
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