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Purpose: SimPET (www.sim-pet.org) is a free cloud-based platform for the generation of realistic
brain positron emission tomography (PET) data. In this work, we introduce the key features of the
platform. In addition, we validate the platform by performing a comparison between simulated
healthy brain FDG-PET images and real healthy subject data for three commercial scanners (GE
Advance NXi, GE Discovery ST, and Siemens Biograph mCT).
Methods: The platform provides a graphical user interface to a set of automatic scripts taking care
of the code execution for the phantom generation, simulation (SimSET), and tomographic image
reconstruction (STIR). We characterize the performance using activity and attenuation maps derived
from PET/CT and MRI data of 25 healthy subjects acquired with a GE Discovery ST. We then use
the created maps to generate synthetic data for the GE Discovery ST, the GE Advance NXi, and the
Siemens Biograph mCT. The validation was carried out by evaluating Bland-Altman differences
between real and simulated images for each scanner. In addition, SPM voxel-wise comparison was
performed to highlight regional differences. Examples for amyloid PET and for the generation of
ground-truth pathological patients are included.
Results: The platform can be efficiently used for generating realistic simulated FDG-PET images in
a reasonable amount of time. The validation showed small differences between SimPET and acquired
FDG-PET images, with errors below 10% for 98.09% (GE Discovery ST), 95.09% (GE Advance
NXi), and 91.35% (Siemens Biograph mCT) of the voxels. Nevertheless, our SPM analysis showed
significant regional differences between the simulated images and real healthy patients, and thus, the
use of the platform for converting control subject databases between different scanners requires fur-
ther investigation.
Conclusions: The presented platform can potentially allow scientists in clinical and research settings
to perform MC simulation experiments without the need for high-end hardware or advanced comput-
ing knowledge and in a reasonable amount of time. © 2021 The Authors. Medical Physics published
by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. [https://
doi.org/10.1002/mp.14838]
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1. INTRODUCTION

Positron emission tomography (PET) has been widely used in
neurology to study brain metabolism, receptor binding, and
alterations in regional blood flow.1 In particular, 18F-fluo-
rodeoxyglucose (18F-FDG) PET provides images of the glo-
bal and regional brain glucose consumption, which are of
great interest in the clinical diagnosis and follow-up of neuro-
logical disorders such as epilepsy and different forms of
dementia.2

Despite the fact that brain FDG-PET images are typically
interpreted through visual inspection and manual annotation,3

several studies have highlighted the potential benefits of
semiquantitative approaches for improving the diagnostic
confidence and accuracy in dementia,4 epilepsy,5 or atypical
parkinsonian syndromes.6 This has led to the gradual intro-
duction of commercial software for semiquantitative analysis
into the clinical routine.7 However, the generalized use of
quantification has been hampered by the lack of the standard-
ization between quantification methods.8,9 The chief obstacle
for such standardization has been the lack of reliable and
easy-to-use ground-truth references. The most common
approach is the use of geometric10 or anthropomorphic phan-
toms,11 of which the most popular is the Hoffman phan-
tom.12–14 However, the use of physical phantoms provides
little flexibility for changing shapes and volumes of the brain
regions, leading to unrealistic images. An alternative is the
use of Monte Carlo (MC) or analytical simulations. Several
toolkits exist for MC simulation, such as the Geant4 Applica-
tion for Tomographic Emission (GATE),15 Simulation System
for Emission Tomography (SimSET),16 or PeneloPET.17 The
simulated data can then be reconstructed to generate PET
images, which can be used to validate the quantification
methods using the original digital phantoms as ground
truth.18–24 For this, different brain digital phantoms such as
the Zubal,25 the XCAT brain,26 the BigBrain atlas,27 and the
digital Hoffman28 are available, but these have, in general,
similar limitations in terms of changing shapes and volumes
similar to those of the physical phantoms. These limitations
can be overcome by deriving the synthetic phantoms from
patient data,29,30 allowing the generation of large numbers of
different phantoms incorporating voxel-wise physiological
variability. However, the use of all the aforementioned
requires a solid background in particle physics, statistics and/
or programming as well as access to high computing power,
making MC simulation often inaccessible to researchers out-
side the specialized community which implements these soft-
ware tools, thus limiting its outreach to clinical facilities,
where quantitative methodologies must be validated.

In this work, we present SimPET (www.sim-pet.org), a
free, easy-to-use, cloud-based platform for the generation of
synthetic PET images with a special focus on brain imaging.
The platform allows the automatic generation of realistic

digital brain phantoms derived from patient PET/CT and
MRI images by using the Brain-VISET (voxel-based iterative
simulation for emission tomography) method previously pub-
lished by our group,29 and the simulation and reconstruction
of these or other user-defined phantoms using several vali-
dated scanner models included in the platform.

2. MATERIALS AND METHODS

2.A. The SimPET platform

2.A.1. Architecture and deployment

The SimPET platform is an adaptation from Neurocloud®,
a commercial online platform hosting quantification tools
(https://qubiotech.com/en/neurocloud) (Qubiotech Health
Intelligence SL, A Coruña, Spain). It has a multilayered
architecture, with three main layers: presentation (GUI),
domain logic, and data storage (Fig. 1). Each layer is built
with its own technologies and can be independently
upgraded, debugged, and repaired.

The web portal (www.sim-pet.org) provides a simple
graphical user interface (GUI). The application manages the
web server, computational processes, and file storage. The
platform distributes load to parallel processing “workers" that
perform the simulation/reconstruction. The underlying scripts
are written in various programming languages, such as Bash,
MATLAB, C, and Python. The source code is open, free, and
can be downloaded from GitHub (https://github.com/txusser/
brainviset_simset). Various well-validated libraries are used
under-the-hood, such as SimSET (https://depts.washing
ton.edu/simset), STIR (http://stir.sourceforge.net/),31 the Sta-
tistical Parametric Mapping package (SPM12),32 FSL,33 and
the Python NiBabel.34 The interested reader can find past use
cases in our published work.20,21,35–37

The whole system (including the web application + two
simulation workers) is currently deployed on a Lenovo
ThinkStation P920 with two Intel Zeon Silver 4114 proces-
sors (twenty 2.20 GHz cores and forty threads in total),
126 GB RAM and 6 TB disk space in a mirroring configura-
tion using Ubuntu 16.04 LTS. In addition, thanks to the plat-
form features inherited from Neurocloud, the platform is
ready to be deployed in a full cloud-computing configuration,
with the ability of managing autoscaling of the number of
simulation cores depending on the load.

2.A.2. Input and output

The platform accepts inputs in the Digital Imaging and
Communications in Medicine (DICOM) and NifTI-1 formats.
When uploading DICOM, the images are anonymized and
converted to NifTI-1, which is a more convenient format for
mathematical manipulation. The platform outputs the
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generated Brain-VISET digital brain phantoms (activity and
attenuation maps), sinograms, and reconstructed PET images
in NifTI-1.

2.A.3. Graphical user interface

Figure 2 shows the GUI, that users can access freely
through www.sim-pet.org, after filling a registration form with
their email and some additional information. The main menu
is structured in three modules: Phantom generation (map gen-
eration), simulation, and reconstruction. After each process,
intermediate files can be downloaded/uploaded, allowing the
user to introduce extra steps in the process.20,21 An interactive
online image viewer is also included for evaluating the results
without the need of downloading any file. The different boxes
in Fig. 2 provide an overview of the different interaction pan-
els in the platform. The user profile, an online manual and
online support can also be found in the main page.

2.A.4. Typical workflow

A typical workflow is illustrated in Fig. 3, including (a)
loading PET, CT, and MR images of the same subject, as
input parameters, and configuring a scanner model, a radio-
tracer, injected dose (MBq), and scan duration (s) for generat-
ing activity and attenuation maps using Brain-VISET; (b)

generating simulated sinograms from previously generated
maps or from uploaded attenuation and activity maps using
SimSET. For these, the user must set the desired injected
dose (MBq), the scan duration (s), and the noise level, which
can be allowed to easily generate noise-free simulations inde-
pendently of the selected parameters; and finally (c) recon-
structing the above sinograms using STIR. Once the different
images are generated, these can be viewed online or down-
loaded. For more details or an usage example, see the online
manual at www.sim-pet.org (Fig. 2, light blue box).

2.A.5. Simulation and reconstruction

The MC simulation is performed using SimSET (v.2.9.2),
which includes the simulation of all the physical processes
for the energies of interest in nuclear medicine (below
1 MeV).16,38 The generated data are then reconstructed by
using STIR (v.3.1) (https://github.com/UCL/STIR). Cur-
rently, three commercial PET scanners are supported, namely
the GE Discovery ST (GE Healthcare, Chicago, United
States), The GE Advance NXi (GE Healthcare, Chicago, Uni-
ted States) and the Siemens Biograph mCT (Siemens Health-
ineers, Erlanger, Germany). Additional scanners will be
progressively added in the future, as they get validated. The
three scanner models are based on previously published
works,39–41 and validated by us against experimental

FIG. 1. System architecture of SimPETwith the three layers: Presentation, domain logic, and data storage. [Color figure can be viewed at wileyonlinelibrary.com]
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measurements taken with the GE Discovery ST present at
CIMES (Centro de Investigaciones Médico-Sanitarias,
University of Málaga), the GE Advance NXi present at the
University Hospital of Santiago de Compostela, and with
published measurements for the Siemens Biograph mCT.42

The images are reconstructed using the ordered subsets
expectation maximization (OSEM) algorithm as implemented
in STIR, setting the reconstruction parameters to match those
set in the scanner as closely as possible.

2.A.6. Generation of realistic phantoms

Realistic activity and attenuation maps including nonuni-
form activities and physiological variability can be fully

automatically extracted from patient images by using the
Brain-VISET iterative method, which has been previously
presented in detail20,21,29 and can be seen schematically in
the orange box of Fig. 3. In brief, PET/CT images are coreg-
istered to the T1-weighted MRIs using FLIRT33 (https://fsl.f
mrib.ox.ac.uk/fsl). Bone tissue images are extracted from the
CTs using a 600 Hounsfield unit threshold. The T1 MRI is
segmented to gray matter, white matter, and cerebrospinal
fluid using SPM12. An initial activity map is generated by
filling the segmented tissues with uniform activities. An ini-
tial attenuation map is created joining the bone tissue and
outskin images. The initial maps are then simulated using the
MC model for the selected scanner. Postsimulation, the
reconstructed image is compared with the original PET

FIG. 2. Web-based Graphical User Interface of SimPET (www.sim-pet.org). Surrounding boxes show the pop-up menus for patient-derived map generation
(green), Monte Carlo simulation (dark blue), Tomographic reconstruction (yellow) and we highlight the different support options (light blue). [Color figure can
be viewed at wileyonlinelibrary.com]
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image, and the activity map is updated. This process is
repeated iteratively until the correlation coefficient is ≥0.99.

2.B. Validation

The validation was based on the simulation of realistic
healthy patient’s FDG-PET images databases for the included
scanner models. To this end, FDG-PET/CT and MRI images
from 25 healthy subjects were scanned with the GE Discovery
ST and used for the phantom generation. The generated activ-
ity and attenuation maps were then used as inputs for the simu-
lation of synthetic data using the included GE Discovery ST,

GE Advance NXi, and Siemens Biograph mCT scanner MC
models. The validationwas carried out by performing different
comparisons between the simulated images and real healthy
subject FDG-PET images acquired on each of the scanners.

2.B.1. Patient cohorts: PET and MRI acquisition
protocols

FDG-PET data acquisitions were performed as:

a. Group 1: 25 healthy subjects (mean age: 58 � 5 yr;
range: 48–67 yr) were acquired on a GE Discovery ST

FIG. 3. Typical workflow of SimPET. (i) First PET/CT and MRI images are considered as inputs for the activity and attenuation map generation. (ii) Next, the
attenuation and activity maps are simulated for obtaining PET sinograms. (iii) Finally, the reconstructed PET images are generated by reconstructing these sino-
grams. The simulation and reconstruction steps can be repeated after changing the input parameters until the final image is satisfactory. [Color figure can be
viewed at wileyonlinelibrary.com]
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PET/CT installed at Centro de Investigaciones Médico-
Sanitarias (Málaga, Spain). Images were acquired for a
bedtime of 1200 s after the intravenous injection of
approximately 245 MBq (3.3 MBq/Kg) of 18F-FDG. PET
images were reconstructed using 3D OSEM with CT-
based attenuation correction, and scatter correction (Voxel
size, 1.95 × 1.95 × 3.27 mm; Matrix size, 128 × 128 ×
47). Furthermore, subjects also underwent MRI studies
performed on a 3-T MRI scanner (Philips Intera, Best, The
Netherlands). High-resolution T1 structural images of the
whole brain were acquired with three-dimensional (3D)
magnetization prepared rapid acquisition gradient echo
(3D-MPRAGE) sequence.

b. Group 2: 25 healthy controls (mean age: 60 � 4 yr;
range: 54–65 yr) were acquired on a GE Advance NXi
PET scanner present at the University Hospital of Santi-
ago de Compostela (Santiago de Compostela, Spain).
Images were acquired for 1200 s on 3D mode (no septa)
after the injection of 370 MBq (4.7 MBq/Kg) of 18F-
FDG. PET images were reconstructed using 2D OSEM
after attenuation (using a 68Ge source), scatter, and ran-
doms precorrection and FORE rebinning (Voxel size,
2.05 × 2.05 × 4.3 mm; Matrix size, 128 × 128 × 35).

c. Group 3: 25 healthy controls (mean age: 53 � 10 yr;
range: 35–66 yr) were acquired on the Siemens Bio-
graph mCT PET scanner at the Hospital Clinic (Barce-
lona, Spain), after injecting a dose of 185 MBq
(2.5 Mbq/Kg) of 18F-FDG, with a bedtime of 900 s.
The images were reconstructed using time-of-flight
(TOF) OSEM including resolution recovery (TrueX),
attenuation, scatter, random, dead time, and decay cor-
rections. (Voxel size, 1.02 × 1.02 × 1.50 mm; Matrix
size, 400 × 400 × 148).

2.B.2. Bland-Altman comparison analysis

The acquired and simulated PET studies were spatially
normalized onto the MNI space (voxel size of
2 × 2 × 2 mm) using a 18F-FDG template and the 12-param-
eter affine normalization (“Old Normalize”) provided by
SPM12. The normalized PET studies were smoothed with a
Gaussian kernel of 8 mm. For each scanner, the simulated
images were compared with the real images by performing a
Bland-Altman-like analysis, where for each voxel, we calcu-
lated voxel-based differences (∈ voxel) as:

∈ voxel ¼ 2∗
ðVreal�VsimulatedÞ
ðVrealþ VsimulatedÞ

where Vreal is the average value of the real images and
Vsimulated is the average value of the simulated images. The
resulting values were histogrammed for presentation pur-
poses. In order to considerer potential differences between
the patient databases, the same process was performed
between the real databases for comparison and included in
the corresponding histograms when needed.

2.B.3. Voxel-wise comparison between simulated
and acquired images

To complement the aforementioned comparison, the simu-
lated images and real databases were compared by using
SPM statistical analysis, which allows to assess regional/sys-
tematic differences between the simulated/real groups. As the
activity maps were derived from Group 1, GE Discovery ST
simulated images were compared using a paired t test config-
uration. For the rest of comparisons, we used a two-sample t
test. Two different contrasts were used to assess areas where
the control group > simulated group and where the control
group < simulated group. A statistic threshold of P < 0.01
and a cluster size k = 300 was applied. Family wise error
(FWE) correction was applied to assess for multiple
comparisons.

3. RESULTS

3.A. Generation of digital phantoms

The CPU time for the generation of digital phantoms was
about 3–4 h for GE Discovery ST, reaching convergence after
four or five BrainVISET iterations. Figure 4 shows a subset
of Group 1 (row 1) and the corresponding generated digital
phantoms (row 2).

3.B. Simulation and reconstruction

The computation time for the simulation of the
generated phantoms was about 50 min per subject, while
the reconstruction time was 20 min for the GE Discovery
ST and GE Advance NXi, and 40–60 min for the Sie-
mens Biograph mCT scanner. This difference in recon-
struction times was caused by the difference in times for
the calculation of attenuation sinograms between the dif-
ferent scanners. Figure 4 (rows 3–5) shows the simula-
tions of a subset of Group 1 in the three different
scanners.

3.C. Bland-Altman comparisons

Figure 5 shows the results of the performed Bland-Alt-
man-like analysis.

3.C.1. GE discovery ST

In the left histogram, we can observe the differences
between the real and the simulated images for the GE Discov-
ery ST. 83.02% of voxels showed differences of <5%, while
98.09% were below 10%.

3.C.2. GE advance NXi

For the GE Advance NXi (center), 71.98% of the voxels
showed differences lower than 5%, while 95.09% were
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below 10%. These results were similar when comparing
between real databases for the GE Discovery ST and the
GE Advance NXi (68.42% voxels have differences lower
than 5%, 94.55% are below 10%), pointing to the fact that
most of the observed differences were due to differences
between the databases.

3.C.3. Siemens biograph mCT

Finally, for the Siemens Biograph mCT (right), 62.22% of
the voxels showed differences of less than 5%, while 91.35%
were below 10%. Differences between the real databases
below 5% for 79.03% of the voxels, and below 10% for
97.60%, showing that the mCT provides the worst correspon-
dence along the used scanner models.

3.D. Voxel-wise comparisons

Figure 6 shows the voxel-wise statistical comparisons
(mean and statistical differences) between acquired and simu-
lated images for the different scanners.

3.D.1. GE discovery ST

As it can be observed in Fig. 6 (rows 1–2), good visual
agreement between the mean simulated and acquired images
was achieved. Voxel-wise analysis (Fig. 6, row 3) showed
some regional differences, including regions of higher activ-
ity in the right temporal lobe of the simulated group and a
bilateral region showing lower activity for the simulated
group in the upper frontal lobe.

FIG. 4. Sample of ten healthy control PET images acquired on GE Discovery ST (Group 1), the corresponding generated digital phantoms, and the correspond-
ing simulated PET images obtained in the different commercial scanners using SimPET. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Bland-Altman comparison between the real and simulated databases, for the GE Discovery ST (left), the GE Advance (center) and the Siemens mCT
(right). [Color figure can be viewed at wileyonlinelibrary.com]
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3.D.2. GE advance NXi

As for the GE Discovery ST, a good visual agreement
between simulated and real images is observed (Fig. 6, rows
4–5). The voxel-wise analysis showed some areas of higher
metabolism for the simulated group on the frontal lobe, while
reduced activity was observed in the temporal lobe and the
internal structures (Fig. 6, row 6).

3.D.3. Siemens biograph mCT

For the Siemens Biograph mCT we observed the greater
visual differences between the simulations and the acquisi-
tions (Fig. 6, rows 7–8). Artifacts can be observed in the

simulated images, such as slight asymmetries on the occipital
and temporal lobes that are not observed for the other scan-
ners. The voxel-wise analysis showed higher simulated activ-
ity in the cerebellum, the internal structures and some small
cortical areas in the right frontal lobe and the left occipital
lobe. In contrast, we observed reduced simulated metabolism
in several small clusters distributed along the cortex.

4. DISCUSSION

The evaluation and standardization of quantification meth-
ods in brain PET require the analysis of large pools of PET
images, ideally against a well-known ground truth. While
physical phantoms provide a way forward, acquiring many

FIG. 6. Voxel-wise analysis results for the comparison between the simulated images and real FDG-PET images for the three simulated scanners. A threshold of
P < 0.01 corrected and k = 300 is applied. [Color figure can be viewed at wileyonlinelibrary.com]
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phantom images can be tedious and time consuming. In addi-
tion, physical phantoms are often limited to simple geometric
shapes, leading to unrealistic images. Therefore, simulations
can be of value in this case. As a rule, however, great techni-
cal expertise and high computing power are required. In
recent works, easy-to-use platforms for analytical simula-
tion43 were presented. In this work, we expand the range of
available options by offering a free, intuitive, and efficient
tool for Monte Carlo (MC) simulation of realistic PET
images, with a focus on brain imaging. Our platform,
SimPET, simplifies the process of obtaining realistic
synthetic brain PET images by combining tools for extraction
of digital phantoms from patient data and well-validated
scanner models.

To demonstrate the capabilities of the platform, we gener-
ated synthetic databases of healthy patients for the three scan-
ner models included in the library. For this, we generated
realistic activity and attenuation maps derived from 25
healthy patients acquired on the GE Discovery ST, that were
then simulated using different scanner models. Despite the
images, generated by the platform, being visually close to the
real images for all scanners (see Fig. 4), statistical analysis
revealed significant differences, especially for the GE
Advance and the Siemens mCT. In this regard, quantitative
analysis was performed by comparing with the real images
acquired on each scanner by a) Bland-Altman analysis and b)
SPM statistical analysis (see Figs. 5 and 6). In both cases, the
GE Discovery ST showed the smallest differences between
the acquired and simulated images (83.02% of voxels have
differences of <5%). This is not surprising, as this was the
most favorable comparison, where the simulated images were
compared with the FDG-PET images from which the digital
phantoms were derived. Results of the other scanners (GE
Advance NXi and Siemens Biograph mCT) showed bigger
differences. While these differences could be attributed to
physiological differences between the control groups (see
Fig. 5), more work will be needed to validate this hypothesis,
or to improve the MC models for these tomographs in order
to diminish these differences. Overall, good agreement
between simulated and acquired data opens the door for using
the platform for applications such as augmenting data for
training artificial intelligence algorithms and others. In addi-
tion to the images generated from healthy patients, Appendix
A includes complementary experiments. Despite no quantita-
tive analysis being presented, these experiments may serve as
examples to highlight the potential applications of the plat-
form for performing simulations of different tracers and to
present the users with appropriate workflows that might be
used for validating/harmonizing quantification protocols.

Despite the overall good performance, the current version
of the platform presents some limitations, particularly rele-
vant to the Siemens Biograph mCT model. First, the simula-
tion is based on a simplified detector model (SimSET
simplePET). While this allows for short simulation times and
might be sufficient for old scanners, modern scanners would
benefit from more detailed models. Second, our reconstruc-
tion does not include features such as TOF and resolution

recovery. These features are currently under development and
will be available with a future release.44 In addition to these
features, novel platform tools which will allow the users to
easily introduce new scanner models will be added. Our goal
is to build an open and diverse scientific community of users
and developers.

5. CONCLUSIONS

SimPET is an open, efficient, and user-friendly online
platform for the generation of synthetic brain FDG-PET data-
sets. Comparisons between generated and acquired data
showed reasonable agreement for the simulations, especially
for the GE Discovery ST, demonstrating that SimSET can be
used for generating realistic simulated data. Further work
needs to be performed to validate map generation and simula-
tion on other scanner models.
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APPENDIX A

AMYLOID PET SIMULATION

In addition to 18F-FDG, the platform also allows users to
simulate amyloid PET images with 18F-Florbetapir as a tracer.
For demonstrating this capability, we include a simple exam-
ple case. Five amyloid-negative patients, acquired on the GE
Discovery ST, were uploaded to the platform to obtain amy-
loid PET realistic activity maps. These maps were then simu-
lated on the three implemented scanners and the results are
showcased for demonstration purposes, showing the differ-
ences between scanners in amyloid PET assessments.
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Figure A1 shows the results of the performed amyloid
PET simulations. Five amyloid-negative PET patients and
the obtained activity maps are shown in rows 1 and 2,
followed by the simulated PETs obtained with the
platform for the GE Discovery ST, GE Advance NXi
and Siemens Biograph mCT scanner models (rows 3–5).

Real amyloid-negative PET examples for the GE Advance
NXi and Siemens Biograph mCT scanners are included
for comparison. For additional information on how
simulated amyloid images can be used for validating
quantification methods, readers can check our previous
work.21

FIG. A1. Sample of five amyloid-negative patient PET images acquired on GE Discovery ST, the corresponding generated activity maps, and the simulated PET
images obtained in the different commercial scanners, GE Advance and Siemens mCT images are included for comparison.

FIG. A2. Pipeline used to simulate pathological PET images of AD and TLE cases using activity maps generated on SimPET and including a known level of
hypometabolism. [Color figure can be viewed at wileyonlinelibrary.com]
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SIMULATION OF PATHOLOGICAL MAPS

In order to validate quantitative methods in different
pathologies, users can download the generated activity maps,
and modify them to introduce known hypometabolism pat-
terns, which can be used as ground truth for the quantifica-
tion after the simulation and reconstruction. As an example,
one of the generated 18F-FDG activity maps was down-
loaded, and two different hypometabolism were added manu-
ally in predefined ROIS reflecting patterns typically observed
in Alzheimer’s disease (AD) and temporal lobe epilepsy
(TLE). The simulations of these patterns in the three scanners
are showcased in Figure A2, allowing for the different repre-
sentation of the exact same metabolism in the different scan-
ners to be easily observed.

After simulating the generated patterns using the platform,
measurements on the different scanners can be compared,
allowing the users to validate quantification and harmoniza-
tion protocols. A detailed example on how to exploit this pro-
cedure can be found in our previous work.20

*JPP and FJLG contributed equally to this work and share first authorship.
a)Author to whom correspondence should be addressed. Electronic mail:
jesus@qubiotech.com; Telephone: +34 981955707.
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21. López-González FJ, Moscoso A, Efthimiou N, et al. Spill-in counts in
the quantification of 18F-florbetapir on Aβ-negative subjects: the effect
of including white matter in the reference region. EJNMMI Phys.
2019;6:27.

22. Ma BO, Xu H, Lenz M, et al. Scatter correction based on GPU-acceler-
ated full Monte Carlo simulation for brain PET/MRI. IEEE Trans Med
Imaging. 2020;39:140–151.

23. Magota K, Shiga T, Asano Y, et al. Scatter correction with combined
single-scatter simulation and Monte Carlo simulation scaling improved
the visual artifacts and quantification in 3D brain PET/CT imaging with
15O-gas inhalation. J Nucl Med. 2017;58:2020–2025.

24. Xu H, Lenz M, Caldeira L, et al. Resolution modeling in projection
space using a factorized multi-block detector response function for PET
image reconstruction. Phys Med Biol. 2019;64:145012.

25. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Com-
puterized three-dimensional segmented human anatomy. Med Phys.
1994;21:299–302.

26. Segars WP, Tsui BMW. MCAT to XCAT: the evolution of 4-D com-
puterized phantoms for imaging research. Proc IEEE.
2009;97:1954–1968.

27. Belzunce MA, Reader AJ. Technical note: ultra high-resolution radio-
tracer-specific digital pet brain phantoms based on the BigBrain atlas.
Med Phys. 2020;47:3356–3362.

28. Harrison RL, Elston BF, Byrd DW, Alessio AM, Swanson KR, Kinahan
PE. Technical note: a digital reference object representing Hoffman’s 3D
brain phantom for PET scanner simulations. Med Phys.
2020;47:1174–1180.

29. Marti-Fuster B, Esteban O, Thielemans K, et al. Including anatomical
and functional information in MC simulation of PET and SPECT brain
studies. Brain-VISET: a voxel-based iterative method. IEEE Trans Med
Imaging. 2014;33:1931–1938.

30. Aubert-Broche B, Griffin M, Pike GB, Evans AC, Collins DL. Twenty
new digital brain phantoms for creation of validation image data bases.
IEEE Trans Med Imaging. 2006;25:1410–1416.

31. Thielemans K, Tsoumpas C, Mustafovic S, et al. STIR: software for
tomographic image reconstruction release 2. Phys Med Biol.
2012;57:867–883.

32. Friston KJ. Commentary and opinion: II. Statistical parametric mapping:
ontology and current issues. J Cereb Blood Flow Metab.
1995;15:361–370.

33. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM.
Fsl. NeuroImage. 2012;62:782–790.

34. Brett M, Markiewicz CJ, Hanke M, et al. Nipy/Nibabel: 3.1.0. Zenodo.
2020. https://doi.org/10.5281/ZENODO.3757992

Medical Physics, 48 (5), May 2021

2492 Paredes-Pacheco et al.: Simulation of realistic brain PET data 2492

https://doi.org/10.1109/NSSMIC.2007.4437061
https://doi.org/10.1109/NSSMIC.2007.4437061
https://doi.org/10.5281/ZENODO.3757992


35. Silva-Rodrı́guez J, Aguiar P, Domı́nguez-Prado I, Fierro P, Ruibal Á.
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